-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathogsgg_quantitative.py
216 lines (179 loc) · 6.29 KB
/
ogsgg_quantitative.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import zipfile
import io
import json
import numpy as np
import telenet.dataset_data as tn_data
from telenet.config import get as tn_config
from tqdm import tqdm
MODEL_VARIANT = tn_config('model.variant')
TRAINED_DATASET = tn_config('train.dataset')
TESTED_DATASET = tn_config('test.dataset')
USE_POST_PROC = tn_config('test.use_post_proc')
tn_data.load_names(f'{TESTED_DATASET}-names.json')
PAIR_CONSTRAINTS = tn_data.load_npy_xz(f'{TESTED_DATASET}-pair-constraints')
zf_scores = zipfile.ZipFile(f'test-results/{TESTED_DATASET}+{MODEL_VARIANT}.zip', 'r')
testimgs = tn_data.load_json_xz(f'{TESTED_DATASET}-test')
if TESTED_DATASET not in TRAINED_DATASET:
with open(tn_data.path(f'{TRAINED_DATASET}-names.json'), 'rt', encoding='utf-8') as f:
VG_REL_NAMES = json.load(f)['rels']
VG_REL_TO_ID = { k:i for i,k in enumerate(VG_REL_NAMES) }
TERESA_TO_VG = tn_config(f'{TESTED_DATASET}.predicate_map')
TERESA_TO_VG = { tn_data.CLASS_REL_TO_ID[k]:tuple(VG_REL_TO_ID[p] for p in v) for k,v in TERESA_TO_VG.items() }
def stupid_adapter(f):
return io.BytesIO(f.read())
def generate_pairs(N):
for i in range(N):
for j in range(N):
if i != j:
yield (i,j)
def convert_vg_to_teresa(vg_scores):
t_scores = np.full((tn_data.NUM_RELS,), np.nan)
for i,tup in TERESA_TO_VG.items():
scores = np.take(vg_scores, tup)
scores = scores[np.isfinite(scores)]
if scores.size != 0:
t_scores[i] = np.mean(scores)
return t_scores
def generate_pairs_for_preddet(all_scores, objs):
num_objs = len(objs)
if all_scores.shape[0] != num_objs*(num_objs-1):
print('Bad:', all_scores.shape[0], num_objs, num_objs*(num_objs-1))
return None
def generator():
for i,(src,dst) in enumerate(generate_pairs(num_objs)):
scores = all_scores[i]
if TESTED_DATASET not in TRAINED_DATASET:
scores = convert_vg_to_teresa(scores)
if USE_POST_PROC:
constr = PAIR_CONSTRAINTS[objs[src]['v'], objs[dst]['v'], :]
scores = np.where(constr, scores, np.nan)
if not np.any(np.isfinite(scores)): continue
yield (src, dst, scores)
return generator
def count_rels(ground_truth):
rels = {}
for _,_,relid in ground_truth:
rels[relid] = rels.get(relid,0) + 1
return rels
def extract_scores(ground_truth, annotated_pairs, pairgen, cutoffs=[1,tn_data.NUM_RELS]):
cutoffs = set(cutoffs)
matches = { k:[] for k in cutoffs }
scores = { k:[] for k in cutoffs }
relids = { k:[] for k in cutoffs }
for src,dst,scorevec in pairgen():
#if (src,dst) not in annotated_pairs:
# continue
order = np.argsort(-scorevec)
for p in range(tn_data.NUM_RELS):
relid = order[p]
score = scorevec[relid]
match = 1 if (src,dst,relid) in ground_truth else 0
if not np.isfinite(score):
continue
for k in cutoffs:
if p < k:
matches[k].append(match)
scores[k].append(score)
relids[k].append(relid)
for k in cutoffs:
matches[k] = np.array(matches[k])
scores[k] = np.array(scores[k])
relids[k] = np.array(relids[k])
return matches, scores, relids
class RecallAggregator:
def __init__(self):
self.accum = 0.
self.num_images = 0
self.num_matches = 0
self.num_gtrels = 0
def update(self, matches, gt):
assert gt != 0
self.accum += float(matches) / float(gt)
self.num_images += 1
self.num_matches += matches
self.num_gtrels += gt
def result(self):
return (self.accum / self.num_images, self.num_matches / self.num_gtrels)
def update_recall(recall, mean_recall, ground_truth, matches, scores, relids, values=[20,50,100]):
relcnt = count_rels(ground_truth)
GT = len(ground_truth)
values = set(values)
for k,matches_K in matches.items():
scores_K = scores[k]
relids_K = relids[k]
for RK in values:
RK_k = (RK,k)
recall_RK_k = recall.get(RK_k, None)
if not recall_RK_k:
recall_RK_k = recall[RK_k] = RecallAggregator()
order = np.argsort(-scores_K)[0:RK]
cur_matches = matches_K[order]
cur_relids = relids_K[order]
recall_RK_k.update(np.sum(cur_matches), min(GT,RK))
if mean_recall is None:
continue
mean_recall_RK_k = mean_recall.get(RK_k, None)
if not mean_recall_RK_k:
mean_recall_RK_k = mean_recall[RK_k] = {}
for relid,cnt in relcnt.items():
mean_recall_RK_k_rel = mean_recall_RK_k.get(relid, None)
if not mean_recall_RK_k_rel:
mean_recall_RK_k_rel = mean_recall_RK_k[relid] = RecallAggregator()
mean_recall_RK_k_rel.update(np.dot(cur_matches, cur_relids == relid), min(cnt,RK))
def calc_mean_recall(relmap):
rellist_local = []
rellist_global = []
for agg in relmap.values():
r_local,r_global = agg.result()
rellist_local.append(r_local)
rellist_global.append(r_global)
return sum(rellist_local) / tn_data.NUM_RELS, sum(rellist_global) / tn_data.NUM_RELS
recall = {}
mean_recall = {}
numimgs = 0
for img in tqdm(testimgs):
id = img['id']
if len(img['objs']) < 2: continue
with stupid_adapter(zf_scores.open(f'{id}.npy','r')) as f:
all_scores = np.load(f)
pairs = generate_pairs_for_preddet(all_scores, img['objs'])
if pairs is None:
print(f'Image with problem: {id}')
continue
# Preprocess ground truth
ground_truth = set()
annotated_pairs = set()
for rel in img['rels']:
src = rel['si']
dst = rel['di']
srcv = rel['sv']
dstv = rel['dv']
annotated_pairs.add((src,dst))
for relid in rel['v']:
triplet = (src,dst,relid)
if not PAIR_CONSTRAINTS[srcv,dstv,relid]:
print(f'Something is wrong: {tn_data.CLASS_NAMES[srcv]} {tn_data.REL_NAMES[relid]} {tn_data.CLASS_NAMES[dstv]} not allowed')
exit()
ground_truth.add(triplet)
if len(ground_truth) > 0:
matches, scores, relids = extract_scores(ground_truth, annotated_pairs, pairs)
update_recall(recall, mean_recall, ground_truth, matches, scores, relids)
for RK_k,agg in recall.items():
recall[RK_k] = agg.result()
for RK_k,relmap in mean_recall.items():
mean_recall[RK_k] = calc_mean_recall(relmap)
print()
with open(f'test-results/{TESTED_DATASET}+{MODEL_VARIANT}{".postproc" if USE_POST_PROC else ""}.log', 'w', encoding='utf-8') as fout:
def print_both(text):
print(text)
print(text,file=fout)
def sort_key(key):
RK,k = key[0]
return (k,RK)
def print_metric(name,metrics):
for (RK,k),(v_local,_) in sorted(metrics.items(), key=sort_key):
print_both(f'|{name:>7}@{RK:<3} k={k:<3} | {100*v_local:4.1f}%')
print_both(f'| ~~~~ Metric ~~~~ | Value |')
print_both(f'----------------------------')
print_metric('R', recall)
print_metric('mR', mean_recall)