-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathmogdata.py
46 lines (35 loc) · 1.38 KB
/
mogdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import numpy as np
import torch
from scipy.spatial import distance
from scipy.stats import entropy
def generate_data_SingleBatch(num_mode=100, radius=24, center=(0, 0), sigma=0.01, batchSize=64):
num_data_per_class = int(np.ceil(batchSize/num_mode))
total_data = {}
t = np.linspace(0, 2*np.pi, num_mode+1)
t = t[:-1]
x = np.cos(t)*radius + center[0]
y = np.sin(t)*radius + center[1]
modes = np.vstack([x, y]).T
for idx, mode in enumerate(modes):
x = np.random.normal(mode[0], sigma, num_data_per_class)
y = np.random.normal(mode[1], sigma, num_data_per_class)
total_data[idx] = np.vstack([x, y]).T
all_points = np.vstack([values for values in total_data.values()])
all_points = np.random.permutation(all_points)[0:batchSize]
return torch.from_numpy(all_points).float()
def loglikelihood(data, num_mode=100, radius=24, center=(0, 0)):
t = np.linspace(0, 2*np.pi, num_mode+1)
t = t[:-1]
x = np.cos(t)*radius + center[0]
y = np.sin(t)*radius + center[1]
modes = np.vstack([x, y]).T
q = np.ones(num_mode) / num_mode
mat = distance.cdist(data, modes)
prob = np.bincount(np.argmin(mat, axis=1), minlength=num_mode) / len(data)
# find the entropy
try:
toReturn = entropy(q,prob,base=2)
except:
print('Got some Error, return toReturn=-0.1')
toReturn = -0.1
return toReturn