-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_z_all.m
executable file
·142 lines (112 loc) · 5.64 KB
/
compute_z_all.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
% 5/28/2020 Shuowen Chen and Hiroaki Kaido
% The function computes the analytical z_delta and z_beta, an ingredient of
% the scores. Note the outputs are conditional on the value of x.
function [z_delta, z_beta] = compute_z_all(beta, x, delta)
% Input:
% beta: structural parameter of interest (1 by 2 vector)
% x: Covariates (4 by 2) [1,1; 1,-1; -1,1; -1,-1].
% delta: nuisance parameter (2 by 1)
%
% Output:
% z_delta: a 2 by 16 matrix with the following form
% x = [1,1] | x=[1,-1] ...
% (0, 0) (1, 1) (1, 0) (0, 1)| (0, 0) ... (0, 1)
% delta1 |
% delta2 |
% z_beta: a 2 by 16 matrix with the following form
% x = [1,1] | x=[1,-1] ...
% (0, 0) (1, 1) (1, 0) (0, 1)| (0, 0) ... (0, 1)
% beta1 |
% beta2 |
delta = delta';
% All of the following variables are 4 by 2.
xdelta = x.*delta;
phi = normpdf(xdelta);
Phi = normcdf(xdelta);
phi_beta = normpdf(xdelta + beta);
Phi_beta = normcdf(xdelta + beta);
% For events (0, 0) and (1, 1) no subcase consideration (all are 4 by 2)
zbeta_00 = zeros(4, 2);
zdelta_00 = -phi.*x./(1-Phi);
zbeta_11 = phi_beta./Phi_beta;
zdelta_11 = phi_beta.*x./Phi_beta;
% For events (1, 0) and (0, 1), for each configuration of Xdelta,
% there are three subcases to consider. We have six conditions
%(two of which are repetitive) to consider the regions.
% Given each local alternative, we can evaluate the conditions and thus
% determine which subregion the given local alternative belongs to.
% First define the 5 variables used in the conditions
var1 = Phi(:,1).*(1-Phi_beta(:,2));
z1 = Phi(:,1).*(1-Phi(:,2));
z2 = Phi(:,2).*(1-Phi(:,1)) + Phi(:,1) + Phi(:,2) - Phi(:,1).*Phi(:,2) - ...
Phi_beta(:,1).*Phi_beta(:,2);
var2 = (z1.*z2 - Phi(:,2).*(1-Phi(:,1)).*z1)./(Phi(:,1) + Phi(:,2) - ...
2*Phi(:,1).*Phi(:,2));
var3 = Phi(:,1).*(1-Phi(:,2));
var4 = Phi_beta(:,1).*Phi(:,2);
var5 = Phi_beta(:,1).*Phi_beta(:,2);
% Now for events (1, 0) and (0, 1), define the conditions
dim = size(x);
% pre-allocation
zdelta_1001 = zeros(2, 2*dim(1));
zbeta_1001 = zeros(2, 2*dim(1));
for i = 1:dim(1) % loop over covariate configurations
% (0,1) chosen
if var4(i) + var3(i) - var5(i) > var2(i) && var1(i) > var3(i) + var4(i) - var5(i)
q1_10 = Phi(i,1)*(1-Phi(i,2))+Phi_beta(i,1)*Phi(i,2)-Phi_beta(i,1)*Phi_beta(i,2);
zbeta1_10 = (Phi(i,2)*phi_beta(i,1)-Phi_beta(i,2)*phi_beta(i,1))/q1_10;
zbeta2_10 = -Phi_beta(i,1)*phi_beta(i,2)/q1_10;
zdelta1_10 = x(i,1) * (phi(i,1)*(1-Phi(i,2))+Phi(i,2)*phi_beta(i,1)-...
Phi_beta(i,2)*phi_beta(i,1))/q1_10;
zdelta2_10 = x(i,2) * (-phi(i,2)*Phi_beta(i,1)+Phi(i,1)*phi(i,2)-...
Phi_beta(i,1)*phi_beta(i,2))/q1_10;
zdelta1_01 = -x(i,1)*phi_beta(i,1)/(1-Phi_beta(i,1));
zdelta2_01 = x(i,2)*phi(i,2)/Phi(i,2);
zbeta1_01 = -phi_beta(i,1)/(1-Phi_beta(i,1));
zbeta2_01 = 0;
% (1,0) chosen
elseif var1(i) < var2(i) && var1(i) - var3(i) - var4(i) + var5(i) > 0
q1_01 = (1-Phi(i,1))*Phi(i,2) + Phi_beta(i,2)*(Phi(i,1)-Phi_beta(i,1));
zdelta1_10 = x(i,1)*phi(i,1)/Phi(i,1);
zdelta2_10 = -x(i,2)*phi_beta(i,2)/(1-Phi_beta(i,2));
zbeta1_10 = 0;
zbeta2_10 = -phi_beta(i,2)/(1-Phi_beta(i,2));
zdelta1_01 = (-x(i,1)*Phi(i,2)*phi(i,1) + Phi_beta(i,2)*x(i,1)*(phi(i,1)-...
phi_beta(i,1)))/q1_01;
zdelta2_01 = (x(i,2)*(1-Phi(i,1))*phi(i,2) + x(i,2)*(Phi(i,1)-Phi_beta(i,1))...
*phi_beta(i,2))/q1_01;
zbeta1_01 = -Phi_beta(i,2)*phi_beta(i,1)/q1_01;
zbeta2_01 = (Phi(i,1)-Phi_beta(i,1))*phi_beta(i,2)/q1_01;
else
% Mixture over (1,0) and (0,1)
denominator1 = Phi(i,1)+Phi(i,2)-Phi(i,1)*Phi(i,2)-Phi_beta(i,1)*Phi_beta(i,2);
denominator2 = Phi(i,1)+Phi(i,2)-2*Phi(i,1)*Phi(i,2);
zdelta1_10 = phi(i,1)*x(i,1)/Phi(i,1) + (phi(i,1)*x(i,1)-phi(i,1)*x(i,1)*Phi(i,2)-...
phi_beta(i,1)*Phi_beta(i,2)*x(i,1))/denominator1 - (phi(i,1)*x(i,1)*(1-2*Phi(i,2)))/denominator2;
zdelta2_10 = -phi(i,2)*x(i,2)/(1-Phi(i,2)) + (phi(i,2)*x(i,2)-phi(i,2)*Phi(i,1)*x(i,2)-...
phi_beta(i,2)*Phi_beta(i,1)*x(i,2))/denominator1 - (phi(i,2)*x(i,2)*(1-2*Phi(i,1)))/denominator2;
zbeta1_10 = -phi_beta(i,1)*Phi_beta(i,2)/denominator1;
zbeta2_10 = -Phi_beta(i,1)*phi_beta(i,2)/denominator1;
zdelta1_01 = -phi(i,1)*x(i,1)/(1-Phi(i,1)) + (phi(i,1)*x(i,1)-phi(i,1)*Phi(i,2)*x(i,1)-...
phi_beta(i,1)*Phi_beta(i,2)*x(i,1))/denominator1 - (phi(i,1)*x(i,1)*(1-2*Phi(i,2)))/denominator2;
zdelta2_01 = phi(i,2)*x(i,2)/Phi(i,2) + (phi(i,2)*x(i,2)-phi(i,2)*Phi(i,1)*x(i,2)-...
phi_beta(i,2)*Phi_beta(i,1)*x(i,2))/denominator1 - (phi(i,2)*x(i,2)*(1-2*Phi(i,1)))/denominator2;
zbeta1_01 = -phi_beta(i,1)*Phi_beta(i,2)/denominator1;
zbeta2_01 = -phi_beta(i,2)*Phi_beta(i,1)/denominator1;
end
% stacking up the results
zdelta_1001(:, (2*i-1):(2*i)) = [zdelta1_10, zdelta1_01; zdelta2_10, zdelta2_01];
zbeta_1001(:, (2*i-1):(2*i)) = [zbeta1_10, zbeta1_01; zbeta2_10, zbeta2_01];
end
% returning zs
z_delta = zeros(2, 4*dim(1));
z_beta = zeros(2, 4*dim(1));
for i = 1:dim(1)
z_delta(:,1+4*(i-1)) = zdelta_00(i,:);
z_beta(:,1+4*(i-1)) = zbeta_00(i,:);
z_delta(:,2+4*(i-1)) = zdelta_11(i,:);
z_beta(:,2+4*(i-1)) = zbeta_11(i,:);
z_delta(:,(3+4*(i-1)):(4*i)) = zdelta_1001(:,(2*i-1):(2*i));
z_beta(:,(3+4*(i-1)):(4*i)) = zbeta_1001(:,(2*i-1):(2*i));
end
end