-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathogsgg_qualitative.py
240 lines (195 loc) · 7.43 KB
/
ogsgg_qualitative.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import zipfile
import io
import json
import colorsys
import os
import cv2
import numpy as np
import owlready2 as owl
import telenet.dataset_data as tn_data
from telenet.config import get as tn_config
from tqdm import tqdm
from pathlib import Path
from graphviz import Digraph
TRAIN_BASE_NAMES = 'vg'
TEST_DATASET = 'ai2thor'
MODEL_VARIANT = 'Ai2Thor+VgSgg+Filter'
USE_POST_PROC = True
tn_data.load_names(f'{TEST_DATASET}-names.json')
PAIR_CONSTRAINTS = tn_data.load_npy_xz(f'{TEST_DATASET}-pair-constraints')
owl.JAVA_EXE = tn_config('paths.java')
onto = owl.get_ontology(Path(tn_data.path(f'{TEST_DATASET}.owl')).as_uri()).load()
with onto: owl.sync_reasoner()
ONTO_CLS = [ onto.search_one(label=label.replace(' ','')) for label in tn_data.CLASS_NAMES ]
ONTO_RELS = [ onto.search_one(label=label) for label in tn_data.REL_NAMES ]
ONTO_REL_OBJ_TO_ID = { rel:i for i,rel in enumerate(ONTO_RELS) }
ONTO_INV = [ ONTO_REL_OBJ_TO_ID.get(rel.inverse_property, -1) for rel in ONTO_RELS]
# Note that symmetric predicates get tagged as their own inverses
PREFERS_SUBJECT = tn_config(f'{TEST_DATASET}.qualitative.prefers_subject')
PREFERS_SUBJECT = set(tn_data.CLASS_NAME_TO_ID[x] for x in PREFERS_SUBJECT)
PREFERS_OBJECT = tn_config(f'{TEST_DATASET}.qualitative.prefers_object')
PREFERS_OBJECT = set(tn_data.CLASS_NAME_TO_ID[x] for x in PREFERS_OBJECT)
zf_images = zipfile.ZipFile(tn_data.path(f'{TEST_DATASET}-images.zip'), 'r')
zf_scores = zipfile.ZipFile(f'test-results/{TEST_DATASET}+{MODEL_VARIANT}.zip', 'r')
testimgs = tn_data.load_json_xz(f'{TEST_DATASET}-test')
if TRAIN_BASE_NAMES != TEST_DATASET:
with open(tn_data.path(f'{TRAIN_BASE_NAMES}-names.json'), 'rt', encoding='utf-8') as f:
VG_REL_NAMES = json.load(f)['rels']
VG_REL_TO_ID = { k:i for i,k in enumerate(VG_REL_NAMES) }
PREDICATE_MAP = tn_config(f'{TEST_DATASET}.predicate_map')
PREDICATE_MAP = { tn_data.CLASS_REL_TO_ID[k]:tuple(VG_REL_TO_ID[p] for p in v) for k,v in PREDICATE_MAP.items() }
os.makedirs(f'qualit-{TEST_DATASET}/', exist_ok=True)
def color_wheel(i,n):
return tuple(int(128 + 127*x + .5) for x in colorsys.hsv_to_rgb(float(i)/n, 1., 1.))
def htmlclr(clr):
return f'#{clr[2]:02x}{clr[1]:02x}{clr[0]:02x}'
def draw_bbox(img, bb, bbox_color, label):
h,w,_ = img.shape
bbx,bby,bbw,bbh = bb
fontScale = 0.5
bbox_thick = int(0.6 * (w + h) / 600)
c1, c2 = (bbx, bby), (bbx+bbw, bby+bbh)
cv2.rectangle(img, c1, c2, bbox_color, bbox_thick)
t_size = cv2.getTextSize(label, 0, fontScale, thickness=bbox_thick // 2)[0]
c3 = (c1[0] + t_size[0], c1[1] - t_size[1] - 3)
cv2.rectangle(img, c1, (np.int32(c3[0]), np.int32(c3[1])), bbox_color, -1) #filled
cv2.putText(img, label,
(c1[0], np.int32(c1[1] - 2)),
cv2.FONT_HERSHEY_SIMPLEX,
fontScale,
(0, 0, 0),
bbox_thick // 2,
lineType=cv2.LINE_AA
)
def stupid_adapter(f):
return io.BytesIO(f.read())
def generate_pairs(N):
for i in range(N):
for j in range(N):
if i != j:
yield (i,j)
def convert_train_to_test(vg_scores):
t_scores = np.full((tn_data.NUM_RELS,), np.nan)
for i,tup in PREDICATE_MAP.items():
scores = np.take(vg_scores, tup)
scores = scores[np.isfinite(scores)]
if scores.size != 0:
t_scores[i] = np.mean(scores)
return t_scores
def generate_pairs_for_preddet(all_scores, objs):
num_objs = len(objs)
if all_scores.shape[0] != num_objs*(num_objs-1):
print('Bad:', all_scores.shape[0], num_objs, num_objs*(num_objs-1))
return None
def generator():
for i,(src,dst) in enumerate(generate_pairs(num_objs)):
scores = all_scores[i]
if TRAIN_BASE_NAMES == 'vg' or TRAIN_BASE_NAMES == 'vgfilter':
scores = convert_train_to_test(scores)
elif TRAIN_BASE_NAMES != TEST_DATASET:
raise Exception("Dunno what to do")
if USE_POST_PROC:
constr = PAIR_CONSTRAINTS[objs[src]['v'], objs[dst]['v'], :]
scores = np.where(constr, scores, np.nan)
if not np.any(np.isfinite(scores)): continue
yield (src, dst, scores)
return generator
for img in tqdm(testimgs):
id = img['id']
if len(img['objs']) < 2: continue
with stupid_adapter(zf_scores.open(f'{id}.npy','r')) as f:
all_scores = np.load(f)
pairs = generate_pairs_for_preddet(all_scores, img['objs'])
if pairs is None:
print(f'Image with problem: {id}')
continue
imgdata = zf_images.read(f'rgb/{id}.jpg')
imgdata = np.frombuffer(imgdata, np.uint8)
imgdata = cv2.imdecode(imgdata, cv2.IMREAD_COLOR)
objlblcnt = {}
objnames = []
objlabels = []
for obj in img['objs']:
objcls = obj['v']
objlblcnt[objcls] = objclsnum = objlblcnt.get(objcls, 0) + 1
objclsname = tn_data.CLASS_NAMES[objcls].replace(' ','')
objname = f'{objclsname}_{objclsnum}'
objnames.append(objname)
objlabels.append(f'<{objclsname}<SUB>{objclsnum}</SUB>>')
draw_bbox(imgdata, obj['bb'], color_wheel(len(objlabels)-1, len(img['objs'])), objname)
cv2.imwrite(f'qualit-{TEST_DATASET}/{id}_ann.jpg', imgdata)
triplets = []
for src,dst,scores in pairs():
for rel,score in enumerate(scores):
if np.isfinite(score):
score = float(score)
triplets.append((float(score),rel,src,dst))
g = Digraph()
g.engine = 'neato'
g.graph_attr['margin'] = '0'
g.node_attr['fontsize'] = '12'
g.node_attr['margin'] = '0'
g.node_attr['width'] = '0'
g.node_attr['height'] = '0'
g.edge_attr['fontsize'] = '9'
g.edge_attr['arrowhead'] = 'lvee'
g.edge_attr['arrowtail'] = 'lvee'
g.edge_attr['len'] = '1.0'
g.graph_attr['overlap'] = 'scalexy'
used_objs = set()
accepted_triplets = set()
edge_heads = {}
edge_tails = {}
def add_triplet(src,dst,rel,is_raw=False):
cur_triplet = (src,dst,rel)
cur_edge_head = (src,rel)
cur_edge_tail = (dst,rel)
if cur_triplet in accepted_triplets:
return False # Redundant
if USE_POST_PROC and not is_raw:
ontorel = ONTO_RELS[rel]
if issubclass(ontorel, owl.FunctionalProperty):
if cur_edge_head in edge_heads:
return False # Culled
if issubclass(ontorel, owl.InverseFunctionalProperty):
if cur_edge_tail in edge_tails:
return False # Culled
if (relinv := ONTO_INV[rel]) >= 0: # owl.SymmetricProperty implies ONTO_INV[k] = k
add_triplet(dst,src,relinv,is_raw=True)
elif issubclass(ontorel, owl.AsymmetricProperty) and (dst,src,rel) in accepted_triplets:
return False # Culled
for obj in (src,dst):
if obj not in used_objs:
used_objs.add(obj)
g.node(f'o{obj}', objlabels[obj], style='filled', color=htmlclr(color_wheel(obj, len(objlabels))))
accepted_triplets.add(cur_triplet)
ehset = edge_heads.get(cur_edge_head, None)
if not ehset: ehset = edge_heads[cur_edge_head] = set()
ehset.add(dst)
etset = edge_tails.get(cur_edge_tail, None)
if not etset: etset = edge_tails[cur_edge_tail] = set()
etset.add(src)
return True
triplets.sort(key=lambda x:x[0], reverse=True)
num_accepted = 0
key_triplets = []
for score,rel,src,dst in triplets:
if num_accepted >= 16:
break
if add_triplet(src,dst,rel):
num_accepted += 1
key_triplets.append((src,dst,rel,score))
print(f'Image {id}:')
for src,dst,rel,score in key_triplets:
if USE_POST_PROC:
if img['objs'][dst]['v'] in PREFERS_SUBJECT or img['objs'][src]['v'] in PREFERS_OBJECT:
# Attempt to swap
if (relinv := ONTO_INV[rel]) >= 0:
tmp = src; src = dst; dst = tmp
rel = relinv
print(f' ({score:.3f}) {objnames[src]} {tn_data.REL_NAMES[rel]} {objnames[dst]}')
attrs = { 'xlabel': tn_data.REL_NAMES[rel] }
if ONTO_INV[rel] == rel:
attrs['dir'] = 'both'
g.edge(f'o{src}', f'o{dst}', **attrs)
g.render(f'qualit-{TEST_DATASET}/{id}+{MODEL_VARIANT}+Preproc={"True" if USE_POST_PROC else "False"}.gv')