From f7b0b2aa1e784ca2d933cd91369d0ca573956ec8 Mon Sep 17 00:00:00 2001 From: ppegolo Date: Wed, 26 Apr 2023 14:37:26 +0200 Subject: [PATCH 01/50] Add bayes.py --- sportran/md/bayes.py | 1 + 1 file changed, 1 insertion(+) create mode 100644 sportran/md/bayes.py diff --git a/sportran/md/bayes.py b/sportran/md/bayes.py new file mode 100644 index 0000000..59e65de --- /dev/null +++ b/sportran/md/bayes.py @@ -0,0 +1 @@ +# Methods to perform a bayesian estimation of the transport coefficients \ No newline at end of file From 81128289084d33ef1bc8e842e384ec2234b99073 Mon Sep 17 00:00:00 2001 From: ppegolo Date: Fri, 28 Apr 2023 12:20:33 +0200 Subject: [PATCH 02/50] Bayesian analysis for the off-diag matrix element --- sportran/current/current.py | 37 ++- sportran/md/bayes.py | 440 +++++++++++++++++++++++++++++++++++- 2 files changed, 473 insertions(+), 4 deletions(-) diff --git a/sportran/current/current.py b/sportran/current/current.py index 0ba3c8a..1a76f64 100644 --- a/sportran/current/current.py +++ b/sportran/current/current.py @@ -9,15 +9,16 @@ import inspect from sportran.md.mdsample import MDSample from sportran.md.cepstral import CepstralFilter, multicomp_cepstral_parameters +from sportran.md.bayes import BayesFilter from sportran.md.tools.filter import runavefilter from sportran.md.tools.spectrum import freq_THz_to_red, freq_red_to_THz from . import units from sportran.utils import log from sportran.plotter.current import CurrentPlotter +import warnings __all__ = ['Current'] - class Current(MDSample, abc.ABC): """ Current abstract class for thermo-cepstral analysis. @@ -236,8 +237,9 @@ def compute_psd(self, PSD_FILTER_W=None, freq_units='THz'): # number of degrees of freedom of the chi-square distribution of the psd / 2 self.ndf_chi = self.N_EQUIV_COMPONENTS - self.N_CURRENTS + 1 if self.ndf_chi <= 0: - raise RuntimeError('The number of degrees of freedom of the chi-squared distribution is <=0. The number of ' - 'equivalent (Cartesian) components of the input current must be >= number of currents.') + warnings.warn('The number of degrees of freedom of the chi-squared distribution is <=0. The number of ' + 'equivalent (Cartesian) components of the input current must be >= number of currents.', + RuntimeWarning) if self.MANY_CURRENTS: if self.otherMD is None: @@ -349,6 +351,35 @@ def initialize_cepstral_parameters(self): raise RuntimeError('self.ndf_chi cannot be None.') self.ck_THEORY_var, self.psd_THEORY_mean = multicomp_cepstral_parameters(self.NFREQS, self.ndf_chi) + def bayesian_analysis(self, model, n_parameters, + is_restart = False, + n_steps = 2000000, + backend = 'chain.h5', + burn_in = None, + thin = None, + mask = None): + + self.bayes = BayesFilter(self.cospectrum, model, n_parameters, self.N_EQUIV_COMPONENTS, + is_restart = is_restart, + n_steps = n_steps, + backend = backend, + burn_in = burn_in, + thin = thin, + mask = mask) + + self.bayes.run_mcmc() + self.offdiag = self.bayes.parameters_mean[0] + self.offdiag_std = self.bayes.parameters_std[0] + + self.bayesian_log = \ + '-----------------------------------------------------\n' +\ + ' BAYESIAN ANALYSIS\n' +\ + '-----------------------------------------------------\n' + self.bayesian_log += \ + ' L_01 = {:18f} +/- {:10f}\n'.format(self.offdiag, self.offdiag_std) +\ + '-----------------------------------------------------\n' + log.write_log(self.bayesian_log) + def cepstral_analysis(self, aic_type='aic', aic_Kmin_corrfactor=1.0, manual_cutoffK=None): """ Performs Cepstral Analysis on the Current's trajectory. diff --git a/sportran/md/bayes.py b/sportran/md/bayes.py index 59e65de..1f72f44 100644 --- a/sportran/md/bayes.py +++ b/sportran/md/bayes.py @@ -1 +1,439 @@ -# Methods to perform a bayesian estimation of the transport coefficients \ No newline at end of file +# Methods to perform a bayesian estimation of the transport coefficients + +import numpy as np +import emcee +import scipy.special as sp +from . import aic +from .cepstral import dct_coefficients, dct_filter_psd, dct_filter_tau, CepstralFilter, multicomp_cepstral_parameters +from .tools.filter import runavefilter +from sportran.utils import log + +__all__ = ['BayesFilter'] +EULER_GAMMA = 0.57721566490153286060651209008240243104215933593992 # Euler-Mascheroni constant + +class BayesFilter(object): + """ + BAYESIAN ANALYSIS based filtering. + + ** INPUT VARIABLES: + spectrum = the original periodogram (if single-component) of spectral matrix (if multi-component) + is_offdiag = If True, estimate the off-diagonal matrix element of the spectral matrix (default = True) + is_diag = If True, estimate the diagonal matrix elements of the spectral matrix (default = False) + model = the function that models the data (for now only spline) + n_parameters = the number of parameters to be used for the fit + + ** INTERNAL VARIABLES: + samplelogpsd = the original sample log-PSD - logpsd_THEORY_mean + + logpsdK = the cepstrum of the data, \\hat{C}_n (i.e. the DCT of samplelogpsd) + aic_min = minimum value of the AIC + aic_Kmin = cutoffK that minimizes the AIC + aic_Kmin_corrfactor = aic_Kmin cutoff correction factor (default: 1.0) + cutoffK = (P*-1) = cutoff used to compute logtau and logpsd (by default = aic_Kmin * aic_Kmin_corrfactor) + manual_cutoffK_flag = True if cutoffK was manually specified, False if aic_Kmin is being used + + logtau = filtered log(tau) as a function of cutoffK, L_0(P*-1) + logtau_cutoffK = filtered log(tau) at cutoffK, L*_0 + logtau_var_cutoffK = theoretical L*_0 variance + logtau_std_cutoffK = theoretical L*_0 standard deviation + logpsd = filtered log-PSD at cutoffK + + tau = filtered tau as a function of cutoffK, S_0(P*-1) + tau_cutoffK = filtered tau at cutoffK, S*_0 + tau_var_cutoffK = theoretical S*_0 variance + tau_std_cutoffK = theoretical S*_0 standard deviation + psd = filtered PSD at the specified cutoffK + + p_aic... = Bayesian AIC weighting stuff + """ + + def __init__(self, spectrum, model, n_parameters, n_components, + is_restart = False, + n_steps = 2000000, + backend = 'chain.h5', + burn_in = None, + thin = None, + mask = None): + + if not isinstance(spectrum, np.ndarray): + raise TypeError('spectrum should be an object of type numpy.ndarray') + if spectrum.shape[0] != 2 or spectrum.shape[1] != 2: + raise TypeError('spectrum should be a 2x2xN numpy.ndarray') + + self.spectrum = spectrum/n_components + self.model = model + self.mask = mask + self.n_components = n_components + self.n_parameters = n_parameters + self.is_restart = is_restart + self.n_steps = n_steps + self.backend = backend + self.burn_in = burn_in + self.thin = thin + + def __repr__(self): + msg = 'BayesFilter:\n' #+ \ + # ' AIC type = {:}\n'.format(self.aic_type) + \ + # ' AIC min = {:f}\n'.format(self.aic_min) + \ + # ' AIC_Kmin = {:d}\n'.format(self.aic_Kmin) + # if self.cutoffK is not None: + # msg += \ + # ' AIC_Kmin_corrfactor = {:f}\n'.format(self.aic_Kmin_corrfactor) + \ + # ' cutoffK = (P*-1) = {:d} {:}\n'.format(self.cutoffK, '(manual)' if self.manual_cutoffK_flag else '(auto)') + \ + # ' L_0* = {:15f} +/- {:10f}\n'.format(self.logtau_cutoffK, self.logtau_std_cutoffK) + \ + # ' S_0* = {:15f} +/- {:10f}\n'.format(self.tau_cutoffK, self.tau_std_cutoffK) + return msg + + + ################################################ + + def run_mcmc(self, + n_parameters = None, + n_steps = None, + is_restart = None, + mask = None, + filename = None, + n_walkers = None): + + # Initialize the parameters if undefined + if n_parameters is None: + n_parameters = self.n_parameters + if n_steps is None: + n_steps = self.n_steps + if is_restart is None: + is_restart = self.is_restart + if mask is None: + mask = self.mask + if filename is None: + filename = self.backend + + # Initialize the parameters for cepstral analysis + ck_THEORY_var, psd_THEORY_mean = multicomp_cepstral_parameters(self.spectrum.shape[2], self.n_components) + + # Cepstral analysis for the diagonal elements + cepf1 = CepstralFilter(np.log(self.spectrum[0,0].real), ck_theory_var = ck_THEORY_var, psd_theory_mean = psd_THEORY_mean, aic_type = 'aic') + cepf1.scan_filter_tau(cutoffK = None, aic_Kmin_corrfactor = 1.0) + cepf2 = CepstralFilter(np.log(self.spectrum[1,1].real), ck_theory_var = ck_THEORY_var, psd_theory_mean = psd_THEORY_mean, aic_type = 'aic') + cepf2.scan_filter_tau(cutoffK = None, aic_Kmin_corrfactor = 1.0) + self.sigma1 = cepf1.psd[0] + self.sigma2 = cepf2.psd[0] + + + nu = 2 + ell = self.n_components + # Define noisy data + if mask is not None: + noisy_data = (self.spectrum.real[0,1]/np.sqrt(cepf1.psd*cepf2.psd))[mask] + else: + noisy_data = (self.spectrum.real[0,1]/np.sqrt(cepf1.psd*cepf2.psd)) + + # Define initial points for the MCMC + try: + guess_data = runavefilter(noisy_data, 100) + except: + guess_data = runavefilter(noisy_data, 10) + + args = np.int32(np.linspace(0, len(noisy_data) - 1, n_parameters, endpoint = True)) + + # MCMC sampling + # number of walkers must be larger than twice the number of parameters (and often a power of 2) + if n_walkers is None: + n_walkers = int(2**np.ceil(np.log2(2*n_parameters))) + + log.write_log('MCMC with {} parameters and {} walkers'.format(n_parameters, n_walkers)) + log.write_log(f'Running up to {n_steps} steps') + + p0 = guess_data + p0 = np.clip(p0[args][np.newaxis, :n_parameters] + \ + np.random.normal(0, .1, (n_walkers, n_parameters)), -0.98, 0.98) + + omega = np.arange(noisy_data.size) + omega_fixed = omega[args] + + # Set up the backend + # Don't forget to clear it in case the file already exists + backend = emcee.backends.HDFBackend(filename) + if not is_restart: + backend.reset(n_walkers, n_parameters) + + # Initialize the sampler + sampler = emcee.EnsembleSampler(n_walkers, n_parameters, + self.log_posterior_offdiag, + args=(omega, omega_fixed, noisy_data, nu, ell), + backend = backend) + + + # Run MCMC + # We'll track how the average autocorrelation time estimate changes + index = 0 + autocorr = np.empty(n_steps) + + # This will be useful to testing convergence + old_tau = np.inf + + # Now we'll sample for up to max_n steps + if is_restart: + coord = self.sampler.get_chain()[-1] + else: + coord = np.copy(p0) + for sample in sampler.sample(coord, iterations = n_steps, progress = True): + # Only check convergence every 100 steps + if sampler.iteration % 500: + continue + + # Compute the autocorrelation time so far + # Using tol=0 means that we'll always get an estimate even + # if it isn't trustworthy + tau = sampler.get_autocorr_time(tol=0) + autocorr[index] = np.mean(tau) + index += 1 + + # Check convergence + converged = np.all(tau * 100 < sampler.iteration) + converged &= np.all(np.abs(old_tau - tau) / tau < 0.01) + if converged: + break + old_tau = tau + + # Compute chains auto-correlation time to estimate convergence + # If AutocorrError, probably the chain is too short. You can still use ~2*max(tau) as burn_in + good_idx = None + try: + tau = sampler.get_autocorr_time() + burn_in = int(2 * np.max(tau)) + thin = np.max([1, int(0.5 * np.min(tau))]) + log.write_log('MCMC autocorrelation time = {}'.format(tau)) + except emcee.autocorr.AutocorrError: + log.write_log('The chain is probably too short') + burn_in = int(sampler.iteration*0.3) + thin = int(np.max([int(0.05*sampler.iteration), 10])) + except ValueError: + log.write_log(f'There is something wrong with tau: tau = {tau}') + good_idx = ~np.isnan(tau) + tau = tau[good_idx] + log.write_log('Fixed MCMC autocorrelation time = {}'.format(tau)) + burn_in = int(2 * np.max(tau)) + thin = np.max([1, int(0.5 * np.min(tau))]) + # if self.burn_in is not None: + # burn_in = self.burn_in + # else: + # self.burn_in = burn_in + # if self.thin is not None: + # thin = self.thin + # else: + # self.thin = thin + log.write_log('MCMC burn in = {}; thin = {}'.format(burn_in, thin)) + + if good_idx is None: + samples = sampler.get_chain(discard=burn_in, flat=True, thin=thin) + else: + samples = sampler.get_chain(discard=burn_in, flat=True, thin=thin)[:, good_idx] + n_parameters_ = samples.shape[1] + self.n_parameters = n_parameters_ + + # Compute marginalized errors + rho = [] + rho_min = [] + rho_max = [] + for i in range(self.n_parameters): + mcmc = np.percentile(samples[:, i], [16, 50, 84]) + # mcmc = np.percentile(samples[:, i], [50-95/2, 50, 50+95/2]) + q = np.diff(mcmc) + # print(mcmc[1], q[0], q[1]) + rho.append(mcmc[1]) + rho_min.append(mcmc[1]-q[0]) + rho_max.append(mcmc[1]+q[1]) + + # The estimated parameters are the values of rho as a function of frequency + self.parameters_mean = np.array(rho) + self.parameters_args = args + self.parameters_std = 0.5*(np.array(rho_max) - np.array(rho_min)) + self.sampler = sampler + self.noisy_data = noisy_data + + ################################################ + # Helper functions + + # The log-likelihood function + # def log_likelihood_offdiag(self, w, omega, omega_fixed, data_, nu, ell): + # spline = self.model(omega_fixed, w) + # rho = np.clip(spline(omega), -0.99, 0.99) + + # one_frac_rho2 = 1/(1-rho**2) + + # # Data is distributed according to a Variance-Gamma distribution with parameters: + # # mu = 0; alpha = 1/(1-rho**2); beta = rho/(1-rho**2); lambda = ell*nu/2 + # # Its expectation value is ell*nu*rho + # data = ell*data_ + # z = data - ell*nu*rho + + # log_pdf = -np.log(sp.gamma(0.5*nu)) + 0.5*(nu-1)*np.log(np.abs(z)) - 0.5*np.log(2**(nu-1)*np.pi/one_frac_rho2) + rho*z*one_frac_rho2 +\ + # np.log(sp.kv(0.5*(nu-1), np.abs(z)*one_frac_rho2)) + # return np.sum(log_pdf) + + def log_likelihood_offdiag(self, w, omega, omega_fixed, data_, nu, ell): + spline = self.model(omega_fixed, w) + rho = np.clip(spline(omega), -0.98, 0.98) + _alpha = 1/(1-rho**2) + _beta = rho/(1-rho**2) + _lambda = 0.5*ell*nu + _gamma2 = _alpha**2 - _beta**2 + _lambda_minus_half = _lambda-0.5 + + # Data is distributed according to a Variance-Gamma distribution with parameters (notation as in Wikipedia): + # mu = 0; alpha = 1/(1-rho**2); beta = rho/(1-rho**2); lambda = ell*nu/2 + # Its expectation value is ell*nu*rho + z = data_*ell*nu + absz = np.abs(z) + # z = data + + log_pdf = _lambda*np.log(_gamma2) + _lambda_minus_half*np.log(absz) + np.log(sp.kv(_lambda_minus_half, _alpha*absz)) + \ + _beta*z - 0.5*np.log(np.pi) - np.log(sp.gamma(_lambda)) - _lambda_minus_half*np.log(2*_alpha) + return np.sum(log_pdf) + + + # The log-prior function + def log_prior_offdiag(self, w): + # Uniform prior + if np.all((w>=-1)&(w<=1)): + return 0.5 + else: + return 0 + + # The log-posterior function + def log_posterior_offdiag(self, w, omega, omega_fixed, data, nu = 6, ell = 3): + return self.log_prior_offdiag(w) + self.log_likelihood_offdiag(w, omega, omega_fixed, data, nu, ell) + + + def initialize_cepstral_distribution(self, ck_theory_var=None, psd_theory_mean=None): + """ + Initialize the theoretical distribution of the cepstral coefficients. + The samplelogpsd must has been already set. + + Input parameters: + ck_theory_var = the theoretical variance of cepstral coefficients, \\sigma*^2(P*,N) + psd_theory_mean = the theoretical bias of log-PSD, \\lambda_l + + If ck_theory_var and/or psd_theory_mean are not specified, the default theoretical values will be used. + """ + NF = self.samplelogpsd.size + N = 2 * (NF - 1) + + if psd_theory_mean is None: + # by default the THEORETICAL means are the one component ones: + # ck THEORY mean: + # - EULER_GAMMA - log(2) for k = {0, N/2} + # - EULER_GAMMA otherwise + self.logpsd_THEORY_mean = -EULER_GAMMA * np.ones(NF) + self.logpsd_THEORY_mean[0] = -EULER_GAMMA - np.log(2) + self.logpsd_THEORY_mean[-1] = -EULER_GAMMA - np.log(2) + else: + self.logpsd_THEORY_mean = psd_theory_mean + + # set theoretical errors + if ck_theory_var is None: + # by default the THEORETICAL variances are the one component ones: + # ck THEORY variances: + # (pi^2)/3/N for k = {0, N/2} + # (pi^2)/6/N otherwise + self.logpsdK_THEORY_var = 1. / N * np.concatenate( + ([np.pi**2 / 3], [np.pi**2 / 6.] * (NF - 2), [np.pi**2 / 3])) + self.logpsdK_THEORY_std = np.sqrt(self.logpsdK_THEORY_var) + # logtau THEORY variances: (we assume to be summing ck up to K, included) + # (pi^2)/3/N*(2*K+1) for K = {0, N/2-1} + # (pi^2)/3 for K = N/2 + self.logtau_THEORY_var = 1. / N * np.concatenate( + (np.pi**2 / 3. * (2 * np.arange(NF - 1) + 1), [np.pi**2 / 3. * N])) + self.logtau_THEORY_std = np.sqrt(self.logtau_THEORY_var) + else: + self.logpsdK_THEORY_var = ck_theory_var + self.logpsdK_THEORY_std = np.sqrt(self.logpsdK_THEORY_var) + self.logtau_THEORY_var = np.zeros(NF) + self.logtau_THEORY_var[0] = self.logpsdK_THEORY_var[0] + for K in range(1, NF - 1): + self.logtau_THEORY_var[K] = self.logtau_THEORY_var[K - 1] + 4. * self.logpsdK_THEORY_var[K] + self.logtau_THEORY_var[-1] = self.logtau_THEORY_var[-2] + self.logpsdK_THEORY_var[-1] + self.logtau_THEORY_std = np.sqrt(self.logtau_THEORY_var) + + def scan_filter_tau(self, cutoffK=None, aic_Kmin_corrfactor=1.0, correct_mean=True): + """ + Computes tau as a function of the cutoffK (= P*-1). + Also computes psd and logpsd for the given cutoffK. + If cutoffK is None, aic_Kmin * aic_Kmin_corrfactor will be used. + + Input parameters: + cutoffK = (P*-1) = cutoff used to compute logtau and logpsd (by default = aic_Kmin * aic_Kmin_corrfactor) + aic_Kmin_corrfactor = aic_Kmin cutoff correction factor (default: 1.0) + correct_mean = fix the bias introduced by the log-distribution (default: True) + + self.tau_cutoffK will contain the value of tau for the specified cutoff cutoffK + + If cutoffK is out of range, the maximum K will be used. + """ + if cutoffK is not None: + if not isinstance(cutoffK, int) or (cutoffK < 0): + raise ValueError('cutoffK must be a positive integer.') + if aic_Kmin_corrfactor != 1.0: + raise ValueError( + 'If you specify cutoffK manually, the AIC will not be used, hence aic_Kmin_corrfactor will be ignored.' + ) + self.aic_Kmin_corrfactor = aic_Kmin_corrfactor + + if cutoffK is None: + self.cutoffK = int(round(self.aic_Kmin * self.aic_Kmin_corrfactor)) + self.manual_cutoffK_flag = False + else: + self.cutoffK = cutoffK + self.manual_cutoffK_flag = True + + if (self.cutoffK >= self.samplelogpsd.size): + log.write_log('! Warning: cutoffK ({:}) is out of range.'.format(self.cutoffK)) + #log.write_log('! Warning: cutoffK ({:}) is out of range. The maximum frequency ({:}) will be used.'.format(self.cutoffK, self.samplelogpsd.size - 1)) + #self.cutoffK = self.samplelogpsd.size - 1 + + # COS-filter analysis with frequency cutoff K + self.logtau = dct_filter_tau(self.samplelogpsd) + self.logpsd = dct_filter_psd(self.samplelogpsd, self.cutoffK) # that is log(psd) for the chosen cutoffK + self.psd = np.exp(self.logpsd) + self.tau = np.exp(self.logtau) + self.tau_THEORY_std = self.tau * self.logtau_THEORY_std + + if (self.cutoffK < self.samplelogpsd.size): + self.logtau_cutoffK = self.logtau[self.cutoffK] + self.logtau_var_cutoffK = self.logtau_THEORY_var[self.cutoffK] + self.logtau_std_cutoffK = self.logtau_THEORY_std[self.cutoffK] + self.tau_cutoffK = self.tau[self.cutoffK] + self.tau_std_cutoffK = self.tau_THEORY_std[self.cutoffK] + self.tau_var_cutoffK = self.tau_std_cutoffK**2 + else: + self.logtau_cutoffK = np.NaN + self.logtau_var_cutoffK = np.NaN + self.logtau_std_cutoffK = np.NaN + self.tau_cutoffK = np.NaN + self.tau_var_cutoffK = np.NaN + self.tau_std_cutoffK = np.NaN + + if correct_mean: + self.logpsd = self.logpsd + self.logpsd_THEORY_mean + self.logtau = self.logtau + self.logpsd_THEORY_mean[0] + self.logtau_cutoffK = self.logtau_cutoffK + self.logpsd_THEORY_mean[0] + + def scan_filter_psd(self, cutoffK_LIST, correct_mean=True): + """Computes the psd and tau as a function of the cutoff K. + Repeats the procedure for all the cutoffs in cutoffK_LIST.""" + self.cutoffK_LIST = cutoffK_LIST + self.logpsd_K_LIST = np.zeros((self.samplelogpsd.size, len(self.cutoffK_LIST))) + self.psd_K_LIST = np.zeros((self.samplelogpsd.size, len(self.cutoffK_LIST))) + self.logtau_K_LIST = np.zeros(len(self.cutoffK_LIST)) # DEFINED AS log(PSD[0]), no factor 0.5 or 0.25 + self.tau_K_LIST = np.zeros(len(self.cutoffK_LIST)) + + for k, K in enumerate(self.cutoffK_LIST): + # COS-filter analysis with frequency cutoff K + self.logpsd_K_LIST[:, k] = dct_filter_psd(self.samplelogpsd, K) + self.logtau_K_LIST[k] = self.logpsd_K_LIST[0, k] + self.psd_K_LIST[:, k] = np.exp(self.logpsd_K_LIST[:, k]) + self.tau_K_LIST[k] = np.exp(self.logtau_K_LIST[k]) + + if correct_mean: + self.logpsd_K_LIST[:, k] = self.logpsd_K_LIST[:, k] + self.logpsd_THEORY_mean + self.logtau_K_LIST[k] = self.logtau_K_LIST[k] + self.logpsd_THEORY_mean[0] \ No newline at end of file From e1395610b306edcc5c14fa77895f8952bf129c66 Mon Sep 17 00:00:00 2001 From: ppegolo Date: Fri, 28 Apr 2023 12:21:12 +0200 Subject: [PATCH 03/50] Fix python version for mac --- setup.json | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/setup.json b/setup.json index f3b1bf0..560d85d 100644 --- a/setup.json +++ b/setup.json @@ -7,7 +7,7 @@ "license": "GPL 3", "url": "https://github.com/sissaschool/sportran", "keywords": "cepstral data analysis thermal conductivity transport coefficients physics green-kubo", - "python_requires": ">=3.6.*, <4", + "python_requires": ">=3.6, <4", "classifiers": [ "Development Status :: 5 - Production/Stable", "Programming Language :: Python", From 730fe3a60f27c949704ae3c9457451e3136ec800 Mon Sep 17 00:00:00 2001 From: enrdrigo Date: Mon, 22 Jan 2024 18:52:00 +0100 Subject: [PATCH 04/50] latest changes of the code. --- sportran/current/current.py | 30 ++- sportran/md/bayes.py | 443 ++++++++++++++++++++++++++++++++++-- 2 files changed, 443 insertions(+), 30 deletions(-) diff --git a/sportran/current/current.py b/sportran/current/current.py index 1a76f64..d82812f 100644 --- a/sportran/current/current.py +++ b/sportran/current/current.py @@ -357,19 +357,33 @@ def bayesian_analysis(self, model, n_parameters, backend = 'chain.h5', burn_in = None, thin = None, - mask = None): - - self.bayes = BayesFilter(self.cospectrum, model, n_parameters, self.N_EQUIV_COMPONENTS, - is_restart = is_restart, + mask = None, + log_like='off', + parallel = False, + ncpus = 1 + ): + if parallel: + self.bayes = BayesFilter_parallel(self.cospectrum, model, n_parameters, self.N_EQUIV_COMPONENTS, + is_restart = is_restart, + n_steps = n_steps, + backend = backend, + burn_in = burn_in, + thin = thin, + ncpus = ncpus, + mask = mask) + self.bayes.run_mcmc(log_like=log_like) + else: + self.bayes = BayesFilter(self.cospectrum, model, n_parameters, self.N_EQUIV_COMPONENTS, + is_restart = is_restart, n_steps = n_steps, backend = backend, burn_in = burn_in, thin = thin, mask = mask) + self.bayes.run_mcmc(log_like=log_like) - self.bayes.run_mcmc() - self.offdiag = self.bayes.parameters_mean[0] - self.offdiag_std = self.bayes.parameters_std[0] + self.offdiag = self.bayes.parameters_mean[0]*self.bayes.factor + self.offdiag_std = self.bayes.parameters_std[0]*self.bayes.factor self.bayesian_log = \ '-----------------------------------------------------\n' +\ @@ -379,6 +393,8 @@ def bayesian_analysis(self, model, n_parameters, ' L_01 = {:18f} +/- {:10f}\n'.format(self.offdiag, self.offdiag_std) +\ '-----------------------------------------------------\n' log.write_log(self.bayesian_log) + with open('bayesian_analysis_{}'.format(n_parameters), 'w+') as g: + g.write('{}\t{}\n'.format(self.offdiag, self.offdiag_std)) def cepstral_analysis(self, aic_type='aic', aic_Kmin_corrfactor=1.0, manual_cutoffK=None): """ diff --git a/sportran/md/bayes.py b/sportran/md/bayes.py index 1f72f44..5e55927 100644 --- a/sportran/md/bayes.py +++ b/sportran/md/bayes.py @@ -7,6 +7,8 @@ from .cepstral import dct_coefficients, dct_filter_psd, dct_filter_tau, CepstralFilter, multicomp_cepstral_parameters from .tools.filter import runavefilter from sportran.utils import log +from multiprocessing import Pool +import time __all__ = ['BayesFilter'] EULER_GAMMA = 0.57721566490153286060651209008240243104215933593992 # Euler-Mascheroni constant @@ -93,7 +95,9 @@ def run_mcmc(self, is_restart = None, mask = None, filename = None, - n_walkers = None): + n_walkers = None, + log_like='off' + ): # Initialize the parameters if undefined if n_parameters is None: @@ -109,7 +113,6 @@ def run_mcmc(self, # Initialize the parameters for cepstral analysis ck_THEORY_var, psd_THEORY_mean = multicomp_cepstral_parameters(self.spectrum.shape[2], self.n_components) - # Cepstral analysis for the diagonal elements cepf1 = CepstralFilter(np.log(self.spectrum[0,0].real), ck_theory_var = ck_THEORY_var, psd_theory_mean = psd_THEORY_mean, aic_type = 'aic') cepf1.scan_filter_tau(cutoffK = None, aic_Kmin_corrfactor = 1.0) @@ -118,7 +121,6 @@ def run_mcmc(self, self.sigma1 = cepf1.psd[0] self.sigma2 = cepf2.psd[0] - nu = 2 ell = self.n_components # Define noisy data @@ -126,6 +128,8 @@ def run_mcmc(self, noisy_data = (self.spectrum.real[0,1]/np.sqrt(cepf1.psd*cepf2.psd))[mask] else: noisy_data = (self.spectrum.real[0,1]/np.sqrt(cepf1.psd*cepf2.psd)) + + self.factor = np.sqrt(cepf1.psd[0]/cepf2.psd[0]) # Define initial points for the MCMC try: @@ -149,6 +153,9 @@ def run_mcmc(self, omega = np.arange(noisy_data.size) omega_fixed = omega[args] + + self.omega = omega + self.omega_fixed = omega_fixed # Set up the backend # Don't forget to clear it in case the file already exists @@ -157,10 +164,16 @@ def run_mcmc(self, backend.reset(n_walkers, n_parameters) # Initialize the sampler - sampler = emcee.EnsembleSampler(n_walkers, n_parameters, - self.log_posterior_offdiag, - args=(omega, omega_fixed, noisy_data, nu, ell), - backend = backend) + if log_like == 'off': + sampler = emcee.EnsembleSampler(n_walkers, n_parameters, + self.log_posterior_offdiag, + args=(omega, omega_fixed, noisy_data, nu, ell), + backend=backend) + elif log_like == 'normal': + sampler = emcee.EnsembleSampler(n_walkers, n_parameters, + self.log_posterior_normal, + args=(omega, omega_fixed, noisy_data, nu, ell), + backend=backend) # Run MCMC @@ -173,24 +186,82 @@ def run_mcmc(self, # Now we'll sample for up to max_n steps if is_restart: - coord = self.sampler.get_chain()[-1] + coord = backend.get_chain()[-1] + good_idx = None + tau = backend.get_autocorr_time(discard=100) + burn_in = int(2 * np.max(tau)) + thin = np.max([1, int(0.5 * np.min(tau))]) + log.write_log('MCMC autocorrelation time = {}'.format(tau)) + if good_idx is None: + samples = backend.get_chain(discard=burn_in, flat=True, thin=thin) + else: + samples = backend.get_chain(discard=burn_in, flat=True, thin=thin)[:, good_idx] + n_parameters_ = samples.shape[1] + self.n_parameters = n_parameters_ + + # Compute marginalized errors + rho = [] + rho_min = [] + rho_max = [] + print(sampler.iteration) + self.acceprance_fraction=np.mean(sampler.acceptance_fraction) + for i in range(self.n_parameters): + mcmc = np.percentile(samples[:, i], [16, 50, 84]) + # mcmc = np.percentile(samples[:, i], [50-95/2, 50, 50+95/2]) + q = np.diff(mcmc) + # print(mcmc[1], q[0], q[1]) + rho.append(mcmc[1]) + rho_min.append(mcmc[1]-q[0]) + rho_max.append(mcmc[1]+q[1]) + # The estimated parameters are the values of rho as a function of frequency + self.parameters_mean = np.array(rho) + self.parameters_args = args + self.parameters_std = 0.5*(np.array(rho_max) - np.array(rho_min)) + self.sampler = sampler + self.noisy_data = noisy_data + if log_like=='normal': + self.aic = 2*self.log_likelihood_normal(self.parameters_mean, omega, omega_fixed, noisy_data, nu, ell) \ + - 2 * self.n_parameters + elif log_like=='off': + self.aic = 2*self.log_likelihood_offdiag(self.parameters_mean, omega, omega_fixed, noisy_data, nu, ell) \ + - 2 * self.n_parameters + burn_in = int(2 * np.max(tau)) + thin = np.max([1, int(0.5 * np.min(tau))]) + return else: coord = np.copy(p0) - for sample in sampler.sample(coord, iterations = n_steps, progress = True): + + todo=True + if is_restart: todo=False + disc=0 + for sample in sampler.sample(coord, iterations = n_steps, progress = True, store = True): # Only check convergence every 100 steps - if sampler.iteration % 500: + if sampler.iteration % 250: continue + # Compute the autocorrelation time so far # Using tol=0 means that we'll always get an estimate even # if it isn't trustworthy - tau = sampler.get_autocorr_time(tol=0) + tau = sampler.get_autocorr_time(tol=0, discard=disc) autocorr[index] = np.mean(tau) index += 1 + if todo and sampler.iteration>1000: + s_old = np.ones(n_parameters) + for i in range(100, int(sampler.iteration/2)+1, 100): + + s = sampler.get_autocorr_time(tol=0, discard=i) + + if np.all(abs((s-s_old)/s)*100<5): + disc=i + todo=False + break + s_old = s + # Check convergence - converged = np.all(tau * 100 < sampler.iteration) - converged &= np.all(np.abs(old_tau - tau) / tau < 0.01) + converged = np.all(tau * 300 < sampler.iteration) + converged &= np.all(np.abs(old_tau - tau) / tau < 0.005) if converged: break old_tau = tau @@ -199,9 +270,9 @@ def run_mcmc(self, # If AutocorrError, probably the chain is too short. You can still use ~2*max(tau) as burn_in good_idx = None try: - tau = sampler.get_autocorr_time() - burn_in = int(2 * np.max(tau)) - thin = np.max([1, int(0.5 * np.min(tau))]) + tau = sampler.get_autocorr_time(discard=disc) + burn_in = int(6 * np.max(tau)) + thin = np.max([1, int(1.5 * np.min(tau))]) log.write_log('MCMC autocorrelation time = {}'.format(tau)) except emcee.autocorr.AutocorrError: log.write_log('The chain is probably too short') @@ -212,8 +283,8 @@ def run_mcmc(self, good_idx = ~np.isnan(tau) tau = tau[good_idx] log.write_log('Fixed MCMC autocorrelation time = {}'.format(tau)) - burn_in = int(2 * np.max(tau)) - thin = np.max([1, int(0.5 * np.min(tau))]) + burn_in = int(6 * np.max(tau)) + thin = np.max([1, int(1.5 * np.min(tau))]) # if self.burn_in is not None: # burn_in = self.burn_in # else: @@ -250,7 +321,18 @@ def run_mcmc(self, self.parameters_std = 0.5*(np.array(rho_max) - np.array(rho_min)) self.sampler = sampler self.noisy_data = noisy_data - + if log_like=='normal': + self.aic = 2 * self.log_likelihood_normal(self.parameters_mean, omega, omega_fixed, noisy_data, nu, ell) \ + - 2 * self.n_parameters + elif log_like=='off': + self.aic = 2 * self.log_likelihood_offdiag(self.parameters_mean, omega, omega_fixed, noisy_data, nu, ell) \ + - 2 * self.n_parameters + self.dic = -2*self.log_likelihood_offdiag(self.parameters_mean, omega, omega_fixed, noisy_data, nu, ell) \ + + 4 * sampler.get_log_prob(discard=burn_in, flat=True, thin=thin).mean() + with open('aic_{}'.format(self.n_parameters), 'w+') as g: + g.write('{}\t{}\n'.format(self.n_parameters, self.aic)) + with open('dic_{}'.format(self.n_parameters), 'w+') as g: + g.write('{}\t{}\n'.format(self.n_parameters, self.dic)) ################################################ # Helper functions @@ -271,6 +353,283 @@ def run_mcmc(self, # np.log(sp.kv(0.5*(nu-1), np.abs(z)*one_frac_rho2)) # return np.sum(log_pdf) + def run_mcmc_scratch(self, + n_parameters=None, + n_steps=None, + is_restart=None, + mask=None, + filename=None, + n_walkers=None, + log_like='off' + ): + + # Initialize the parameters if undefined + if n_parameters is None: + n_parameters = self.n_parameters + else: + self.n_parameters=n_parameters + if n_steps is None: + n_steps = self.n_steps + if is_restart is None: + is_restart = self.is_restart + if mask is None: + mask = self.mask + if filename is None: + filename = self.backend + + # Initialize the parameters for cepstral analysis + + nu = 2 + ell = self.n_components + # Define noisy data + if mask is not None: + noisy_data = (self.spectrum[0,1])[mask] + else: + noisy_data = (self.spectrum[0,1]) + + # Define initial points for the MCMC + try: + guess_data = runavefilter(noisy_data, 1000) + except: + guess_data = runavefilter(noisy_data, 100) + + args = np.int32(np.linspace(0, len(noisy_data) - 1, n_parameters, endpoint=True)) + + # MCMC sampling + # number of walkers must be larger than twice the number of parameters (and often a power of 2) + if n_walkers is None: + n_walkers = int(2 ** np.ceil(np.log2(2 * n_parameters))) + + log.write_log('MCMC with {} parameters and {} walkers'.format(n_parameters, n_walkers)) + log.write_log(f'Running up to {n_steps} steps') + + p0 = guess_data + if log_like=='normal' or log_like=='off': + p0 = np.clip(p0[args][np.newaxis, :n_parameters] + \ + np.random.normal(0, 0.1, (n_walkers, n_parameters)), -0.98, 0.98) + + if log_like=='diag': + p0 = np.clip(p0[args][np.newaxis, :n_parameters] + \ + np.random.normal(0, 10, (n_walkers, n_parameters)), 0, 1e6) + + omega = np.arange(noisy_data.size) + omega_fixed = omega[args] + + self.omega = omega + self.omega_fixed = omega_fixed + + # Set up the backend + # Don't forget to clear it in case the file already exists + backend = emcee.backends.HDFBackend(filename) + if not is_restart: + backend.reset(n_walkers, n_parameters) + + # Initialize the sampler + if log_like=='off': + sampler = emcee.EnsembleSampler(n_walkers, n_parameters, + self.log_posterior_offdiag, + args=(omega, omega_fixed, noisy_data, nu, ell), + backend=backend) + elif log_like=='normal': + sampler = emcee.EnsembleSampler(n_walkers, n_parameters, + self.log_posterior_normal, + args=(omega, omega_fixed, noisy_data, nu, ell), + backend=backend) + + elif log_like=='diag': + sampler = emcee.EnsembleSampler(n_walkers, n_parameters, + self.log_posterior_diag, + args=(omega, omega_fixed, noisy_data, ell), + backend=backend) + + + # Run MCMC + # We'll track how the average autocorrelation time estimate changes + index = 0 + autocorr = np.empty(n_steps) + + # This will be useful to testing convergence + old_tau = np.inf + + # Now we'll sample for up to max_n steps + if is_restart: + coord = backend.get_chain()[-1] + good_idx = None + tau = backend.get_autocorr_time(discard=1000) + burn_in = int(6 * np.max(tau)) + thin = np.max([1, int(1.5 * np.min(tau))]) + log.write_log('MCMC autocorrelation time = {}'.format(tau)) + if good_idx is None: + samples = backend.get_chain(discard=burn_in, flat=True, thin=thin) + else: + samples = backend.get_chain(discard=burn_in, flat=True, thin=thin)[:, good_idx] + n_parameters_ = samples.shape[1] + self.n_parameters = n_parameters_ + + # Compute marginalized errors + rho = [] + rho_min = [] + rho_max = [] + for i in range(self.n_parameters): + mcmc = np.percentile(samples[:, i], [16, 50, 84]) + # mcmc = np.percentile(samples[:, i], [50-95/2, 50, 50+95/2]) + q = np.diff(mcmc) + # print(mcmc[1], q[0], q[1]) + rho.append(mcmc[1]) + rho_min.append(mcmc[1]-q[0]) + rho_max.append(mcmc[1]+q[1]) + # The estimated parameters are the values of rho as a function of frequency + self.parameters_mean = np.array(rho) + self.parameters_args = args + self.parameters_std = 0.5*(np.array(rho_max) - np.array(rho_min)) + self.sampler = sampler + self.noisy_data = noisy_data + if log_like=='normal': + self.aic = 2 * self.log_likelihood_normal(self.parameters_mean, omega, omega_fixed, noisy_data, nu, ell) \ + - 2 * self.n_parameters + elif log_like=='off': + self.aic = 2 * self.log_likelihood_offdiag(self.parameters_mean, omega, omega_fixed, noisy_data, nu, ell) \ + - 2 * self.n_parameters + burn_in = int(2 * np.max(tau)) + thin = np.max([1, int(0.5 * np.min(tau))]) + elif log_like=='diag': + self.aic = 2 * self.log_likelihood_diag(self.parameters_mean, omega, omega_fixed, noisy_data, ell) \ + - 2 * self.n_parameters + burn_in = int(2 * np.max(tau)) + thin = np.max([1, int(0.5 * np.min(tau))]) + return + else: + coord = np.copy(p0) + + todo = True + disc=0 + for sample in sampler.sample(coord, iterations=n_steps, progress=True, store = True): + # Only check convergence every 100 steps + if sampler.iteration % 250: + continue + + # Compute the autocorrelation time so far + if sampler.iteration%5000==0: + print(tau) + + # Using tol=0 means that we'll always get an estimate even + # if it isn't trustworthy + tau = sampler.get_autocorr_time(tol=0, discard=disc) + autocorr[index] = np.mean(tau) + index += 1 + + # Check convergence + converged = np.all(tau * 300 < sampler.iteration) + converged &= np.all(np.abs(old_tau - tau) / tau < 0.005) + + if todo and sampler.iteration%500==0 and sampler.iteration>1000: + s_old = np.ones(n_parameters) + for i in range(100, int(sampler.iteration/2)+1, 100): + + s = sampler.get_autocorr_time(tol=0, discard=i) + + if np.all(abs((s-s_old)/s)*100<2): + disc=i + todo=False + break + s_old = s + if converged: + break + old_tau = tau + + # Compute chains auto-correlation time to estimate convergence + # If AutocorrError, probably the chain is too short. You can still use ~2*max(tau) as burn_in + good_idx = None + try: + print(disc, ' discard') + tau = sampler.get_autocorr_time(discard=disc) + burn_in = max(int(6 * np.max(tau)), disc) + thin = np.max([1, int(1.5 * np.min(tau))]) + log.write_log('MCMC autocorrelation time = {}'.format(tau)) + except emcee.autocorr.AutocorrError: + log.write_log('The chain is probably too short') + burn_in = max(int(sampler.iteration * 0.3), disc) + thin = int(np.max([int(1.5 * sampler.iteration), 10])) + except ValueError: + log.write_log(f'There is something wrong with tau: tau = {tau}') + good_idx = ~np.isnan(tau) + tau = tau[good_idx] + log.write_log('Fixed MCMC autocorrelation time = {}'.format(tau)) + burn_in = max(int(2 * np.max(tau)), disc) + thin = np.max([1, int(1.5 * np.min(tau))]) + # if self.burn_in is not None: + # burn_in = self.burn_in + # else: + # self.burn_in = burn_in + # if self.thin is not None: + # thin = self.thin + # else: + # self.thin = thin + log.write_log('MCMC burn in = {}; thin = {}'.format(burn_in, thin)) + + if good_idx is None: + samples = sampler.get_chain(discard=burn_in, flat=True, thin=thin) + else: + samples = sampler.get_chain(discard=burn_in, flat=True, thin=thin)[:, good_idx] + n_parameters_ = samples.shape[1] + self.n_parameters = n_parameters_ + + # Compute marginalized errors + rho = [] + rho_min = [] + rho_max = [] + for i in range(self.n_parameters): + mcmc = np.percentile(samples[:, i], [16, 50, 84]) + # mcmc = np.percentile(samples[:, i], [50-95/2, 50, 50+95/2]) + q = np.diff(mcmc) + # print(mcmc[1], q[0], q[1]) + rho.append(mcmc[1]) + rho_min.append(mcmc[1] - q[0]) + rho_max.append(mcmc[1] + q[1]) + + # The estimated parameters are the values of rho as a function of frequency + self.parameters_mean = np.array(rho) + self.parameters_args = args + self.parameters_std = 0.5 * (np.array(rho_max) - np.array(rho_min)) + self.sampler = sampler + self.noisy_data = noisy_data + if log_like=='normal': + self.aic = 2 * self.log_likelihood_normal(self.parameters_mean, omega, omega_fixed, noisy_data, nu, ell) \ + - 2 * self.n_parameters + elif log_like=='off': + self.aic = 2 * self.log_likelihood_offdiag(self.parameters_mean, omega, omega_fixed, noisy_data, nu, ell) \ + - 2 * self.n_parameters + self.dic = -2*self.log_likelihood_offdiag(self.parameters_mean, omega, omega_fixed, noisy_data, nu, ell) \ + + 4 * sampler.get_log_prob(discard=burn_in, flat=True, thin=thin).mean() + elif log_like=='diag': + self.aic = 2 * self.log_likelihood_diag(self.parameters_mean, omega, omega_fixed, noisy_data, ell) \ + - 2 * self.n_parameters + self.dic = -2*self.log_likelihood_diag(self.parameters_mean, omega, omega_fixed, noisy_data, ell) \ + + 4 * sampler.get_log_prob(discard=burn_in, flat=True, thin=thin).mean() + with open('aic_{}'.format(self.n_parameters), 'w+') as g: + g.write('{}\t{}\n'.format(self.n_parameters, self.aic)) + with open('dic_{}'.format(self.n_parameters), 'w+') as g: + g.write('{}\t{}\n'.format(self.n_parameters, self.dic)) + ################################################ + # Helper functions + + # The log-likelihood function + # def log_likelihood_offdiag(self, w, omega, omega_fixed, data_, nu, ell): + # spline = self.model(omega_fixed, w) + # rho = np.clip(spline(omega), -0.99, 0.99) + + # one_frac_rho2 = 1/(1-rho**2) + + # # Data is distributed according to a Variance-Gamma distribution with parameters: + # # mu = 0; alpha = 1/(1-rho**2); beta = rho/(1-rho**2); lambda = ell*nu/2 + # # Its expectation value is ell*nu*rho + # data = ell*data_ + # z = data - ell*nu*rho + + # log_pdf = -np.log(sp.gamma(0.5*nu)) + 0.5*(nu-1)*np.log(np.abs(z)) - 0.5*np.log(2**(nu-1)*np.pi/one_frac_rho2) + rho*z*one_frac_rho2 +\ + # np.log(sp.kv(0.5*(nu-1), np.abs(z)*one_frac_rho2)) + # return np.sum(log_pdf) + def log_likelihood_offdiag(self, w, omega, omega_fixed, data_, nu, ell): spline = self.model(omega_fixed, w) rho = np.clip(spline(omega), -0.98, 0.98) @@ -286,9 +645,31 @@ def log_likelihood_offdiag(self, w, omega, omega_fixed, data_, nu, ell): z = data_*ell*nu absz = np.abs(z) # z = data - log_pdf = _lambda*np.log(_gamma2) + _lambda_minus_half*np.log(absz) + np.log(sp.kv(_lambda_minus_half, _alpha*absz)) + \ _beta*z - 0.5*np.log(np.pi) - np.log(sp.gamma(_lambda)) - _lambda_minus_half*np.log(2*_alpha) + + res = np.sum(log_pdf) + return res + + def log_likelihood_diag(self, w, omega, omega_fixed, data_, ell): + spline = self.model(omega_fixed, w) + rho = np.clip(spline(omega), 1e-6, 1e6) + + # Data is distributed according to a Chi-squared distribution with parameters (notation as in Wikipedia): + # Its expectation value is ell*rho + z = data_*ell/rho + absz = np.abs(z) + # z = data + log_pdf = (ell / 2 - 1)*np.log(absz) - absz/2 - np.log(rho) + + res = np.sum(log_pdf) + return res + + def log_likelihood_normal(self, w, omega, omega_fixed, data_, nu, ell): + spline = self.model(omega_fixed, w) + rho = np.clip(spline(omega), -0.98, 0.98) + + log_pdf = -(data_ - rho)**2 return np.sum(log_pdf) @@ -296,14 +677,30 @@ def log_likelihood_offdiag(self, w, omega, omega_fixed, data_, nu, ell): def log_prior_offdiag(self, w): # Uniform prior if np.all((w>=-1)&(w<=1)): - return 0.5 + return 1 else: - return 0 + return -np.inf + + # The log-prior function + def log_prior_diag(self, w): + # Uniform prior + if np.all((w>=1e-6)&(w<=1e6)): + return 1 + else: + return -np.inf # The log-posterior function def log_posterior_offdiag(self, w, omega, omega_fixed, data, nu = 6, ell = 3): return self.log_prior_offdiag(w) + self.log_likelihood_offdiag(w, omega, omega_fixed, data, nu, ell) + # The log-posterior function + def log_posterior_diag(self, w, omega, omega_fixed, data, ell = 3): + return self.log_prior_diag(w) + self.log_likelihood_diag(w, omega, omega_fixed, data, ell) + + # The log-posterior function + def log_posterior_normal(self, w, omega, omega_fixed, data, nu=6, ell=3): + return self.log_prior_offdiag(w) + self.log_likelihood_normal(w, omega, omega_fixed, data, nu, ell) + def initialize_cepstral_distribution(self, ck_theory_var=None, psd_theory_mean=None): """ @@ -436,4 +833,4 @@ def scan_filter_psd(self, cutoffK_LIST, correct_mean=True): if correct_mean: self.logpsd_K_LIST[:, k] = self.logpsd_K_LIST[:, k] + self.logpsd_THEORY_mean - self.logtau_K_LIST[k] = self.logtau_K_LIST[k] + self.logpsd_THEORY_mean[0] \ No newline at end of file + self.logtau_K_LIST[k] = self.logtau_K_LIST[k] + self.logpsd_THEORY_mean[0] From f1e67303f0ce42fff1cc2b5a6a2d8e6a7c38bf1a Mon Sep 17 00:00:00 2001 From: Paolo Pegolo Date: Mon, 12 Feb 2024 16:10:47 +0100 Subject: [PATCH 05/50] Update setup.json Remove compatibility with python 3.6 --- setup.json | 3 +-- 1 file changed, 1 insertion(+), 2 deletions(-) diff --git a/setup.json b/setup.json index 560d85d..cabedbf 100644 --- a/setup.json +++ b/setup.json @@ -7,11 +7,10 @@ "license": "GPL 3", "url": "https://github.com/sissaschool/sportran", "keywords": "cepstral data analysis thermal conductivity transport coefficients physics green-kubo", - "python_requires": ">=3.6, <4", + "python_requires": ">=3.7, <4", "classifiers": [ "Development Status :: 5 - Production/Stable", "Programming Language :: Python", - "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9", From 57d9a6163e98161790d0b6095c4feac73e5d9eac Mon Sep 17 00:00:00 2001 From: Paolo Pegolo Date: Wed, 14 Feb 2024 14:22:04 +0100 Subject: [PATCH 06/50] Add emcee requirement in setup.json --- setup.json | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/setup.json b/setup.json index cabedbf..c391965 100644 --- a/setup.json +++ b/setup.json @@ -29,7 +29,8 @@ "scipy>=1.3.2", "matplotlib>=3.1.2", "markdown2>=2.0.0", - "pillow>=5.4.0" + "pillow>=5.4.0", + "emcee" ], "extras_require": { "pre-commit": [ From febcd27ac8bbf06023d2655473e21de090515eed Mon Sep 17 00:00:00 2001 From: enrdrigo Date: Mon, 19 Feb 2024 14:06:07 +0100 Subject: [PATCH 07/50] adding examples and notebook for the bayesian regression --- .idea/.gitignore | 3 + .../inspectionProfiles/profiles_settings.xml | 6 + .idea/misc.xml | 7 + .idea/modules.xml | 8 + .idea/sportran.iml | 15 + .idea/vcs.xml | 6 + examples/06_example_bayesian_regression.ipynb | 613 +++ examples/data/bayesian/CsF/dc_minimal.npy | Bin 0 -> 9600627 bytes .../data/bayesian/mock_data/mock_data_sin.dat | 4001 +++++++++++++++++ sportran/md/bayes.py | 75 +- 10 files changed, 4693 insertions(+), 41 deletions(-) create mode 100644 .idea/.gitignore create mode 100644 .idea/inspectionProfiles/profiles_settings.xml create mode 100644 .idea/misc.xml create mode 100644 .idea/modules.xml create mode 100644 .idea/sportran.iml create mode 100644 .idea/vcs.xml create mode 100644 examples/06_example_bayesian_regression.ipynb create mode 100644 examples/data/bayesian/CsF/dc_minimal.npy create mode 100644 examples/data/bayesian/mock_data/mock_data_sin.dat diff --git a/.idea/.gitignore b/.idea/.gitignore new file mode 100644 index 0000000..26d3352 --- /dev/null +++ b/.idea/.gitignore @@ -0,0 +1,3 @@ +# Default ignored files +/shelf/ +/workspace.xml diff --git a/.idea/inspectionProfiles/profiles_settings.xml b/.idea/inspectionProfiles/profiles_settings.xml new file mode 100644 index 0000000..105ce2d --- /dev/null +++ b/.idea/inspectionProfiles/profiles_settings.xml @@ -0,0 +1,6 @@ + + + + \ No newline at end of file diff --git a/.idea/misc.xml b/.idea/misc.xml new file mode 100644 index 0000000..1bd6ded --- /dev/null +++ b/.idea/misc.xml @@ -0,0 +1,7 @@ + + + + + + \ No newline at end of file diff --git a/.idea/modules.xml b/.idea/modules.xml new file mode 100644 index 0000000..c056e76 --- /dev/null +++ b/.idea/modules.xml @@ -0,0 +1,8 @@ + + + + + + + + \ No newline at end of file diff --git a/.idea/sportran.iml b/.idea/sportran.iml new file mode 100644 index 0000000..4f2c9af --- /dev/null +++ b/.idea/sportran.iml @@ -0,0 +1,15 @@ + + + + + + + + + + + + \ No newline at end of file diff --git a/.idea/vcs.xml b/.idea/vcs.xml new file mode 100644 index 0000000..94a25f7 --- /dev/null +++ b/.idea/vcs.xml @@ -0,0 +1,6 @@ + + + + + + \ No newline at end of file diff --git a/examples/06_example_bayesian_regression.ipynb b/examples/06_example_bayesian_regression.ipynb new file mode 100644 index 0000000..0b3ce58 --- /dev/null +++ b/examples/06_example_bayesian_regression.ipynb @@ -0,0 +1,613 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 2, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "sys.path.append('../../sportran/')\n", + "import sportran as st" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": {}, + "outputs": [], + "source": [ + "from scipy.interpolate import CubicSpline\n", + "def model(x, y):\n", + " return CubicSpline(np.concatenate([-x[::-1], x[1:]]), np.concatenate([y[::-1], y[1:]]))" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [], + "source": [ + "dc=np.load('data/bayesian/CsF/dc_minimal.npy', allow_pickle=True).item()" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using multicomponent code.\n" + ] + } + ], + "source": [ + "flux=st.HeatCurrent([(dc['qflux']), (dc['ele_flux'])],\n", + " DT_FS=1,\n", + " TEMPERATURE=dc['Temperature'],\n", + " VOLUME=dc['Volume'],\n", + " UNITS='metal'\n", + " )" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Using multicomponent code.\n", + "-----------------------------------------------------\n", + " RESAMPLE TIME SERIES\n", + "-----------------------------------------------------\n", + " Original Nyquist freq f_Ny = 500.00000 THz\n", + " Resampling freq f* = 20.00000 THz\n", + " Sampling time TSKIP = 25 steps\n", + " = 25.000 fs\n", + " Original n. of frequencies = 100001\n", + " Resampled n. of frequencies = 4001\n", + " min(PSD) (pre-filter&sample) = 0.00000\n", + " min(PSD) (post-filter&sample) = 0.00018\n", + " % of original PSD Power f" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA6EAAALQCAYAAABhUnb6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd1hUZ9oG8HuGjnQRlCZiR+wt9ppobLHEkq6buOmmaL60TdskmzXdxDSzSTRuqiZqrLFiAbEDIjaagHQB6XXm+4NwdgZmhjMzZyr377q8nDNzzvs+UznPeZtMqVQqQURERERERGQGcksHQERERERERO0Hk1AiIiIiIiIyGyahREREREREZDZMQomIiIiIiMhsmIQSERERERGR2TAJJSIiIiIiIrNhEkpERERERERmwySUiIiIiIiIzIZJKBEREREREZkNk1AiIiIiIiIyGyahREREREREZDZMQomIiIiIiMhsmIQSERERERGR2TAJJSIiIiIiIrNhEkpERERERERmwySUiIiIiIiIzIZJKBEREREREZkNk1AiIiIiIiIyGyahREREREREZDZMQomIiIiIiMhsmIQSERERERGR2TAJJSIiIiIiIrNhEkpERERERERmwySUiIiIiIiIzIZJKBEREREREZkNk1AiIiIiIiIyG0dLB0BkjNLSUhw+fFjYDg0NhYuLiwUjIiIiIiIyTm1tLbKysoTtCRMmwMfHx3IBSYxJKNm0w4cPY+7cuZYOg4iIiIjIZLZu3Yo77rjD0mFIht1xiYiIiIiIyGyYhBIREREREZHZsDsu2bTQ0FC17a1bt6JHjx4WiobM5bfffoNCoVC7b+HChRaKhoiIiEhaKSkpakPOWp7z2jomoWTTWk5C1KNHD/Tr189C0ZC5xMXFobGxUe0+vu9ERERkr+xt4k12xyUiIiIiIiKzYRJKREREREREZsMklIiIiIiIiMyGSSgRERERERGZDZNQIiIiIiIiMhsmoURERERERGQ2XKKFiEhFUVERTp8+DUdHR4wcORKenp6WDomIiIjIrjAJJSL6i1KpxO7du1FdXQ0AqKqqwpw5cywcFREREZF9YRJK7VZeXh5SUlLg5+eHvn37QiaTWToksrDr168LCSjQ9BlRKpX8bBARERFJiEkotUtlZWXYvn07lEolAEChUCAqKsrCUZFYze+b1Orr601SLhERERH9Dycmonbp5MmTaolMbGysBaMha2Gq5JaIiIiI/odJKLVLhYWFlg7Bourr61FVVWXpMGwCE1MiIiIiabE7LlE7k5eXh71796KmpgYRERGYOnWqpUOyGhz7SURERGR6bAklamdOnDiBmpoaAEBaWhpycnIsHJH1YKsnERERkekxCSVqZ/Lz89W2k5KSLBQJEREREbVH7I5L7RJbvP5HoVBYOgTR8vLycPPmTbPGzM8KERERkbSYhBK1c6ZK6BobG5GQkIDy8nL069cP/v7+RpV35coVREdHSxMcEREREVkMu+MStXOmSkJPnjyJ06dP4/Lly9i2bRtqa2uNKo8JKBEREZF9YBJK1M6Zqrvp+fPnhduNjY1q20RERETUfjEJJWrnzDW+sqyszCz1SI1jQomIiIikxSSU2iUmFv9jSxMTEREREZHtYxJK1M6ZKwll4k9EREREAJNQIiIiIiIiMiMmodQusVXO/Gz1NbfVuImIiIisFZNQonaOSZZuCoUCOTk5KC0ttXQoRERERHbB0dIBEBFZs23btqG0tBRyuRyTJk1C9+7dLR0SERERkU1jSygRmYWttrg2t4AqFAocPHjQssEQERER2QEmoUREItlqIk1ERERkTdgdl4gEJSUlOHDgACoqKjBw4EAMHjzY0iFZrcbGRhQVFcHDwwMdOnSwdDhERERENoNJKLVLbNHS7NSpUyguLhZud+/eHV5eXpKUbU+veUNDA/744w8UFRXB0dER06ZNQ3BwsKXDIiIiIrIJ7I5L1M6pJocZGRlqj507d87M0ViW2EQ5JSUFRUVFAJoS0qNHj5oyLCIiIiK7wiSUiLRqbGy0WN11dXU4d+4czp8/b9E4NLl48aLadllZmYUiISIiai06OhoymUz41/IiM5GlsTsuEWmlUCha3VdTU4NTp06hrq4OgwcPhp+fn6iy9O2Ou2PHDqG1MT8/X69jTU0mk1k6BCK7t379eixbtqzN/ZydneHl5YWQkBAMGjQIs2fPxsyZM+Hi4mKGKM0nIyMD69evF7affvpp+Pj4mKSupUuXYsOGDW3u5+bmBm9vb/To0QNDhw7FwoULMWbMGJPERET2hUkotUv2ND7RlDS9TtHR0cjMzAQAXL9+Hffeey/kcmk7VRQVFQkJKACkpaVJWj4R2Y+6ujrhNyM+Ph7r169HWFgY1q5di9mzZ1s6PMlkZGTgjTfeELaXLl1qsiRUrOrqalRXVyMvLw/Hjh3DmjVrMGbMGKxbtw6RkZEWjY2IrBuTUKJ2TldCrqkltDkBBZpaRdPT09G9e3ej6mmpvLxc9L5E1D4EBATA09Oz1f1VVVUoKipCfX29cF9mZibuuOMOrFu3Dg899JA5w7RLXbt2haOj+imjUqlERUUFCgsL1X7fY2JiMGbMGOzfvx9Dhw41d6hEZCM4JpSItBKTOFZXV1ukXktid1wi81u9ejVSUlJa/cvJyUFlZSWOHj2KOXPmCPsrlUo8+eSTSElJsWDU9iE6OrrV656amor8/HyUlZVh8+bN6Nevn7B/aWkp7rvvPrULA2ReEydOhFKpFP6Fh4dbOiQiNUxCiUgrTS2hLYlNGG/cuCG6XmtPQonIujg5OWHs2LHYtm0bli5dKtxfU1ODr7/+2nKBtQMeHh5YsGAB4uLiEBUVJdx/8eJF7N+/34KREZE1Y3dcItJKyiS0srJSdL2GJKENDQ2tuouZCltCiazXW2+9hQ0bNgi/IzExMXqXUVtbi5iYGGRkZKCgoABubm7o0qULxo8fj86dOxsU1/Xr13H69GlkZmairKwMDg4O8PT0REhICPr06YNevXrZ9G+Lh4cHXnzxRdxzzz3CfTExMbj99ttFHV9YWIjExESkpqaipKQESqUSfn5+6Nq1K0aPHq2xK7a1sKfPS2VlJRITE3HlyhUUFRWhpqYGPj4+6NKlC0aNGoUuXbpIVtf169dx/PhxZGVlobGxEV26dMGECRMQEhIiWR1kvZiEEpFWYpJQMfuYol4iIk2Cg4PRqVMnFBQUAIDwvxjp6el45ZVXsGXLFlRVVbV6XCaTYfz48XjvvfcwfPhwUWVGR0fj1VdfbXM9YV9fX8yYMQPvvPMOQkNDhfsnTpyIw4cPt9q/W7duWsuyVG+SwYMHq2239dqfPXsWP//8M3bu3Ink5GSt+zk4OGDOnDl47bXXMHDgQK377du3D7fddpuwvWvXLtFJMADs3bsX06ZNE328NX5eVMuZNGmSWqzauuRmZWXh559/xrZt23Dy5Emd3aiHDx+Ol19+GXfccYeo56OaKH/33XdYunQp0tPTsWLFCuzevVvjEmxz5szBmjVr2IXYzjEJpXaJ3T2lo89rKba10pD3x5zvqS23VrQLTz8NxMdbOgr7NGgQ8PHHlo6iTaonth06dBB1zFdffYUVK1agrq5O6z5KpRKHDx/GyJEj8cEHH+CZZ57RWea///1vvPjii6LqLykpwQ8//IClS5dqTCpsQcuEoq3Xfv78+bh27Zqocrds2YKdO3fiyy+/1Lp0z9SpUxERESHMqP7NN9/olYT+5z//EW6HhoaqJaQt2dPn5ZVXXhG1JA8AnDp1CnPnzsUjjzyCtWvXwsHBQa+69u/fj4ULF6K0tFTrPn/88QdOnz6N6Oho9OzZU6/yyXYwCSVq54xN3vQ5PjY2FmFhYcjNzUVoaKjWLje8SEBGiY8HNLQcUftw9epVtTHoulrOmq1evRovvPCC2n3jxo3DlClTEBwcjJqaGpw9exabNm1CRUUFlEolnn32Wbi4uOCxxx7TWOaff/6pllA4OztjxowZGD58OAIDAyGTyVBaWoorV67g1KlTOHv2rMZygoOD0b17d1RXVyMnJ0e4X9OMtZZ2/PhxtW0xrz3QdGFv0KBBGDlyJHr27AlfX19h9vU9e/bg/PnzAJqW43nwwQcRFhaGKVOmaCxn+fLlwuv+xx9/oKCgAAEBAW3GUFRUhG3btgnbf/vb37QuP2bNnxdjdevWDaNHj0ZUVBQ6duwImUyGnJwcHDlyBAcPHhT+Pn/55ZcICAhQWzaoLZcuXcJTTz2FsrIydOzYEfPmzcOAAQPg7u6OlJQU/Pjjj8IM/Dk5Obj//vsRExMj+TJwZB2s69eLiGyOPl1nL126hEuXLgEAzp8/jzlz5mgcL2NId1y2hBJRQ0NDq9am+++/X+cxhw4dwksvvSRsh4WF4eeff8aoUaNa7fvWW2/hzjvvFJKtVatWYerUqejVq1erfd955x3hdvfu3fHnn3/qXM4qOzsbX375Jby8vNTu/+GHHwC07l4ZHR1tVd0V8/Ly8Pbbbwvbnp6emDt3rs5jfH198cADD+Bvf/sbunbtqnGfd999F5s2bcKDDz6I8vJyKJVKLF++HCkpKRqTk2XLluHVV19FfX096uvrsXHjRqxcubLN+Ddu3Ci0asrlcvztb3/TuJ+1f14M4eTkhKVLl+Kxxx7T2W04ISEBixcvxuXLlwEAb7/9Nu677z706NFDVD3vvfceFAoF7rnnHnz22Wfw9vZWe/yVV17BggULsGfPHgBAXFwc9uzZgxkzZhj4zMia8dICERnFmOTvyJEjEkZiHmylJbIuNTU1SE1Nxffff48RI0Zg586dwmPLly/H5MmTtR6rUCiwfPly4cJXQEAAYmJiNCYUABAUFIQ///xTGI9ZXV2NN998s9V+dXV1OHbsmLD9wQcftLmeckhICN566y2MGDFC537Wonmd0PPnz+P999/HoEGDhK61MpkMn3/+OXx8fHSWcfz4cbzxxhtaE9BmCxcuxM8//yxsp6enY8eOHRr3DQwMVBuv+M0334h6Pqr73XbbbQgLC2u1j71+Xj799FN89913bY5bHThwIPbv3w9fX18ATd2kP//8c9H1KBQKzJ49Gxs3bmyVgAKAu7s7Nm7cqJZY//jjj6LLJ9vCJJTaJSYS/2PO7rgt6RoTYs44rLEeIlK3bNkyyGSyVv/c3NzQo0cPPPDAAzh37hwAoHPnzvjggw/w5Zdf6ixz69atSE1NFbY//vjjNmfm9PT0xOrVq4XtTZs2tVqCqqioSG18pKaWL1vSrVu3Vq+7XC6Hp6cnBgwYgOeeew75+fkAgAEDBmDnzp2499572yzX1dVVdAwzZszA+PHjhe3du3dr3ffvf/+7cPvixYuIjY3VWfbx48dx4cIFYfuhhx7SuJ+9fl70eR9CQkLw5JNPCtu63oeWHB0d8dlnn+nsTeTv74/58+cL2ydOnBBdPtkWJqFEJJqmBMxakjIp4hBThlKpZHdcIivWu3dvvPPOO3jiiSfaHEum2soSFBSExYsXi6pj3rx5wpIhtbW1rXp1uLu7q223lQTZiylTpuCDDz7QazIgfUydOlW4ferUKZ37qbYkqk44pInq4wEBAZgzZ47G/fh5aaL6Ply+fBllZWWijpsyZYqoSZRuueUW4XZqaqrO2XrJdjEJJSLRzJWEWnOSxySUyDICAgLQvXv3Vv/Cw8PVun1evnwZy5YtQ48ePXDgwAGdZap2gZw+fbroCVAcHR0xZMgQYbtla42Pj4/aEirPPvssNm3aZLPLT3Xt2lXjax8aGqqWQB04cAC33norxo4di/T0dMnjUF2j8vr161r3k8lkaq2Zv/76K8rLyzXuW1FRgV9//VXYfuCBB+Dk5KRxX35emqi+D0qlErm5uaKOU00udQkODlYr/+bNm/oFSDaBSSiRBeTn5+PSpUuorKy0dChGM8UfSUOSPHbHJbJvq1evRkpKSqt/6enpKCkpwfXr17F27VoEBgYCaFr7cPr06di+fbvG8vLy8oQupADQr18/veJprgdomiSmpUceeUS4XVZWhkWLFiE0NBSPPPIIfvnlF43HWKvo6GiNr31mZiYqKiqQnJyM559/Hs7OzgCAmJgYjBkzRlgqpS25ublYs2YNFi5ciL59+6Jjx45wdnZu1QV4+fLlwjFtDedYtmyZkExWVlaqjSlV9fPPP6OiokLY1tYVtz18Xppfp6VLl2Lo0KEIDAyEm5tbq/eh5bIpYofWaJqIUBMPD49WcZH9YRJK7ZIlE4m0tDRs27YNR44cwW+//Ybq6mqT1tfQ0ICGhgaTld/ekrL29nyJbEVQUBAef/xxnDt3TpjopqGhAUuXLkVhYWGr/VuOy1u5cqXGMafa/qm2npWUlLQqf+XKlZg9e7bafTk5Ofjqq6+wZMkShIaGomfPnnjiiScQFxcnxUtgETKZDH379sW///1v7N27V0j8cnNz8cADD+g8tqqqCs8++yzCwsLw9NNPY/Pmzbh06RKKi4vb7IJZU1Oj83GxExSpdsUdP3681vGY9v55WbduHcLCwnDXXXdhw4YNOHv2LAoKCtp8nYG234tm+ow9VcW/u/aJSSiRmal2D6upqUFCQoLJ6rp8+TI2bNiA9evXIzk52SSTEEn5x6GhoQHHjh0zaNZcc7aEsjsukfXq0qWL2nIXxcXF+OKLL1rtJ+XEaFVVVa3uc3BwwNatW/HZZ59pnGkVAFJSUvDZZ59h1KhRmDhxorD0ha2aMGECli1bJmzr+j2vrq7G7bffjo8++qjVhVK5XA5/f3+EhISodf8Vs96nKtUJik6cOIGkpCS1xy9cuKDWNVa1pbUle/68PPfcc3j44YdRXFzc6jEfHx8EBwcjIiJCeB9azmbMJJEMwXVCicys5Y/1tWvXdI6TyMrKwpkzZ+Dq6ooxY8YIkxu0RaFQ4NixY8KMe8eOHWvVhUZTPPqSsjtuSkoKkpOTDTr25MmTGD9+vNYxOg0NDYiPj0d1dTUGDBigcXp4MZiEElm/2bNnw8HBQfj927lzJ1599VW1fVpOBhMUFAQ3NzeD6gsKCtJ4v1wux2OPPYZHHnkER48exf79+3Hs2DGcOHGiVS+Yw4cPY8SIETh69CgGDBhgUBzWYO7cuVi3bp2wvXPnTrVZbZu99dZbaglqv3798OSTT2LixImIiIjQOC7zu+++07p+pybNExQ1z2j7zTff4KOPPhIeV20F9fHxwZ133qm1LHv9vOzbtw/vv/++sO3v748VK1Zg+vTpiIqK0vgc09PTERERYXCdRACTUCKL05XQ1NfXY+/evcKJlFKpFD3rYFVVldqU70DTNPDG0DSxg5RXQI1ZN/TKlSsICgrS2pXq6NGjuHr1KoCmP6D33HMPHBwc9K6HV3yJrJ+Hhwc6duyIgoICANDYYuTv76+2/f777+Ouu+4ySTxyuRwTJkzAhAkTADStCxkTE4PffvsNGzduFGYXLSsrw4MPPqhz5ldrFx4errat6bWvr6/H2rVrhe3Jkydj165dcHFx0Vm2vq2RzRMUvfjiiwCAjRs3YvXq1XB2dkZdXR3++9//Cvvee++9OruL2uvn5cMPPxRuBwYG4vTp020uOyNlqzC1X0xCqV2ypkRCVxJ69epVtUQyKyvLqHKNfd6JiYmt7tPUfcdSoqOjtSahzQko8L/F7Q1Zi82aPjukxaBBlo7AftnQa6v6XdU09j4oKAheXl7CCb3qOpGm5uzsjEmTJmHSpEl49dVXMX78eCFZO336NC5fvozevXubLR4ptfyN1PTanzp1Sm1Zj7fffrvNBBSA6ImOVC1btgyvvvoq6uvrcePGDWzduhWLFi3Cli1b1C7MapuQqJk9fl4UCgUOHTokbD/99NNtJqCAYe8DUUtMQu3AhQsXkJiYiJycHDg4OCA4OBjDhg1Tm+6brJeuJNSYCYU0lWts19lLly61uk/ThB/WRtMaZoZeyc3LyzMyGjK5jz+2dARkYeXl5WoTyXTq1KnVPg4ODhg3bhx27twJANi+fTveeusts8XYLCAgAP/+978xb9484b7k5ORWSUXL7qnWunxHRkaG2ram177l8ioDBw4UVXZbS+5o0jxB0ebNmwE0dcFdtGiR2kRFw4cPbzMGW/u8iHHjxg3U1tYK26Z8H4ha4sRENmzz5s0YOHAgoqKicPfdd2PVqlV45plnsGjRIkRERGDMmDGIjo42Sd3R0dF6zQqn+u/06dMmiclW6UpCjRl7aIok1FbFx8e3uq9lV2Wxjh07xteWyMpt27ZN7Tup7eR6yZIlwu3ExETs3r3b5LFp0jKB0DQzbMtlK6x17cTff/9dbVvTa9+ytVTM7Kp79+7FxYsXDYrp4YcfFm7v378fhw8fVkuk2moFbWZLnxcxDHkfbty4gY0bNxpUH5EqJqE2qLGxEcuWLcPChQs1do9sFhsbiylTpuCVV14xY3S2wZq6VLZMaDIyMrB3716cOnVK8jhNPbuttdK0qLmhrcw1NTUak1BbWvOPyJ5dv34dL730ktp9CxYs0LjvkiVL1CZYWb58uV7DHgDNJ+7FxcUax9Br03KW9JbjKjXd13KmV2tw8OBBbNiwQdiWy+VqLXbNWs7+umPHDp3llpSUqK2jqa8pU6age/fuAJr+5i1evFi4SNGhQwfRYztt6fMiRseOHdUmXGrrfVAoFFi+fLnauqpEhmISaoOeeeYZrF+/Xth2d3fH8uXL8dlnn+Gjjz7CkiVLhG47CoUCb731ltpscKbQtWtXtWnUdf0zdJ0oKVlT4qWa0JSWlmLv3r3IyMjAuXPnNC7fkpCQgF9//RV79+7VucaorSScmZmZOHHihMZEUSrmeN4xMTEmr4OItMvJycHatWsxZMgQtcQgKioK999/v8ZjHB0d8fXXXwuTlF2/fh0jR47E9u3b2/zduHDhAl588UUhuVGVmJiIsLAwvPDCC22OHTx//jxWrVolbDcPqWnJ29sbffr0Ebbfffddqxibp1QqcfHiRTz//POYPn262gW+v//97+jRo0erY4YNGwY/Pz9he+XKlRp7rABNr/P48eORnp6udfbztjRPUNQsPz9fuL148WLRs87b0udFDAcHB0ydOlXYXr9+Pb7//nuN+964cQOLFy/Gli1bDH4fiFRxTKiN2blzJz799FNhOzIyEnv27EFoaKjafgkJCZgxYwZycnIAAKtWrcLUqVPRv39/k8QVHR1t8JU4S7CmZEw1CVVdrwzQPKFD8z6lpaXw8PDA6NGjNZar6Tka02W0eZbJlry8vAwuEwD27NkDoPWVXamUlpZqvGrLrs5EtuX555/XOAavsbERpaWlGsd5h4SEYNu2bXB01H66M3nyZHz88cdYsWIFlEolcnNzMWfOHPTq1QtTp05F79694eXlherqaty4cUNYWzI9PR0AtE6oU1paitWrV2P16tXo1asXbrnlFvTr1w9+fn6Qy+XIy8tDbGws9uzZozY84MMPP9R6kv+3v/0N//d//wegqSW0e/fuCA0Nha+vr9rvkraEzlATJ07U+BrW1dXhxo0bGte9nDJlitrMq6ocHR3x3HPPCbPWFhYWYsSIEZg7dy7Gjh0LT09PFBYW4siRI8Lr4+XlhUcffRSrV6826DmoTlCkStfaoJrY0udFjBdeeEFIohUKBR544AF88803uP3229G5c2eUlZXhzJkz2LZtm9AF/M0338TLL79scJ1EAJNQm6JQKNS6GLm7u2P79u2tElCgaQzGpk2bMG7cOCgUCuHY7du3mzNkqyUmCS0tLUVcXByUSiVGjBiBjh07miQW1RMHfcf4JCUlaU1CNTEmUdI0uY821jRW6cyZMxrvl3qtT0OWeyEi8QoKCrReDGtJJpNh0aJFWLNmDQIDA9vc/4knnkBISAgeeOAB4bfuypUruHLlSpvHivnuiynLwcEBH330ERYtWqR1n2eeeQaHDh1SG4uYlZWld5dQfV27dk30vq6urvi///s/vPzyy3B2dta633PPPYe4uDhs27YNQNO4xk2bNmHTpk2t9vX29sYvv/yC3Nxc/YP/S8sJioCmtUl1rdOtja18XsQYNWoU3nvvPbXW1SNHjmhcMk0ul+PNN9/E3XffzSSUjMb2dBty4MABtTGgK1as0LlY8OjRo7Fw4UJhe8eOHUhJSTFpjPZk//79yMzMRFZWFvbu3WuyelSTISlbaKXujqsraaurq0NsbCz279+PwsJCta5Olta8SHlLUreE6mppISLTkcvl8PLyQnh4OGbOnIm33noLKSkp+Pnnn0UloM3mzp2LtLQ0vPjii+jcubPOfZ2cnDBmzBisXr1aY7IwePBgrFmzBtOmTWs1oVBLzs7OmDdvHs6ePYsnn3xS576Ojo7YuXMnNm/ejEWLFqFnz57w9PSU/KKaWI6OjvD19UWfPn2wZMkSfPnll8jNzcUbb7yhMwEFmpKo33//He+8845a11xVzs7OmD9/PhISEjBt2jSj4126dKnatr6toKps4fMi1sqVK7F161ady5bdcsstOHDgQKvx1kSG4lmTDdmyZYvatpjZ3JYvX45ffvlF2N66dava1S7SrKqqSm39y+bp/g1tDS0qKsLVq1c1/lFW7Spq6iRUU0uo2Dp1dfeJiYkR1uHMzMzEuHHjREZpOc0nbQqFAsnJyaivr2/zpEkXjpEhktbSpUtbJQ2m1rFjR/zrX//Cv/71LyQlJSExMRGFhYUoLy9Hhw4d4O/vj169eiEqKgodOnTQWo63tzdWrFiBFStWoLGxEcnJybhy5QquX7+OiooKyOVy+Pj4oFevXhg6dCi8vb1FxyiTybBgwQKtky1JYf369WpzT5iKXC7HCy+8gKeeegoxMTG4ePEiysrK0LFjRwQFBWH8+PHw8fER9jf2M3H+/HnhtouLC+677z4jorfuz8vEiRP1Oqe44447MHv2bJw9exZnzpzBjRs34OHhgS5durRa9i88PFx02Yac1+gbO9kmJqE2pHltKgDCJD9tGTduHFxdXYXZ2Hbs2MEkVARNy3cYuqRHZWUltm7dqrUrrOq4T1P/6JqqJbQ5AQWaZp3V1vpoTZqfT3R0tGQ9BMrLyxEXF4f6+noMGzYMAQEBkpRLROYXFRWFqKgoo8txcHBA//79TTYngz1wc3PD1KlT1SbJkZpSqcS3334rbM+fP19rC6wh7OHzIpfLMWzYMIMnOiLSBy/d24jS0lJkZmYK22LHMDg7O2Po0KHCtq4lXUg3fbs7KRQKxMXF4YcfftA5FlM1uTV1S6gx9GnpU1382lo1vyeGJKDaPgvR0dFIT09HdnY2du/ezcmKiIisxP79+9UumKquHUpE5sck1Ea0XKBZ05Tn2qi2mJaUlCAvL0+yuJq99NJLGDRoEHx9feHs7IyAgAAMGDAADz/8MH7//XeDWxGlVlZWhqNHj7a5nxQJXHZ2tqikX/W9tMSYULF16pOEa5ql0toYM5GQppbe5lkSm9XW1qpdOCIiIst58803hdv9+vXDhAkTLBgNEbE7ro1ouRZYy4WedWm5b1paWpuD6PX1008/qW0XFhaisLAQ58+fx7p16xAREYEPP/wQd9xxh6T1tqQroVIoFNi2bZvOtTWlFB0dLWo/1XEilhwD0Vbd+sRmCy2hrq6uJk/6VdfLM7WCggI0NDSgS5cuFpukhIjI2lRXV+OVV15RuwDNmV2JLI9JqI1ouTyGPuMYfH191bbLy8sliUlTPV5eXqisrERxcbFaV8S0tDTMnTsXL730Et5++22T1A80da3UdgKenZ2tc6xiQUGBzjF8+p7Yi03EjJ0dd/PmzQgNDcXw4cPVusxKPTuuvU0SoFQqrbr7sz7Onj2L06dPAwAiIiJMOq6KiMjavfrqq/jjjz9QW1uLa9euqV18Hj16NBYvXmzB6IgIYBJqM1RnUAWaWnHEcnNz01mWoTp27Ii7774bM2fOxPDhw9US45s3b+LgwYP44IMPEBMTI9z/r3/9CwEBAXjqqackiaGlefPmGXX866+/Lk0gBjIkkSkuLkZxcTH8/f3Vul7rW1ZbYyO1jW+05eTUXpLQ5gQUaLrgc/PmTb1m2yQisieZmZlISEhodX9ISAh++OEHzmZOZAX4LbQRzbPbNtNnKQkXFxe1bSm6ow4dOhTZ2dn45JNPMG3atFYts97e3pg3bx6OHj2qNg4DAJ5//nmTL6xtLCkSCkPKMKbeAwcOGHxsRUVFm92HbTnZ1ETqllBrmoSoqKjI0iEQEVkFFxcX9OrVCytXrsS5c+cQHh5u6ZCICExCbUbLls+6ujrRx7bsFtqyZdQQnp6eolpjZTIZ/vGPf+CRRx5Ri+fdd981OgZ7ZIl1QgEgPj6+zbqtKcmSgtRJtaWSdHu7OEBEZKz169cLFxprampw+fJlvP/++/D397d0aET0F3bHtREeHh5q2y1bRnVp2fLZsixzeOutt7BhwwYhlu3bt+PTTz+VvJ7vv/8eoaGh8Pf3bzWGMzMzEydOnNB67GOPPaazbHud7EWpVIpqHbfHZMfUSX/zZ6agoAClpaUIDQ2Fg4MD9u/fj+zsbAQFBeHWW29t1VvB2HqJiIiIrBmTUBvh5eWltl1SUiL62JbLZXh6ekoRkl46duyICRMmYM+ePQCAa9euITc3F126dJG0ntTUVFRXV6OmpgbTp09Xe8zd3V1nN2DVSYns4cRen5ZQbQm2u7u7zvJ03W9pSqUSlZWVbe4jZX2apKWlYf/+/QCaXs/IyEhkZ2cDAHJycnDlyhUuYk9ERETtCrvj2ohu3bqpbeuz/uC1a9fUtiMiIiSJSV+9e/dW2y4oKDBZXZmZma3GxbU1EQG7m7aWkZFhfCAWUF9fj+3bt+PHH3/Uuo+5uuM2J6AAUFVVpTaJEAAcP35c0jiIiIiIrB2TUBsRGRmptt3WTKaqVJcl8fX1lXyNULFajkWtqqoyaX05OTl67a86i685E1JzdvPV93kpFAq9X0dL27VrF2JiYpCXl6dzP3uZmEhXN2AiIiIia8Qk1Eb4+PggLCxM2BbbelJXV4czZ84I25bs9pefn6+2beoJAvSdgv3ixYtG1VdTU4OsrKw2u4Cai1TrhB4+fNjgYy0hOzsbV65cEbWvPSzRYivvCxEREVEzJqE2ZMaMGcLt1NRUpKWltXnM0aNH1SYxmjVrlkliE+Po0aPCbScnJwQHB5u0vpZJqD4n65r23bdvH8rLyzXuX1ZWhk2bNmH37t3YvHkziouL9Qv2L1K2YIlNQtuqU9tztnVSJ2+NjY2t7mOLJBEREVFrTEJtyLx589S2v/766zaPabnP3LlzpQxJtN27d6t1IR4zZozapDemYMxi1JoSlLKyMq1rcZ45c0aYYba2thYnT540uG5TMibxsscWNymfU0NDg2RlEREREdkzJqE2ZOrUqYiKihK2P/30U6Snp2vd//jx49i0aZOwPXPmTPTs2VPjvhkZGZDJZMK/iRMnai1XzHIeqnJzc/Hwww+r3bd06VK9yjCE1Eko0DSZkqZk4+rVq2rb+kwcZSr6dMdtjy12Uo8JtRRNz8HU462JiIiIjMEk1IbI5XL861//ErYrKysxe/ZsjcuOJCYmYuHChcJkKXK5HG+//bYkcfzyyy+YMGEC/vjjD9TV1encd//+/Rg5cqRajAMHDsR9990nSSy6mCIJBaSfgEbKRKiurg5nz57FmTNnUFtbK2ld9pCwqWpsbLSL56TpOSQmJlogEiIiIiJxuE6ojZk9ezYee+wxfP755wCACxcuoG/fvrjnnnswaNAg1NfXIy4uDps3b0Z9fb1w3OrVqzFw4EDJ4jhy5AiOHDkCHx8fjBkzBgMGDECXLl3g6emJqqoqpKenY9++fUhISFA7rnPnzti6datRCaJYpkpCTcnYFsm9e/fqnM3WHpIuqZw/f77V0kdSU12exZwqKiosUi8RERGRGExCbdAnn3yC8vJybNy4EUBTi+i6des07iuTyfDCCy9g1apVJomltLQUO3fuxM6dO9vc95ZbbsF///tfhIeHmySWlmwxCTWGm5tbm8upsCVUXXx8vKVDMJo9vi9ERERk39gd1wY5ODjg+++/xy+//KI2RrSlW265Bfv371frwiuFYcOGYdmyZejbt2+bLXcymQyjR4/Gf//7Xxw7dgzdu3eXNBZdDElCm0/obfHEXsxYXVM8L1tudbOGsbvm0tDQoDZTNhEREZGlsCXUhi1atAiLFi1CUlISEhMTkZOTAwcHBwQFBWH48OGIiIgQXVZ4eLjoBCUqKgrffvstgKaW0HPnziEzMxNFRUWorq6Gi4sLfHx8EB4ejhEjRsDb29ug52esls9HzPNTKpWQyWRmTUJtoa7Y2FgkJSVJHA1JQcx7WlhYiD///BNVVVWIiIjAlClT2uVkVERERGQdmITagaioKJ0toqbk4+ODSZMmWaTuthiahNozfWbMVcUE1LadPHlSmDE3LS0Nffr0QUhIiIWjIiIiovaK3XGp3SgpKWlzHzHdcaVOVM2Z+DY2Nmq8n61itkvM5+f69etq2y0nDCMiIiIyJyahZLdanpyfPXvW4GPthablZez1uZJ2fM+JiIjIkpiEkt0ypjuuOVtCzUlbSyjZLkM+j7b8GSYiIiLbxySU7JYxJ+e2uk5oWzS1hBIRERERmROTULJbploT097GhLJVzLaxJZTIPKKjoyGTyYR/GRkZlg5JL0uXLhVinzhxoqXDsSnbtm3DkiVL0LNnT3h6ekIulwuv5dNPPy3sJ/Y1tvXPkr2ZOHGi8F4sXbrU0uG0G0xCiVTYe3dctoTaHyahZG9UT+RlMhmys7NFH7t48WK1Y/WZvb2iogJOTk7Csbfddpsh4ZMdqaurw5w5czB37lz88ssvSElJQUVFhVl/Qz/++GO8/vrreP311xEdHW22eolMjUu0kN0y5I/E2bNnERERYRNrdxpCW0soZ8clImsxadIkbNiwQdiOjo7GvffeK+rYw4cPq20fP34cNTU1cHV1bfPYo0ePoqGhQS0Oat/eeOMNbN++Xe2+Tp06wcvLS23blD7++GNcu3ZN2GYrNtkLJqFktwxJ7s6fP4+kpCT0799f0nLF4phQMge2hJI1a5n8iU1CL168iPz8fLX7amtrERcXJ+rEvWUrE5PQ9k2hUODLL78UtocOHYrffvsNXbt2tWBURPaD3XHJbhl6oq1UKpGYmChxNNaBSaj9YUJJ9iYsLAwRERHC9qFDh0Qdp5pEenh4GH38sGHD1B6fOHEilEql8C88PFxUuWSbrl69iuLiYmH7zTffbDMBXb9+vfD5YNdZIt2YhJLdMtXJudhyO3bsaJL6jcF1Qu0Px4SSPVJthUxLS0NWVlabx6gmm4899phwW0wyUFFRobaW9Lhx4+DoyM5i7VlRUZHado8ePSwUCZF94i8skYl07twZN27caHM/a0gIVMebkP1r+ZnLzMxEfn4+wsLCEBgYaKGoiP5n0qRJ+Oabb4TtQ4cO4f7779d5jOp40KeffhpffPEFysvLERcXh+rqari5uWk91pzjQa9fv47jx48jKysLjY2N6NKlCyZMmICQkBCDy0xPT0dMTAxycnLg7u6OkJAQjB8/Hn5+fpLEXF1djaNHj+LatWsoKiqCp6cnOnfujHHjxtntb0Z9fb3atpOTk4UikVZubi5iY2ORl5eHsrIydOzYERERERg3bhxcXFwkqePChQs4f/48cnNzUVtbiyFDhrQ50deFCxeQkJCAgoIC1NbWIjAwEFFRURg6dKhRQ5UuXLiA06dPIzc3Fz4+PggNDcXEiRPRoUMHg8skaTAJJbtl6ZZQa6Qp9pZ/aMmyLly4gDNnzsDV1RWTJ0+Gv7+/5HWUlZUJtzMyMrB3714AQHx8PObPn2+VrfjUvmgaF6orCU1OTkZBQQEAIDIyEl26dMGYMWOwZ88e1NXV4fjx45g8ebLW41u2lmraNzo6Wi2u9PR0rV1yVU+av/vuOyxduhTp6elYsWIFdu/erXGSuDlz5mDNmjV6dfNNTk7G448/rrG118XFBQsWLMCaNWsM/h3Jzs7Gyy+/jE2bNqG6urrV4zKZDGPGjMG//vUvjBs3Tms5LedaOHfuHAYNGqR1/8WLF+PXX38Vth9//HGsXbtW6/779u1TS3Ly8vIMSo5ff/11vPHGGxof69atW6v7HnjgAaxfv17YXrp0qTCp1oQJEwzukrt+/XosW7as1f1vvPGG1viaP2fabNu2DW+99RbOnDmj8VzAw8MDDz74IF5//XX4+PjojE/bd+G3337DG2+8gfPnz6vtP2HCBI1JaG1tLdauXYtPPvkEmZmZGusKDg7Giy++iEceeQQODg4641IVExODJ598EufOnWv1mIeHBx544AG8++67cHd3F10mSYvdccluWTpZFFv/1atXTRzJ/1j6NSHdqqurERMTg5qaGpSWliIuLq7NY9p6T2tra1vdV1dXJ9w+ePCgWlmxsbF6RNykpqYGV69eFdXyTyRGUFAQevXqJWy3Na5T9fHmSYgmTJgg+njVZMHb2xuDBw/WI9q27d+/H0OGDMGOHTs0JqAA8Mcff2DMmDGi/yZs2bIFQ4YM0Zro1NbW4scff8SQIUNw8eJFvWPesWMHevfuje+//15jAgo0/WYcO3YM48ePx6pVq7T+HkVFRSEgIEDYVv3d0aTlc2prf9XHIyMj7bZ11hAVFRWYNWsW5s6di9OnT2t9jyoqKrBmzRr069cPycnJetfz5JNP4s4772yVgGpz9epV9O/fH6tWrdKagAJNPQeeeOIJTJ48We0Cqi5r167F+PHjNSagQNNz/eyzzzBy5Ejk5eWJKpOkx5ZQsltKpRJpaWmoqamRdCyH1IlcXV0d4uPjdV4VlorqJAtkPZqXybly5Yra/Tk5OaKO1SY5ObnNpFK1CyLQ1FVLHzU1Nfj1119RU1MDmUyGadOmISwsTK8ypKBQKKBQKDiOz45MnDhR+E5kZGTg2rVrWieGUU1ampNP1SRUV4tUeXk5zpw5o3a8XC7dNfpLly7hqaeeEro+zps3DwMGDIC7uztSUlLw448/CifhOTk5uP/++xETE6MzhiNHjmDJkiVqF5QGDBiAefPmITQ0FCUlJThw4AD27t2LrKws3HnnnejXr5/omHfv3o158+ap/T4MHDgQc+fOFco/dOgQ/vzzTyGp/uCDD9DQ0ICPP/5YY5kTJ04UWjcPHjyIZ599VuN+SUlJQqt2s4sXLyIvLw+dO3fWeIzqRQZjulL7+fmhe/fuAJouCqr+Bnft2rXV74upkl0vLy8hjmvXrgnvg6+vr9Yu1qrLxjSrrKzEpEmTcPr0aeE+T09PzJ49G8OGDYO3tzcKCgqwZ88eoTt7Tk4OJkyYgDNnzoj+Lf/444+FluqIiAjMnTsXPXr0gEwmQ0pKSqu/ZRcuXMDEiRPVxt2GhobijjvuQJ8+feDq6or09HRs3rwZly9fBtD0mb/99ttx+PBhnb/zP//8M1asWKH2t3H06NGYOXMmAgMDUVBQgN27d+Po0aNISkrCPffcw0kbLYR/rclunTx5UuhqmpSUZNa69R2/cPLkSbMkoWSdKisr4eHhIekFDoVCgWPHjklWnjbx8fGoqakB0JQQnzx50uxJaGFhIfbu3YvKykr06dMH48ePN2v9ZBqTJk3CunXrhO1Dhw5p7G6oVCrVxoM2J5/Dhg2Du7s7qqqqcPLkSVRVVWnsenf06FG11kmpx4O+9957UCgUuOeee/DZZ5/B29tb7fFXXnkFCxYswJ49ewAAcXFx2LNnD2bMmKGxvJqaGjz44INCAiqTyfDBBx/g6aefVvvbs2rVKhw5cgQLFixAcnIyLl26JCreoqIiLFu2TEh85HI51q5di0cffVRtv1WrViEuLg7z588XLl6tWbMG06ZNw+23396q3EmTJglJ6JEjR9DQ0KAxmVBNKB0cHIT35tChQ7jrrrta7d/yIoKubtdtWbFiBVasWAGgdZfT6Ohos82IPH/+fMyfPx8AEB4eLszbsGLFCrz++uuiy3niiSfUEtAlS5Zg7dq1rYZcvPDCC9i+fTvuuusuVFZWoqioCH/729+wf/9+UfWsWbMGQFN34ZdeeklnklhdXY3FixcLCahcLsfbb7+NlStXthp3+8Ybb+Dtt9/Ga6+9BgCIjY3FO++8g1deeUVj2QUFBXj88ceFv6UuLi7YsGEDFi9erLbfiy++iN9//x333HMPDh48KOlFJxKPrzrZLdWxjqWlpZKVKyZRMHQQvanXCSXrZsj4XG2fx8rKSmPDEaXlia0lWttPnjwpPN9Lly6ptaIolUrU1NTwn4H/LNmFX9O4UE0uXLiAwsJCAECfPn2E1iknJyeMHj0aQFOPE229Aky9PqhCocDs2bOxcePGVgkoALi7u2Pjxo1qLVk//vij1vK++uorpKSkCNuvvfYannnmGY1/P8aPH49t27ZBLpeLbu1ZvXq12nqrH3zwQasEtNktt9yCXbt2wdnZWbhv5cqVGvdVTQ7Ly8vVkiNVql1r77nnHo33qzp8+LCQMMtkMrUW8PbsyJEjauNV77nnHvz0009ax/zPnj0bP/30k7B94MABHDhwQHR9zz//PF599dU2e6O89957uHDhgrD95Zdf4oUXXtA48ZODgwNeffVVtc/U6tWrcfPmTY1lv/POO2p/g7766qtWCWiz+fPn47vvvgPA5esshS2hRHoSc1KmUCj0TihOnz6t1rWK2o/mz1RCQkKrxxQKhUFXac11ZdcaPrPXr19X205ISMCtt94KoGlc3Pfff2+JsOzC/fffD1dXV4vUHRgYiL59+wrjGbWN61RNIpvHgzabMGGC0Jpz6NAhTJ06VefxHTt2xIABA4wLvAVHR0d89tlnOi8y+vv7Y/78+ULScOLECa37fv3118Ltrl274sUXX9RZ/+jRo/HAAw8IJ9y61NTU4NtvvxW2Bw0aJLQMatO8z/vvvw+gqevsoUOHWiXzvXr1QnBwsPB9PXjwIG655Ra1fRQKhdCq7eTkhFdffVX4/mp7/1XvHzBgACdW+0vz+wE0fa6/+OKLNo+ZPXs2ZsyYgV27dgEAvvjiC0yZMqXN4wIDA0W10NbW1uKzzz4Ttm+77TYsX768zePefPNNrF+/Hjdu3EBlZSU2btyIJ554olXZqr/1o0aNwgMPPKCz3CVLlmDdunWi1xImabEllMhE9J1w6OzZs5yptp1qTkI1XY1t6wqttosibFUne6CayGRmZiI9Pb3VPprGg2ra1tSSWl5errY+6MSJEyX/7kyZMgWhoaFt7qeakKWmpmr8e5CWlqbWivTAAw+otUJq8/e//11UrLGxsWotSY888oioC1qPPfaY2uu2Y8cOjfupXiTQ1LKZkJCAkpISAMDw4cPRvXt39O3bF0DTa6JpAhvVcozpimtPbt68iZ07dwrbDz30EDw9PUUdq5q4HThwQNSF9yVLloi6WLVv3z61nirPPPOMqJjc3NywaNEitXJaiomJUfvsikluAfHfDZIek1AiPXGGWTIFbd1nNc2kqVQqER8fj71797aazKgZk1CyBy1b01q2WCiVShw5ckTYbpmEjhgxQjg5PnXqVKvvmanHgwJo1dqnTXBwsHBbqVRq7HJ48uRJte1p06aJjqGtZTeA1i2wmsZ2atKtWzdERkZqLaeZapIYGxvbavZuTQml6jEtE9fi4mIkJiYK26Zc39WWxMbGql3AnDlzpuhjR4wYIdwuLS0VJgbSpbnbe1uOHj0q3G5ehsyQuDR9vgz9bkyfPl10DCQtJqFERFZA9URKlaalES5duoSTJ08iIyND63G8WEL2oGXLZMvWzKSkJGE8aK9evdClSxe1x11cXIQksL6+HjExMWqPm3o8KACtM7q25OHhobat6cJUyzHYUVFRouMQs6/qRS0fHx+9JhlT7cas7eKY6utbXV2N48ePqz2uepFBUxLa8iJEdHS0kGw5ODhwUrK/tBzaoc/MyC1n/M3Ozm7zGLErEKjG1bNnT1Gt+Jriys/Pb9VTQPW74evri6CgIFHl+vj4ICQkRHQcJB2OCSXSE0/uSWpKpbLVUinNfv31V/To0QOTJk0STsZVryZrIqbFIzMzU6+Fv22JatLi4uKC+++/34LR2DYXFxeL1u/v74+oqChh7UFNSUizluNBm02YMEHY79ChQ7jttts0Hh8YGKjWmicVQ8fUavpb09xVFWh6bzQty6FNp06d2txHtXzVdT3FUE0StE0G2K1bN4SHhyMjIwNA0/vR/L41NjYKv22urq4YNWoUgKb3tXlipZYtoarbQ4YM0TjxU3vUcs1mY8bJqn4mtBH7OVSN6/z580b12CktLVX7TBvz2e3UqZOoZJukxSSUyAjN6zsSmVJKSgr69Okj+squmOVempeDsHcymcxiE+uQNCZNmiQkodnZ2UhNTRXWUNQ1HlTT/ar7l5WVtRoPau1UW0fd3Nz0OrZDhw5t7lNRUSHc1rScjdjy6+vrUVtbq/EixqRJk4RJkg4ePIg33ngDQNPkfGVlZQCaJpVp/t76+flhwIABiI+PR3Z2Nq5evYqePXsKx6uWS02kXBGgqqqqzX3Ers9syrhM/d0g6TEJJdJTdXU19u/fj7S0NADiu6EQaSOmdT0hIUF0Eiq2TCJbMHHiRHzyySfC9qFDh9C9e/dW64NqSyJvueUWODs7o66uDqdPn0ZFRQU8PDxajQe1hUltVE+WNXXV10XMsk2qXYLFJB/ayndyctLaiq6ahJ44cQKVlZXo0KGDxq64qtvx8fEAmt7/nj17Ij8/X5g5ublcaqJ6AcHBwcGo9U3FTmgkhmpcHh4erbr+6qNl4mvq7wZJj0kokZ5UZ5wDoLZeG5EhVGe7lAITULInEyZMUFvnMjo6Gg899BDOnz8vdO/r0aOH1os0bm5uGDFiBI4dO4aGhgYcO3YM06dPN8t4UKn5+voKt2tra1FWVia6K2Tz2Fmx5avOYiqG6v66hgSovs719fU4duwYpk2bpnOW28mTJ+PDDz8E0NT6+fe//11tfycnJ4wbN06veO2Zv7+/cNvJyQlXr161il5bqnGNHj0af/75p2RlG/PZFfPdIOlxYiIiIgu7cOFCm8vzNDY2il6TU6lUMhElu9HcHbNZc4uZmPGgzVS75Go6Pjg4WOjiac169+6ttp2UlCT6WDH79urVS7hdWlqqcUkUbVQnSVMtp6WQkBC11/rgwYNqk0Z5eHiozYQKAOPHjxdavprfP9UkdPjw4exSqaJPnz7C7ZqaGqSmplowmv9RjSs5OVnSslW/GyUlJcjJyRF1XGlpKceDWgiTUCIiK9DWH8GcnBysX78e69atM1NERNZDtfUsJycHV69eVeu+qW08qKbHo6OjUVZWhnPnzmks35qNHDlSbXvv3r2ijjtx4oSo8Xgtl5PZvXu3qPIzMjLUenS0tSyN6ut98OBBxMXFCd1/x44d26qrpaenJ4YOHQqgqZXrwoULau+/rbx/hnBychJut7VudLOWs0pv375d8rgMofo+ZWdnq30HjWXod0PK1ljSD5NQIiIrIGVXKaVSKbrVlMgWtEwyDh48qLY+aFstoaNHjxYSmzNnzmDXrl0mXx/UFCIiItSW29iwYYOo77rYi1ejRo1Sm0n1q6++EtWr4osvvlDbb9asWTr3V329z507hy1btgjb2sbmqt6/YcMGtdY9WxjPayjVcbqa1o7VpFOnTmqvyccff9xqTVZLmDZtmlpX7X//+9+SlT1mzBj4+fkJ219//bWo48TuR9JjEkpEZAWkTkKvXr0qWXm6WMM4I7J/48ePV1tSaO3atSguLgbQlJi1tc5fhw4dMGzYMABNXdvffvtttcdtKYlZvny5cDsjIwPvvvuuzv3j4uKwYcMGUWW7urrib3/7m7B97tw5fPbZZzqPSUxMxJo1a4TtyMjINi8KqCahjY2N+PLLL4VtMUno2rVrhdsuLi7Cci72SHVSIX26X7/00kvC7czMTDz88MN6D9OoqanRa/+2eHp64sknnxS2f/31V3z77bd6l6MprpbLccXGxuK///2vznI2bdqEAwcO6F0/SYNJKBGRnVEqlWrjs8ztzz//tOhVdybG9sfb2xuDBw8WtlVPxsUuraLaJVf1+PDwcKNmDzW3hx9+WG1W9ldffVVt9mBVx44dw5w5c9DY2Ai5XNwp3//93/+pzVr69NNPa21JPXHiBG6//Xa17/sHH3zQZh0t12Rtns3Ux8dH7X1WNWbMGDg7O6vtDzR1/dV3SQ5botq1OTo6Gr/88ouoZHLy5MlYtmyZsL1hwwbMnj1bWKNVm9raWuzatQtz587FypUrDY5bm+effx5RUVHC9kMPPYQXXnhBWJ5Hm+LiYnz33XcYNmwYtm7dqnGfF198UW2CooceegibNm3SuO/WrVvxwAMPAIDo7wZJi7PjEpF5KZVwqqmBe1kZ3G7ehHNNDZxqa+FYWwunmho41dUBzX9gZTIoASjlctS7uKDOzQ31bm6oc3VFjYcHKn18UOfuDthB0iF1S6i5yGSyVvVdu3YNFy9exKBBg8wWB9m/SZMm4fTp063ub2s8qOp+q1ev1liuLXF1dcU333yDW2+9FXV1dVAqlXjqqafw7bffYt68eQgJCUFpaSkOHjyIPXv2QKFQIDIyEv369dN6Qq7K398f3333HebMmYOGhgY0Njbi4Ycfxpdffom5c+ciODgYpaWliI6Oxu7du9W6NT/11FOYPn26qOcxadKkVpPTNM+ErImbmxtuueUWtW7YgG21YhvinnvuwWuvvYba2looFAosWbIEDz/8MEJCQtTGzv7zn//EnDlz1I79/PPPkZKSgqNHjwJomt1/z549mDRpEkaPHo2goCC4uLjg5s2buH79OhISEnD8+HGUl5cDaLrgIbUOHTpgy5YtGD9+PHJzc6FUKrF69Wp8/vnnmDZtGoYNGybMoltaWorU1FTEx8fj1KlTaGho0Fl2QEAAPv/8c9x9991QKpWora3FokWLMGbMGMycOROBgYEoKCjAnj17hOWdJk+ejPr6euE1IvNhEkpEknOprIRXQQG8CgvhVVgI779uu9+8CfebN+HYxkyw+qh3dkaljw8qfX1xMzAQJV26oCQoCCVduqDay8tmElRbab0rKirChQsX4OHhoTPJPHnypNFJaF5eHurr6xESEmIzrw+ZzqRJk/Dee++1ul9sS+iYMWPg4OCgljQ1l2trxo8fj59++gl33XWXMCY0ISEBCQkJrfYNDQ3F5s2bNSbg2tx+++3YsmULFi9eLEwYdO7cOZ0TyTz77LN4//33RdcxefLkVl1920ooJ0+e3CoJtcX3Tx8hISH48ssv8fe//12YRf3mzZutxoc2d09X5erqiv379+Oxxx7DN998A6Cp+/P+/fuxf//+NutW7QIvpR49euD06dOYP38+Tpw4AQAoLy/H5s2bsXnzZqPiWrJkCQoLC/H0008LEznFxMQIsy+r6tevH3744QcsWbLEwGdCxmASSkQGkzU2wicvDx2zstAxOxsds7Phl50N97+uopqDU10dfAoK4FNQgODLl9Ueq/LyQn5EBAq6dUN+RAQKw8PR+Fd3LntmqpbQ2tpabN26VfjDbsout2fOnMGZM2cAAF27dsW0adNMVhfZhnHjxsHR0VGtNSQ8PBxhYWGijvfy8sLgwYNbtabaahIzf/58nD17Fo8//rjQqqPKxcUFCxYswJo1a9TWZxRr1qxZuHTpEv7xj39g06ZNal1gm8lkMowePRr/+te/MH78eL3Kb57BVfX3SkwS+vrrrwvbbm5urWZFtUdLly7FyJEj8fXXX+PYsWNITU1FeXl5m0t7AYCzszP+85//YPny5Xj77bexd+9enb/dHTt2xOTJk7F48WLMnj1byqehJigoCLGxsdi0aRM++OADnD59WuffroiICEybNg133303xo4dq7PsJ598EoMHD8aTTz6J+Pj4Vo97eHjggQcewLvvvgt3d3djnwoZSKbkYnJkwy5cuKA2tuC1117TumA5Ga9DSQkC0tLQOTUVAWlp8M/KgkMb3WOsSaOjI/K6d0dWv37IiopCSVCQ1bSUenp6Cl2gjOXv74+ioiKDj//73/+u8f4jR47g0qVLavdpallqqxwxWo5BW7hwodpYH1379ujRw+676BGpSktLQ0xMDHJycuDu7o7Q0FCMHz9ebbZQY1RXV+PIkSPIyMjAjRs34OHhgS5dumDcuHHo3LmzJHWQeVRXVyM2NhbXrl1DUVERGhsb4enpiZCQEPTt2xe9evWySM+ToqIixMTEIC8vD8XFxXBwcIC3tze6deuGfv36ITg42KByk5KScOrUKeTn58Pb2xuhoaGYNGmSTawr2/IcNykpSW12bFvHllAi0kyphE9uLoIvXULnlBQEpqXBo6TE0lEZxaGhAcGXLyP48mXc8vvvqPDxQfqQIUgbNgz53boBFpycwBa6m7ZMQAHzxX3jxg2tSShRexcREYGIiAiTle/m5sbeCHbCzc0NU6ZMsXQYrfj7++OOO+6QvNyoqCi1RI6sB5NQIhJ0KC5G8MWLCL50CUGXL6ODyDXJbJVHaSn6HzyI/gcPosLXF6nDhuHKqFEoMfCKq7UwZwcXU8wqyA46RERE9o1JKFE75lBXh6DLlxF2/jxCLl6Ed0GBpUOyGI+SEgzctw8D9+1DXkQELo0di7Rhw9Dg4mKW+m11dlxTTFyhKX5baCkmIiIicZiEErUzHUpKEHb+PMISExF86ZKkM9Xai85paeiclobRv/6Ky6NHI2nKFJQbMLGHpbS13pqUzNUSyiSUiIjIfjAJJbJ3CgUC0tPR9fx5hJ4/D//sbEtHZDOca2rQ/+BB9Dt0COlDhyLh1ltRZAOL2re1lpqUzNkdNzMzE7m5uQgLC0OXLl0kr5eIiIjMg0kokR2SNTaic0oKIs6eRXh8PDqUllo6JJsmVyrR/fRpdD99Gjm9euHMrFnI7d1b0jpsdRykuZLQzMxMXLlyBUDTeohz585FQECA5HUTERGR6TEJJbITssZGBF+6hG5nzyI8IQFuZlyrsz0JunIFQR9+iOu9e+P0HXcgv3t3S4dkUeZKQpsT0GbHjh3D/PnzJa+biIiITI9JKJENc6ivR0hyMrqdPYuuiYlwqaqydEjtRvDlywh+911k9uuH03fcgaKuXY0qz1ZbQk0Rt0KhaHMfXeugcvwoERGRdWMSSmRjHGtrEZqUhG7nziEsMRHOtbWWDqldC7twAWEXLuDyqFE4NXcuqnx8DCqnnC3XRERE1E4wCSWyAU7V1eiamIhuZ88i9MIFm5vRViGXo8zfH2WdOqHSzw9VXl6o8vZGlbc3ajw9UefqinoXF9S7uqLB2RmKv5b9kP3VyubQ0ACnmho4V1fDqaYGrhUV6FBSgg6lpfAoKYFXQQF8c3PhWllpsefY+/hxRJw5g4Rp05Bw221odHa2WCy2TkxLKBEREdkuJqFEVsqlshJd4+PR7dw5hFy8CAczznhqqAZHR5QEBaE4JAQ3QkJQ0qULyjp1QoWfH5QGrCfZ3NFT4eiIelfXNlsZXcvL4ZuTg04ZGQhMS0NgWhrczbhciVNdHYZt344+x47h+MKFSB8yBLCTrqHmTAxttWsyERERicMklMiKuJaVITw+HhFnzyLo8mXIrbhFSCGToTgkBPkRESiIiEBRWBhKAwMNSjalUuPpidzevf83c61SCc+iIoQkJyP0wgUEXbpklu7LHiUluHXdOmRGRSHmrrtsao1RbcyZGBpbF8eEEhERWTcmoUQW5l5aivBz5xBx9iw6X70KuZW2AtW7uCC3Rw/k9eiB/O7dUdi1KxpcXS0dlm4yGco7dcLFCRNwccIEyBsaEHTpErqfPo3w+Hi4VFebtPqwpCQEvf46zsyahcRbb7Vogm5L2BJKRERk35iEEllAh+JiRJw9i25nzyIwLU0Y+2hNGh0cUNCtG6736YPrffuiMDwcCkfb/slQODoiOyoK2VFROPrXzMJ9YmIQdv68yVqdHevrMXLLFvQ8cQKH778fhd26maQeU9OWGJoiYWQSSkREZN9s+4ySyFYoleiYlYWuiYnompCATpmZlo5IozJ/f1wbMADZ/foht2dPNLi4WDokk1E4OSFz4EBkDhwI95IS9I6NRd+jR+FRUmKS+vxycnDHu+8iYdo0nJk5EwonJ5PUYw+YhBIREdk3JqFEJiKvr0fQlSvompCAromJJktujKGQy5HXoweuDRiAzP79cTMw0G4m0tFHla8vzs2cifjp0xFx5gwG7t0L/6wsyeuRKxQYvHs3whITEb10KW6EhUleh6nY0phQIiIism5MQokk1KGkBMHJyQhLSkLIhQtWuYZnjbs7Mv9KOrMjI1Hn7m7pkKyG0sEBqSNGIHX4cHS5cgWDd+9GyMWLktfT8fp1zHvnHZydMQPnZsywibGiTEKJiIhIKkxCiYzgWFuLLlevIiQ5GcHJyfDLzbV0SBpVeXoiY/BgpA8ejJzevW0i6bEomUyYZbfz1asY9scfCLpyRdIq5AoFhu3YgdALF3DwoYdsdgZdjgklIiIifTEJJdKDQ10dAtLT0TklBUGXL6NzaqrVrt9Z4ePTlHgOGYK8Hj2glMstHZJNyuvZEzuefRZBly9j+NatCExPl7T8wPR0LHjzTRy5916kDR8uadnGqqurQ0xMDAoLCxEcHGy2es25JikRERGZH5NQIh1cy8rQ6do1dE5JQZerV9EpIwMOjY2WDkurMn9/pP+VeBaEhwNMPKUhkyGnTx9se/55dD99GiN+/x2excWSFe9cU4Op//kPLl28iNjFi61mQqjk5GRcvXoVAFBaWqpxH1MkjPq0hGqqX87PPRERkVVjEkoEAEol3MrK4Hf9OjplZKDTtWvwz8yUNNEwldLAQKQPGYK0IUNwIzS0XU4sZDYyGVKHD0fGwIHov38/Bu3ZI+m43z4xMeickoL9y5ejODRUsnINdfLkyTb3qaiokLxeY5NQGb8DREREVo1JKLUfSiVcKivhUVwMj+JieBUWwjc3Fz65ufDNy4NLVZWlIxTtRkiI0OJZ0qULE08za3R2RvyMGbg8ZgxG//orup8+LVnZPvn5mLt6NY7dfTeujB4tWbm2hC2hRERE9o1JKNmVPkeOoGeHDnCsrYVrZSVcKivhWlEB14oKdCgthZMVzlYrVkHXrkgfMgTpgwejLDDQ0uEQgGpvbxxYvhyXR43C2J9+gldRkSTlOtbXY+KGDQhMS0PM4sXtbk1RJqFERET2jUko2ZX+hw6hn6WDkFBeRISQeFbY6Oyp7UF2VBQ2vfYahuzciYF790Iu0TjJvkePomNWFvY9/DAq/fwkKdMWMAklIiKyb0xCiayIUiZDbs+eTV1tBw9Gla+vpUMikRqdnXFq3jykDRuGievXo2N2tiTlBmRkYMFbb+HAQw/hemSkJGVaO44JJSIism9MQoksTCGXI6d3b6QPGYKMQYNQ7eVl6ZDICDdCQ7HlxRcxZMcODPrzT0laRV0rKzHjk09wYt48JN52m92PAWZLKBERkX1jEkpkAXWursiKikLGwIHI7tcPtR06WDokkpDC0RGn587FtUGDMHH9evjm5hpdpkypxC2//w6/nBwcvfdeNNrxOFEmoURERPaNSSiRmZT7+eHawIG4NnAgcnv2hMKRXz97Vxgejt9ffhkjf/sNUYcOSVJmr7g4eOfnY++jj6La21uSMq2NPmuPmmKdUkvLyspCdXU1unXrBic7vthARETtF8+CiUxEIZcjPyIC2f36IWPgQJQEBdl9N0pbcPfdd0OpVOKnn34yS32NTk6IXbIE1/v2xYQNG+BaWWl0mYHp6Zj3zjv487HHcCMsTIIorYs+LaH67GsLzp07h1OnTgEAEhMTsWDBAo5xJSIiu8MklEhCNzt1QnZkJLIjI5HTuzfq3dzMWn9YWBgiIiIQHR1t1nptiYeHh0XqvTZwIDa/8gomf/stgq5cMbo8j5ISzHnvPUQvXYr0oUMliNB6tOcktDkBBYDi4mJkZmaia9euFoyIiIhIekxCiYxQ4eODvJ49kdurF7L79kV5p04WjScsLMws3fe8vb2hVCpRVlZm8rrsSZWvL3Y+8wwG7d6Nodu3Q25kAuVUV4db163DiXnzkDBtmt20tBubhNpTYlpYWMgklIiI7A6TUCI93AwIQG7Pnsjt2RN5PXuivGNHqzrxl8lkZum6FxAQgEmTJmHdunUmr8tUOnbsiBs3bpi9XqVcjnMzZyK/e3dM+c9/4FZebnSZI7dsgeeNG4hZsgRKBwcJorSs9twSSkRE1B4wCSXSotzPD4Xh4Sjs2hVFXbuiKCzM6mexNVcSag/Gjh2L3bt3o66uziL15/Tpg99ffhlTv/oKgenpRpcXeeQIPIqLsX/5cjS4ukoQofkUFxcjNzcXgYGB8Pf3R21trehj7T0J5feZiIjsEZNQavcqvb1R0qULSrt0Ef4vDgpCrYXGDhrLHCet9nBiHBgYiMWLFyMjIwNHjx61SAyVvr7YvmoVRm3ahH4SjOMNS0rC7A8+wJ4nnrCZmXOLioqwdetWKBQKyOVyzJkzB9XV1aKPt/fuuERERPaISSjZJYVcjlp396Z/HTqgxsMDNR4eqPTxQUXHjqjw8xP+Nbi4WDpcSdlDgmgubm5u8Pf3t2gMCkdHxNx1F/IjIjB+40Y41tcbVV6nzEzM/fe/sefJJ5tmZLZycXFxwjIrCoUCW7duRf/+/Y0qMy8vT4rQrAK/z0REZI+YhJJd+e3llxETEgK008XqzdUdlyfG0ksZORIlXbpg2uefw6OkxKiyPIuLMefdd7H3sceQ26uX3scrlUqzvcc5OTmt7jt//rzo4zWtE6qpTEvKzMzEuXPn4OrqijFjxug1Q7M+XZOJiIhsRfs8Uye7pXB0bLcJKMAxobbuRlgYtrz4IvK7dTO6LJfqaty+Zg26xsfrfawpurMqlUrEx8dj69atiI2NRUNDg+R16JKVlYVTp06ZvZW0rq4O+/btQ35+Pq5du4aYmBit+2p63a9IsJwPERGRtWm/Z+tEdspaW0IjIyPRoUMHdO/eHaNGjTJBVIaxtvGD1d7e2LFyJa7ccovRZTk2NODWL79Ebx2JjyZKpRL1RnYLbun69es4efIkCgoKkJSUhOTkZEnKFfP+ZWZmYvfu3Th37hy2b9+OwsJCSeoW48qVK2hsbBS2r127pnVfTc+FLaFERGSPmIQS2RFtLaF+fn4WiEbd2LFjcc8992DKlCno37+/xcdiWrNGJydEL12KuAULoDTyooJcqcSE77/HwD//FH2MKZLQI0eOqG3HxcVJUu65c+fa3CdaZdInpVKpszVSKvX19Thy5AhiY2NFH6OpazEREZE9YhJKZGc0JaEdO3a0QCRkFJkMibfdhj2PP456CSbPGvn77xi5eTMgouVQqVRKvnRNRUWFpOUBQFVVlajxnzU1NWrbBQUFksfS0oULF3Dp0iW9jrG2VnkiIiJTYRJKZEe0tYRK3UW3eQkNR0fObWZqWf37449Vq1Dl5WV0WQP37cOEDRsgU+keqokpklBTuHr1apv7VFZWmiGS1k6ePKn3MUxCiYiovWASSmRnzJGENo9xs6axnYayhRP/G2Fh2PrCCyju0sXosnofP45bv/oKDjqSTKVSqTaO0VAnT55EXFwcqqqqjC5Lk7ZizMvLw6+//mqSuk2B3XGJiKi9YBJKZEekagnt3bu3zsflf81A3KNHD3SRIDGitlV07Ig//u//cL2N90aM8IQETF+7Fo4tuqk2kyoJjY+PR2JiInbu3Gl0WZqUl5frfPzYsWOSj201JVu4IEJERCQFJqFEdkaKJDQ4OFhUHU5OTpg1axbuvfdeDBs2TK86rIWxJ/7m7JJc5+6O3StW4OrIkUaXFXz5MmZ88gmc/uparSorKwsHDhwwuo5mJUaue6rN5cuXdT5eXFys9THOOktERGQ5TEKJ7IhMJhNaKVveL9awYcMQFhamcx/VOmQyGdzd3dvt+FBzr3epcHTEoWXLcHbGDKPL6pyailkffgiXFpMGHTp0yCxJWmlpqcnr0Mbc75sYbAklIqL2gkkoUTugTxI6ZMgQODs7612eOdYnpb/IZDh9xx04dtddRi/h0ikzE7M/+ABuZWUSBSeeJcdr8vNKRERkOUxCieyIsS2hPj4+wm0vPWdj1VXH2LFj9SrLnGy59Sl54kQcePBBNDo4GFWOX04OZr//PjqYqNusubm5uVk6BCIiItKBSShRO2BIoqUrqdSnFSkyMhK9evXSu35boCnhN7e04cOx54knjF5L1Cc/H7Pffx+eRUUSRWY5tnphwVbjJiIi0pflz6CISDLaWkL1Ob6ZvuVom4V07NixVj1etK0TfycnJ62PTZ48WepwBIMGDYKnp6eofa9HRmLHM8+gpkMHo+r0KirC7Pfeg3d+vlHlkG5MNomIqL1jEkpEAtUkVN8xc9evX5c6HFFM2RrZr18/LFq0SOvjXbt2NVnd3t7eCA0NFb1/Ybdu+GPVKlT4+hpVr0dpKWa//z58cnKMKoe00ycJdXd3N2EkRERElsEklMiOWLIl1FKMjdNBx3jKwMBAdNDSuujv76/zWGPJZDJUa1g+RZfSoCBs+7//Q2lgoFF1u5eVYdaHH9psIiomybPG1khNMamO0yYiIrIXtnGWSUSiGDvjp9jjrWlmUWOT0ICAAK2P6Xqepk7SZTKZQa9zpZ8f/njuORSFhBhVv3t5OWZ/+CF8bTARtfYk1BoTYCIiInNiEkpkZ6RKjookmKCmT58+EkSim7HPt3mdU3PX2xZjWrVrPD2x49lnURAeblQMbuXlmPXhh/C1UFdrU2ISSkREZDlMQonsjKbWM7EnvVK3cOq7zIshpEgGg4KCJIhEWjKZzKhkpa5DB+x8+mnk9uhhVBxu5eWY9dFHdpeIWmMSqul+JqxERGSPrHfKShLtwoULSExMRE5ODhwcHBAcHIxhw4ahW7duZo1DoVAgNjYWqampyM3Nhbe3N4KDgzFu3Dj4GjlZComjqwunmKTGmCRUU9m6EkSFQqF3Hbfeeiv27dsnug6x2hrb6e/v36pl2NTJgbFJKADUu7lh11NPYdrnnyPk4kWDy2luEd3x7LMoCQ42KiZzsPbETYr4lEolkpOTcfPmTfTu3RsdO3aUIDIiIiLzYBJqwzZv3ow333wTiYmJGh8fPXo03n77bUycONGkcTQ0NGD16tX4/PPPkaNh/JizszNmz56N999/H+FGdg+kthnTEio1XQliXV2d6HJcXFwwdepUjeM3pWi9bSsJnTNnDr799lu1+8yRhEqh0dkZfz7+OKauW4euWn4rxHCrqMCsDz/EzmeeQbGR401Nrb6+HleuXNG5j6b3r6GhAXl5efD09IS3t7epwtOLts9ZfHw8Tp06BQC4ePEi7r77bri5uZkzNCIiIoOxO64NamxsxLJly7Bw4UKtCSgAxMbGYsqUKXjllVdMFkt+fj5GjRqFf/zjHxoTUKAp2fjtt98wcOBAbNu2zWSxUBNdLaGGHmvofrqSUH2SuHvuuQfBwcEa65WiJVTbOqbN9Wl63BZaQps1Ojlh7yOPIHXoUKPKaU5E/bKzJYnLlA4fPqzz8ZavbUNDA37//Xfs2rULmzZtQmZmpsli06c7rjbNCSjQ9DchISHB6LiIiIjMhUmoDXrmmWewfv16Ydvd3R3Lly/HZ599ho8++ghLliyBk5MTgKYuj2+99RY++ugjyeOorq7GHXfcgdOnTwv3BQcH4/nnn8e6devwzjvvYPz48cJjZWVlWLJkCY4fPy55LO3FyJEjMWfOHJ37GNMSqu+SIG3RlayOGjVKdDnaksS26hDL09NT72NsKQkFAKWDAw4++CCu3HKLUeW4VlY2JaJZWRJFZhptvXYtH7906RJKS0sBNP1uHjlyxFShmeSzU1xcLHmZREREpsLuuDZm586d+PTTT4XtyMhI7Nmzp9Wi9gkJCZgxY4bQOrlq1SpMnToV/fv3lyyWV199FSdOnBC277zzTvz3v/+Fi4uLcN8LL7yAH3/8EUuXLkV9fT1qamqwePFiXLlyBa6urpLF0l506NABnTt31rmPMUlZWVmZwcfqKywsDBEREUhLSxN9jKbnJkUS2rt3b8TExOh1jK0loUBTIhr9wANodHRE32PHDC7HtbISsz76CNtXrrSJMaJiXL16VW27qqrKZHWZ4rNjK+v6EhERAWwJtSkKhQIvvfSSsO3u7o7t27e3SkABYODAgdi0aZNwYtLyWGNlZ2dj7dq1wvaAAQPw448/qiWgze6++27885//FLazsrLw2WefSRZLe9LWZD7aJiZSKpVWtbYn0NS6OXXqVCxfvhx9+/YVdYypklBHR0fceuuteh1j6iRULpebpg65HEfvuQcXx441qhjXykrM/OgjeOflSRSYebV8bQ2ZKEuqutu6Xwxr+34TERHpwiTUhhw4cEBtDOiKFSsQERGhdf/Ro0dj4cKFwvaOHTuQkpIiSSxffPEFampqhO13331X6AKsyapVqxCs0mLy8ccfSxJHeyPmJNWaklApx6GaWqdOnfTa3xyTPZmsjuZEdNw4o4px/2vWXK/8fIkCM5+Wr621zqgrNi62hBIRkS3hXy0bsmXLFrXthx56qM1jli9frra9detWyWPp2rUrbrvtNp37Ozo6YtmyZcJ2dna22lhSEsfQllCpST0DrzHrmFoqibXZltD/VYCjd9+NZJVx24bocPMmZn30ETxbLGFj7dgSSkREZDlMQm3Izp07hdvdu3dH9+7d2zxm3LhxamMvd+zYYXQc6enpuKiy5uDUqVNFnQC17O4oRSzmMNbIbotSspYkVJO2ljnRxRpaofR93awhZqPJ5Th21124MGGCUcV4lJRg5ocfooMNT45jzvdTn7rYEkpERPaIf7VsRGlpqdqSAbeInOHS2dkZQ1WWZdC1pItYLZcCEBvLiBEj1GY5lSIWU5PL5YiMjLR0GAIxSagmUnfH1VTWkCFDDC7PWltCdZVt8y2h/6sIMRIkol43bmDWhx/CvaREosBMy1a644rFJJSIiGwJ/2rZCNWWRwDo0aOH6GNVW0xLSkqQZ+REIobG4urqiqCgIGE7OTnZqDjao8bGRp2Pm6sVVFOrp6+vr1nqbsleu+Oaqw4AgEwmSSLqXViIWR99BLebNyUKzHQs2R3XFNgdl4iIbAmTUBvRchmLsLAw0ce23FefJTFMGYuxcZhDc+uCtZzgtZXwm6sl1Jiut5rY4lg4u2kJbdaciE6caFQxPvn5mPnxx3AtL5cmLhOxZEuosWNCNe3HllAiIrIlXCfURrRcv9HPz0/0sS1bqMqNPDmUKpb6+nrU1tZqXNbFUAUFBQYf6+HhAS8vL8likdqgQYPg4eFh8PFSnmRrSkKNSQatoSuktY0JNcU6oSIqRcySJVACiIqONrgYv5wczPj4Y+x89lnUduggWXhSssaJicTuqylWa7lQRkREJAaTUBtRUVGhtq062VBb3NzcdJZl6VikTEK/+OILg4+dNWsWZs+erXafVK0LLi4uqK2tNfj4ZcuW6VwCp5multD6+nqD62/JmlpCLUXfmB0cHNrsTq3KIkloU8WIXbIEcoUCkUeOGFyMf3Z2UyL6zDOoc3eXMEBpZGRkoHPnzsJ2Q0ODBaNpoun9FpuEsiWUiIhsCf9q2QjVNTmBpgmHxGqZ5FVXV9tNLKbW/NyMbWUQk0BKcby5WkN69+4tqm6x8Vhrd1wxExOJvQijz/ekuW6LJecyGY7ddRcujx5tVDGdMjNx+yefwKnFb4Y1aDkxmpQXadpi7Puq6WIGW0KJiMiWMAm1ES1PdOvq6kQf27IFrmVrpC3HYmqqs/kaw1zJhK6WUKkMGTLEqG7BmlhrEqpLx44dATQtgySGvnFaNAkFALkcR+67D1dHjDCqmMD0dEz/9FM4GtETwJSSk5OxZ88eScuU8n1jSygREdkjdse1ES1P+lu2RurSsrXR2ARCUyxiW4OkjqWlRx99FAEBAQYdqymW5hZIe2hl6Ny5s9EzIz/44INau+Ia8xr17NkT6enpBh9vDqNHj0ZsbKyw3bw0Ubdu3dCnTx9cunRJ5/E2l4QCUMrliF66FPLGRnQ/c8bgcrqkpOC2zz/Hn48/jkY9W4RNKTs7G8eOHZO83LbeN2PfVyahRERk65iE2oiWE+aU6LEWX2lpqdq2p6en5LH4+PjoHYuTk5Ok40EBICAgQG0ZGGMZ240WAHx8fPRqLTaGrpZQKcZxSj0WtFnXrl0NTpKlukDQVjn9+vUDABQVFaF79+5qE3L16NHDJEmoNVA6OODggw9C3tiIbvHxBpcTcukSbv3qK+x95BEoJPheSSHaiMmXpFZRUYEdO3a0ul9TwsruuEREZOt46dRGdOvWTW07MzNT9LHXrl1T246IiLCKWIyNwxyak1B/f3+1+/WZRXf8+PGSxqSLJU9EjalbJpNh1qxZmDdvnlnr1beeqKgoTJw4EaGhoWqPSXnhQ5WlW0KbKR0ccOChh5AZFWVUOWFJSZjyn/9ApscETaZUVVVlknINaQk9deqUxh4uxcXFSElJUbtP035sCSUiIlvCv1o2IjIyUm275UmJLqmpqcJtX19ftRkhzRlLTU0NcnJytJZjjZqXlBk7dqxasiMmge7YsSPmzJmDzp07my2Z6KBlOQyx64QOHDhQ6pBEk8vl6NSpk8226LS8ONOSvkmC2dcJbYPCyQn7HnkE2X37GlVOt/h4TP72W8jMuCSKuRnyvl29elXrYwcPHsQZle7QmpJQa/qsEBERtYVJqI3w8fFBWFiYsH38+HFRx9XV1amdvPTv39/oWFomKmJjOXnypNoyCFLEYkpyuVx4rh07dsStt96KsLAwDBo0CEOHDm3z+KFDhwoJvzlOECMjI43u3tw82Y4hjJkdV5W+r5VULUDGJr9jx45FRESE1jHJLdfXlZLYyZGM1ejkhD8feww5vXoZVU7306cxYcMGwI4TUV0M+T1Q/R3XNCaUSSgREdkSJqE2ZMaMGcLt1NRUpKWltXnM0aNH1a6az5o1y+g4midiabZ//35RJ0D79u1T25YiFlMYOHAgunfvjtmzZ6sldeHh4Zg+fTpGjBghamykalJjjhPEsWPHan1MbEuoMSzVgmnKboj6PCc3NzdMnToVc+fOlazuUaNGtblfSEgI+hrZOqmPRmdn7Hn8ceR1725UOb3i4jDuxx8BK0+eGhoaEBcXh7179yI7O1vUMab+vjPhJCIiW8ck1Ia0HC/39ddft3lMy32kOkFWjeXatWvYu3evzv0bGhrw3XffCdvBwcEYNmyYJLFIbeTIkZgyZQoCAwMlK9NWThpVk66uXbtaMBLxbLX7bltkMhm6dOmicU3WlvuZW4OrK3Y/+STy2+iC3Ja+R49i1K+/WnUievr0aSQmJiIjIwO7du1CZWUllEol4uLisH79emzbtg0VFRVqx5h6dlxzlUlERGQqTEJtyNSpUxGlMjHIp59+qnNZi+PHj2PTpk3C9syZM9GzZ0+N+2ZkZEAmkwn/Jk6cqDOWRx99VK2V8P/+7/90Lvb+/vvv4/r168L2008/bbfJQzPV56ep+5w5iW0JVd1n5MiRaq2Md9xxh+hjzclWPkf6XtSQyWSQy+WYMGEClixZonM/S6h3c8PuFStQqDJMwBD9Dx7EiN9/t9pENDExUW37zJkzKCgoQGJiIurq6pCfn494PWcNNjZh1HQ8k1AiIrIlTEJtiFwux7/+9S9hu7KyErNnz0ZWVlarfRMTE7Fw4UIh+ZHL5Xj77bcliyU0NBSPP/64Wn333HMPajUsSP/TTz/htddeE7aDg4PxxBNPSBaLLbCVE0TVhMbHxweLFi3ChAkTcOedd0raMiwlW5kV1NvbW6/9Vd8LMc8xysiZaw1R5+6OXU89hRvBwUaVM2jvXgzVsDyJNSorK2s1Dj45OVlt2xLfd1v5jSEiIgK4TqjNmT17Nh577DF8/vnnAIALFy6gb9++uOeeezBo0CDU19cjLi4OmzdvVmuZXL16teQzn7755ps4cuQITp8+DQDYtGkTYmNjcd999yEiIgIlJSXYtWsXDh8+LBzj4uKCn3/+Ga6urpLGYu0sfYKoVCpFJTItW9W8vLxEL0fT3seESl2WvknokCFDkJSUpHdcxqr18MCup5/GrA8+gK8B67w2G7pjBxodHRF/++0SRic9pVLZZs8GS4wJtfRvDBERkT6YhNqgTz75BOXl5di4cSOAphbRdevWadxXJpPhhRdewKpVqySPw93dHdu3b8fMmTNx9uxZAMD169fx73//W+P+np6e2LBhg84JdOyJNXXHFctWuraqkipma5u4SWwS2ryfJS/sVHt5Yeczz2D2++/Du7DQ4HJGbN2KBicnJE2dKmF00pLiu8yEkVQplUpcuHABVVVViIyMhIeHh6VDIiIyOdvox0ZqHBwc8P333+OXX37R2QXvlltuwf79+9W68Eqtc+fOiIuLwz//+U+t6486Oztj3rx5SEhIaDW5kj1zc3OzdAgCc8yOaym28rxM3RJqaVU+Ptjx7LMoN2KZHwAYvWkT+qr0nrA2CoWizffS1BMTWUtLaF5eHnJzc81er72JiYlBbGws4uPj8fvvv6OxsdHSIRERmRxbQm3YokWLsGjRIiQlJSExMRE5OTlwcHBAUFAQhg8fjoiICNFlhYeHG3wS4+TkhFdeeQUvvfQSYmNjkZKSgvz8fHh6eiIkJATjxo2Dn5+fQWXbKl9fX/j7+1usfi8vL7V1Kfv06YOUlJQ2j5M6ofPx8ZG0PE1kMhl8fX1RUlJi8rqMoS2RdHV1VVtGqZm+LaHWoNLPDzv+ahH1KC01uJxxP/6IRkdHXBkzRrrgJKJQKNq8KGCqhLC5bmtIQo8fP47z588DaPp9GT9+vFnrt0YKhQLXrl2Dk5MTQkJCRB+jOqa4pqYG+fn5CAoKMlWYRERWgUmoHYiKirLIpCQtOTg4YNy4cRg3bpylQ7GogQMHYsCAARaNYdy4cdi7dy/q6+vRuXNnhIeHmyUJjYyMFE6oAgICEBAQYFR5YjSvp3no0CHU19ejoaHB4HJMSVv5w4cPx9GjR3Ueawstoc3KO3Vq6pr7wQdwV7kQoq8JGzei0ckJqSNGSBid8RQKhah1gnUxNGEUkwCramxsREJCAqqrqxEVFaX35FjaNDQ0CAkoAFy6dAnDhw+3qt4flrBnzx5hLdlBgwZhhIjPrqZZ5cvKypiEEpHdYxJK7Y6TkxN69uyJhoYG5OXlqbUYGqtr164YOXKkZOUZKjg4GIsXL0Z1dTV8fX21tp60ZGwiNmbMGHTu3Bl1dXXo1auXUWWJJZPJEBISgvvuuw8AtI6PBiDqpNBUtL222iZ+ssWW0GY3O3fGzqefxuwPPoBrZaVBZciUSkz67jsoHB2RPmSIxBEaTsz3yFStks3lim0JjY2NxcWLFwEAV69exX333Wd0Ag1A4yzoN2/ebNdJaHFxsZCAAkB8fLyo3xuODyai9sp2Lq8TScTNzQ1jx47FxIkTJe8uqi0hsERXNXd3d3Ts2NGsrWgymQw9evRAZGQkHB3Nc41L7PqnQUFB6NOnjxki0ly/tjj1vd9WlAQHY+fTT6PW3d3gMuQKBSb/5z8Ia7FWpyVZckzoL7/8goKCAtFlNiegAFBXV4crV64YVG9Lmn5T2nsydePGDYOO0/S62fp3n4hIDCahRGYQEREheoyQqZijJdQSwsLC2txn+fLlmDVrlt4zyEo5866+FwPE1m3N79mNsDDsWrECdUbM3OvQ2Ihbv/oKwS3W4rQUhUKhscu3pnG9UquqqkJsbKzBY0LLy8tRV1eHEydOIDY2FpUGtlJrYiszgJuKod/D9p68E1H7xSSU2h1LnLQ7OztjxowZeOihhzB69Git+02dOhUuLi4miUHMSaKvr69J6pbSxIkThfcwMDAQoaGhFo6obVK0hNpqV8fCbt2w+8knUe/sbHAZDg0NmPb55+giUUueMRQKhcaEU7Vbvylnx9WnJVST/fv3IyEhAUlJSdixY4dBMeRpWA+WyVRrhnbdtuYLS0REUmESSu2OJf/At9UaFhERYbL4VMcraeNuRNdJc+nVqxcWLFiAmTNnYvbs2TZzwmZsEhoZGanX8dYkv0cP/Pn442hwcjK4DMf6ekxfuxaBqakSRqY/bRdzZDIZampqcOjQIWzdutWkMRia8DU2Nqr9Dty8eVNrUqtLbGxsq/vYEtr6e2jJ8cNERNaOSSiRhKRICGwhqbA0Pz8/BAcH28yssVJ0x+3Xr5+UIZldTp8+2PvII2g0YqywU20tbv/kE/hnZEgXmJ50JaGnTp3C1atXUV1drbMMUyQely5danMfTfW2jLWurg5btmzB119/jdjYWI3PV1M5TEINS0I1vW78G0BE7YFtnMERtSO22u3SWthCa64qsSecrq6uGidWsqUT1uyoKOxfvhwKIy4eONfUYMaaNfDLypIwMvEUCoXW5EJ1IiBT0lZ/Y2Oj0WWtX78ehYWFUCqVSEpKQmZmpqhySo1YF9ZesSWUiEg7JqHU7pjypF1M2W0tkTBo0CC17a5duxoTUrszYcIEte1Ro0YZXJaUExNJMQuukxHdWa3FtUGDcOChh6Aw4rV1rarCzDVr4JOTI2Fk4mhLGvR5H02VeLQ10VBbrZqaWnAPHDig85hmLbv1KhQKHD9+HD/99BMOHjyIuro6nbHZOk09HcS0DnNMKBG1V0xCqd2x9B/4Hj166ExEu3fvji5dugBoSjr69+9vrtDsQkhICEaMGIGAgABERUWhb9++lg5JMpo+u5b+PBsifehQRC9dCqURsbuVl2Pmxx/DKz9fwsjUpaSktLpPV3dcsVomHvompYYmsW3Nqpuv4bUU27raoUMHte3MzEycP38e5eXlSElJEdVduD1iSygRtVfmWciPiAROTk6YPHky9u3bp/FxmUyGWbNmoaSkBO7u7novK9LeyWQyDBo0qFWLsiXpSlBsMYmUQsott8ChoQETNm40uIwON29i1kcfYfuqVSj395cwuiYHDx5sdZ9SqdSYOBi6TmRzmabcX9dxtbW1wm1jZuZu2UrfsgU1Li4OAwYMMLh8a6fpe2xoSygRUXvAllBqd1RPFiyVAHTr1q1Vy4EqmUwGPz8/JqDtgLGfQVtOYi+PHYuYJUuMKsOjpAQzP/oIHUpKJIqqbZoSh0OHDklaniloqufo0aNCK2VbQwV0ldOSIeNT7Y2hY0KZmBJRe8AklNodS48JJetkyhM/KceW2psLkybh+J13GlWGV1ERZn74Idxu3pQoKt2MnQnWVN1x2/p8XL58WeP9x48fR2NjI5MfI3CJFiIi/TAJJbIQe0wobJmmViBdrdX64Hut2/lbb8WpOXOMKsOnoAAzP/oIruXlEkWlnbFLAxmbhIotV6z6+nrcvHmTCZERpExC+T4QUXvAJJTaHbaEkiaOjo6IiIgQtjt37gxfX18LRiSOvXzmzs2cibO3325UGX65uZixZg1c2pgl1lg9e/aUtDypWkKrqqoMjqGmpqbdr/UpNXMnoXV1dYiJicH+/ftRVFRkUBlERObCJJTaHXs5aZeaPSz/YazJkydj7NixGDVqFGbMmCFZubqWaNG3HDH32arTd9yBxKlTjSrDPysLt3/yCZw0LDciFWdnZ6OON1VL6NmzZ406ni1whjO0JVTKxP/o0aO4cOEC0tLSsH37djQ0NEhWNhGR1JiEEhEAYOLEiZYOweLkcjkiIyPRv39/ODpKN3m4TCbjCb4YMhni7rwTF1qs9aqvgIwM3P7pp3CsqZEoMNOSqiU0Ozvb4BhkMplRCRE/361JOYuxGKmpqcLt+vp6XL161aByiIjMgUkotTtStRy5u7tLUo4lTZ48Gb169cKECRPQrVs3S4dDBMhkiFmyBJfGjDGqmM6pqZj+2WdwqKuTKLD/MTbhstQ6oW2VKXbW2xobSe7NydCWUFMypns2EZGpMQklMpCmpM2YBestoUePHpg4cSJ69+5t6VAEnTp1Utu2h2TflLPj2lN3XIFcjqP33ourI0YYVUzQlSu47YsvIK+vlygw07CG3wJAXNdQbTPs2oOcnBwkJSWhoqJC72N1JaFlZWXIyckR3T3W0hNVERGZA5NQanekWifULk/+rcCYMWPUXlt76SasbUZVY8fi2uvnUCmXI3rpUqQNGWJUOaHJybh13TrIrWh8nNQtqVLUIbYl9NixY3qVq6qyshKxsbE4efIk6kzQQm2MlJQU7NixA7Gxsdi8eTOqJRhTrFQqkZWVhU2bNmHHjh3YunVrq0TUlLPjMgklImvGJJRIQrbWEmqNAgICMGfOHAwdOhQzZ85ESEiIpUMymkwmQ2BgoMbHpBx7am+UDg448NBDuDZggFHldE1MxORvvoGssVGauCT+7uo7FtMUSeixY8dw7tw5vY7R1/bt25GUlIT4+HgcOHDApHXp6+DBg8Lturo6xMfHG12mUqnE4cOH0fjX5664uNis4zT5N4aIrBmTUGp3pGo5apTohNZcXFxcLB2CaIGBgRg6dCiCg4MtHYpktCWhMpkM4eHhosqw11ZPXZQODtj3978jKzLSqHIizp7FxPXrIbOCZUiMTQ5Onz4tUST/c/PmTaOW9RDznMrKyoTbWVlZVr0kTFZWltFlKJXKVuMyxSShTB6JqD1gEkrtjlQn8sbMRAmY/0SjT58+Zq2P/qetJVq0ddUVW7a9Uzg5Ye+jjyKnVy+jyul58iTGf/+90YmopVtCxWAiY15iu9WK+a6zOy4RtQdMQsmuTDByaQd9aDpxtOYr+3379lXb5rqg5tOcKGo7AeXJYtsanZ2x5/HHkde9u1Hl9D5+vKlF1II9GczxfksxptHUrPlzL0VsYpJQU74G1vz6EhExCSW7IuYqsylnKtXnj765TxC8vLzQr18/AE3jEM2ZsFMTYz979jA7blRUFLobmEg2uLpi95NPokBk92Vtep44gUnffWdwImrpJVrEuHTpkuRl6lJdXY1z584hOTnZZBfjGhoakJ6ejoKCApOULzVN76uY7ytbQomoPeCMGGRXzNkSaY3rwrVlzJgxGDRoEBwcHODq6mrpcNoNBwcHrY/JZDKr+Nw4OzsjICDA6G7mYvTo0QOpqakGHVvv5obdK1Zg5ocfwt+IWHucOgV5YyMOPvggFHpODmXs70xmZiYaGxvRvXt3ODo6muT9N3evDNWxjsXFxaKO0fW88/LykJycDC8vLwwePBhyuRzbtm3DjRs3AABjx45FpJHjhKXE7rhERPphEkp2RcyJlylbQq25O26zDh06WDqEdkdXEgoAHh4eBpdt7Od51KhR8Pb2hp+fHzp06IDLly/jyJEjRpWpi0wmQ2hoKFxcXFBbW2tQGbUdOmDX009j1gcfwC831+BYIs6ehbyxEfuXL4dCj+7pxn7PU1JSkJKSgqSkJCxYsECyZEF1jV1LtpAnJycbdXx1dTV27NghvM4NDQ0IDg4WElCgaTZfa0pCNTE0CSUiag/4a0h2xdJJoDV3xyXLaasldNCgQWr3RUVFad1Xaq6urggLC4OHhwdkMhn69Olj0hNlmUwGuVyO22+/3ahyajw9sfOZZ1AaEGBUOeEJCbjtyy/hUF8v+hipZsa+ceMGsrOzTfJbYGvdtFUlJCSo/ZYnJiYi14iLDZZizS2hFRUVyMzMtImxw0Rkn5iEkl3RtyXUmBM1W+yOS5bRVkuou7s7ZsyYgbCwMERFRWH48OGiy1b9HBrSomrucabNZQcEBGDs2LFGlVXt7Y2dzz6LMn9/o8oJS0rCbZ9/Doe6OqPKMURBQUG7TUK1Pe+SkpJW92maSM2afm8N7Y4r9jipYgKAoqIibN68GXv27MHmzZtRXl4uSX1ERPpgEkp2Rd8ktOWMsT4+PqLrMrY7rjWdQJFptZWEAkBISAimT5+O0aNHGzxzsS1MNqX6venVqxciIyPh6+uLXgYuv1Lp64sdzzyDCl9fo+IKTU7G9LVr4Siii7DUPS5MkXTYchKq6fV1dnZudZ+h3bnFMNXsuOZ8X7Q9h+PHj6Purwsu1dXVOHPmjNliIiJqxiSU7Iq+J4fBwcEICwsD0HSSY2zLjLkSy5YnMl5eXmaplwwjJgk1lOpnITg4GKNGjZK0TFNydHTE2LFjsXDhQqPirvD3x45nnkGlt7dR8QRfvozpn34Kpza6KEr5PVcqle22JVQbTa+HuZNQfUnZomnqvyMtuzZfuXLFpPUREWnCJJTsSpcuXdS2Nc0A27I77vTp07FkyRLcddddCAoKEl2XJZdoGT9+vNq2LbSAtWeOOmZfNTZZaHnhRd/lT/St3xTLzEhRbllgIHY8+6zRiWjQ1auY+fHHcKmo0LqP1EmCKZIOW1gHWNvz1nS/pgs5lkxCFQoF6urqdL53lp6jgIjImjEJJbvi4uKCoUOHAmg6CRs3blyrfTSd7Hp5ecHFxcXo+vU56TBmltrevXtj9OjR6N69O6ZMmdIq+Sbr0tbERGJVVVW1uq+oqMigmHTRFZO1JqEAcLNzZ2xfudLorrkBGRmY/f77cC8tNTomMUzRHdeYGZctTdPkPZpeo4aGBnOE00p1dTW2bduG9evXY9u2bUZN7iNVCyqHdxCRrWESSnZn6NChWLp0Ke69915069bNZPUYe/LQsuvviBEj9Ko/KioKU6ZM0bvli8yvOQk1x4mivjPb6jsxkTUnoUOGDEFZYCC2r1yJcj8/o8ryy83FnPfeg2dhYavHpGzhUigUJvlc2EJSoi1GsUloWlqa5DGJkZycjMK/PhcFBQW4ePGixvgM/ZwwCSWi9oBJKNklZ2dnrd3RpBorZWwS2qVLF4waNQoBAQGIjIzUuiwH2T6pWkLNOVbTVEyZhDb3Lijv1AnbV640etZcr6IizHnvPfjm5BgdmzZSjglVKpWoqKhAbW2tTSclYid9M3Y9UkO1nMjn9OnTFomDiMiWMQklMpCmrmD6XPmWyWTo378/5s6di7Fjx5r0xJ/My69FK5yumV+lTkKlWONT1+fYVImwFOWqllHh74/tK1fippHriHa4eROz338fnTIyhPukTPCkbAktLi7Gjz/+iB9++AHXrl2TpExT0va8NX0WrH09S7aEEhHph0kotTtSnURrSix4IkAAMHLkSKElvm/fvujYsaPJ6jJFUihVy60+x0vxPFom4JV+ftj+7LMoDQw0qlzXykrM/OgjdPlrFlFrTUKbNTQ04OrVq5KWaQr6PO+EhASN91dXV+PKlSsoKCiQKiwApluihYiImrDphexe586dkZeXJ2xL1e21W7duOHfunNp9nA2RACA0NBT33nsvGhoa4ObmJtxv7LqBpmgJ1VSmrSahmsqo8vXF9pUrMfOjj+DXYmkKfTjX1OD2Tz7BgYcegrJrV2PCVGOqMaFSMeW4em00vY81NTUa9928ebPQSjp16lRERES0WX59fT1iYmKQl5eHsLAw3HLLLcYFrIWh33e2hBJRe8CWULJ7I0eOFJZq6dmzJzp37ixJuf4axpvxRICaOTk5qSWg2ljjmFBDY4iMjDTqeGNpK7va2xs7nn0WN4KDjSrfsb4et375Jdw3bjSqHFXWnoSmp6ebfRZafT4jqt109+/f3+rxjIwMnD17FiUlJcJ9ly9fxpUrV1BWVoakpCSkp6cbF7AWYt5XKdcX1aSxsRGpqanIzs6WrEwiIimwJZTsXmBgIO6++240NDRoXDdUStZ8MkntgxQtoYbuHxoaCoVCgUuXLklWnyYdO3bEjRs3Wt2v67nXeHlhx7PPYubHH8M/K8vguuVKJcb98APcS0txZvZswMjnI+XERKaSlpamc1yzoUz9vK9cuYLo6GgAQHx8PBYtWgQPDw/Exsaq7Xf06FGjYzN1MmlI/QCwY8cO5OfnA2iaPXrYsGFmi4mISBe2hFK74OjoaPIEFGB3XNLNHN1xTU1XDHK5HOPHjzdp/b6+vgjUMsazrden1sMD21euRG6PHkbHMXTnTozfuBGyxkajyrGF34zmRE5q+kxMJNb169eFclXjbmhoaDWrbbO6ujqD69PF0CRUqu64eXl5QgIKAGfPnjUoHiIiU2ASSiQha2/RIOtjjjGhvXr1wvDhwzF//vxWj+k7aZKxa4gam0jL5XKjxpXWu7lh11NPIbNfP6PiAIA+MTG47Ysv4Fhba3AZCoXCJhJRczLmM7Jz507s3btX42O5WsYESzGjtNiW0JbPzZQtqKpdkImIrA2TUCIJMQklaxQSEoLBgwfD399frTtez5494enpadZYTNmaKzaZaHR2xt7HHkPq0KFG19n1/HnM+vBDuJaXG3R8e/7NMEVLKABcu3ZNY3dtbUy1PBYvLhARaccxoUQS4kkHWaMAlbUyhwwZgrCwMDQ0NBg0SVdgYKBRE7mYahZcfSkcHXHwoYdQ7+qKPjExRpUVkJGBOe++iz1PPokyPdcltfaJiUwpPz/fZBdBVLuhtsVUF0Ys3R2XiMiasSWUSEI8ESBT0nSyrOk+1SUnevbsCS8vL7XH/f39dSag2j7HLi4uOpc4Mkd3XF1l6HsRSCmX48h99yFx6lSjY/IpKMDcf/8bgSkpeh3XnpNQbWM0rWHss740vYeGXpRkEkpE7QFbQokkxJZQsgYDBgxASEgIGhoa1FpBjTFs2DD06tULtUaMf5SKtiTF2dnZkMIQd+edqHV3x/A//jAqLtfKSsz66CMcvu8+pIhce7I9J6Ha2GISqgnfVyIi7dgSSiQhnnSQtfDz85MsAQWAQYMGwcPDw+hyHBwcJIhGM4NnwJbJcG7mTMQsWQKlkQmQQ0MDJn/3HYb+8Qcg4veASahpaFsmqKamRtTx+ibCbAmVRnV1NXJzc63iYhcRmRZbQokkZC8nAkTa6PqMN5+49+rVC1euXNG4j0GtlVrqUTVs2DCjZzm9MGkSqry8MPnbb+HQ0GBUWUN37oR3QQEOP/AAGp2ctO5nC+uE2qKioiKN9+fl5bW6z1QJj5j31dLri1qTkpISbN++HTU1NejQoQPuuOMOSS58EZF1YksokYTYHZfMzRRdF41dz3TMmDEYOHCgxsdcXFwMjktXLFLNcJo+dCh2rViBWjc3o8vqceoUZn70kc6Zc5mEmpc5u/qa8321h8/QyZMnhZbqyspKrmtKZOeYhBJJyB5OBMi2mOukWp96nJycMHLkSI2PSdESqkldXZ1kr0Vu797447nnUOHjY3RZnVNTMfff/4bv9evGB9ZOWMPvqK11x7UH165dU9vW1qWaiOwDk1AiCbXXkweyHGuaxEVMLKbqjpuWlibpa1ESHIxtzz+P4i5djC7Lq6gIc1evRriWlh3+bqgz5ethzu+LoUlogwFdwaV4zerq6kSPmSUiMhaTUCIiMhspus1qSiQUCoXkCUalnx+2P/cccnv0MLosp9pa3PbVVxi6fTugkpy05wT05s2blg5BMmLHdrb8jGra5+rVq8LtmzdvorCw0KD69XHt2jX88MMP+P777xEbG2tUWUREYjAJJSKyYeZuCfXz8xM9C627u7uo+/Sha41QU7wWtR06YNdTTyF98GBJyhu6Ywdu/eorOKm0OLXnRLR5AqGKigqkpqbi5s2bVvF6SPFZMnaOgOTkZPzyyy/YsmULDhw4YHQ8uhw7dgz19fUAgKSkJLu6QEBE1olJKBGRjdB0YmzuJFQul2Ps2LEaH2sZizljk8vlJquv0dkZ+//+dyTceqsk5XWLj8cdq1fDq6DAKhIuS4qNjUVZWRk2b96MAwcO4LfffkN+fr7J6rOliYmOHTsm3E5NTUVxcbGxIWlVWVmptp2WlmayuoiIACahREaJjIxU2x41apSFIiFbYOwSItYiIiIC48ePt3QYaoYMGWLSBEMpl+PEnXfi6D33QCHB++iXk4N577yDTvHx7ToRzcvLw6lTp1BXVwegaTxkRUWFyeqzpjHU+rquY3Kr9vwZIiLbZB9nREQWMnDgQPj8NYNmQEAAevXqZdmAqN2x5pNqU50Yayq3c+fOZnktLo4fj91PPok6kV2SdXGpqsLoN99Ex6++Uhsn2t6kpqZaOoRWLDk7rj51iHnMWtTV1SE1NRUFBQWWDoWIrIA0C6sRtVOenp5YsGABamtr4erqajctXWQapkiSzLVOqJh6LZkQy2Qys9V/PTISW59/HtPXroXXjRtGlSVTKBCwZg2m9e+PQ8uWoa5DB4miJFugT/JoznWopU5qGxsb8fvvv6OsrAwAMGHCBPTu3VvSOnQpLi7G0aNHUVtbi+HDh6Nbt25mq5uINOMZM5GRHBwc4O7uzgSU2mTNrZb6suRzETPrqKmVBgVh2wsvIF+ik9mu589j/r/+hY6ZmZKUR5qJ/ZyUlpbi5MmTopdLMXR2XE08PDw03q8rCbX2ltArV64ICSgAHD582Kz1x8TEID8/H6WlpTh48KAwCRMRWQ7PmomIbJg1JbaWjEUul5v9QlC1lxd2PPssUocNk6Q8r6Ii3LF6NXqrTEhDlhMfH4+4uDiDjzc0MdT2OTZnS6jUsrKyzF5nYmIifvvtN0RHRyM3N1e4v7Gx0Sq7gBO1N0xCiYjMpLGxUfIyLZX4maLeDi26omo7GbeGltBmjc7OOPDQQzg1Z44k5Tk2NGDCxo2YsGEDHP6arMcarFu3Dr/++qulwzCavolhcnKyqP1Onz5tdF3NtCWbtjwm1Nzfz/z8fMTFxeHGjRu4cuVKq8dtOaEnshdMQomIzMTaTxT14eDgIHmZwcHBatv6zMBr0RZhmQznZs7En489JsmERQDQOza2aRkXEy5Xoq/S0lJLh2A0U30Hq6qqDKrLWseE2rqYmBidj1tTDxKi9opJKBGRDbPUxETOzs6S1zto0CBhtuk+ffqga9euGvfT1hJq6XHZ1wYOxNbnn8fNgABJyvPPzsb8t99GDyO6hJI6Y5LQiooKk67V2YwtocarqanR+TiTUCLL4+y4RERmEhUVhaSkJGFbW5KlD0udTGlKQlvGou+JsY+PDxYtWiRs6zN5iEwmg6Oj5f+klQYFYcsLL2DKf/6DUJFdOXVxrq3F5O++Q/ClS4hZsgQNErW0tleGLg+SmpqKQ4cO6dUaaUzLpbUnlbbO0hesiIgtoUREZtOnTx8heZPL5ejfv7+FIzKcORI+bQm2phP05pPKQYMGaS3P29sbfn5+ksSmS12HDtjz5JNIuO02ycrsffx40+y5FpjgxV5UVFTg7NmzBh2rbwJqDKVSqXcSyqRVP2wJJbI8y182JiJqJ/z8/LBo0SIUFhaiY8eOWpdi0IcpruiLOaEVU685T4ybTyo1JcfDhw+Hh4cHwsPDsWPHDrPEo5TLcWLBAtwICcH4jRvhKMGSED75+Zj7738jbsECXJg0CeCJtF6MSSINOdbQCbTsMaG0tqTP0HgKCgqQmZmJzp07IyQkROKoiNoXJqFERGbk7u5ucDdcTSdOAwYMMDakVsScBGuKxVwnz7pO7jXFFRQUhMDAQJPHpUnKyJEoDgrCrV99Be/CQqPLc2howJhffkHwpUs4fP/9qJXgQgaZhqHfB7aEGq+t18OQi3c3btzAH3/8IVyQmDZtmiRDKojaK3bHJSKyYVK0prZkaBIqdXdFfVordCWhhpYpleLQUGx56SVkDBwoWZnhCQm48803ESzBuNP2JCoqymx1GTo7rj0mofbQEnrx4kW137h9+/ZJGRJRu8MklIjIhllqdlxNLQnW0BKqKS5rOAGuc3fH3kcfxYn586GQKJ4OpaWYuWYNRv/8s1WtKWrNDBnLbEyLpjmPI/EM+U1IT09X2+aSOUTGYXdcIiJSI+bkyhzdcQ05UdR0jDUkoQAAmQwJ06ahIDwcU/7zH7iXlUlSbNShQwi+eBEHH3wQN8LCJCnTXhnyGTV3UmgLLaGlpaU4cuQIqqqqMHjwYPTu3Vvn/lbzHfyLId1x3d3dUV1dbYJoiNontoQSEZEaW2wJbWaN3XFbyu3dG7/94x/I7dFDsjJ98/Iw7513MGjXLsgaGyUr194Y8hk1tMVL6u641tRCGhcXh7y8PJSVleHIkSPtIjlzcXGxdAhEdoVJKBERqbH2iYl0aasl1BqSUACo9vbGjmeflXQZF7lCgRHbtmH2Bx/AU4JJkOxRYmKi2eoyZ3dcc3/3MjMz1eq+cOGCzv2t5XtnDAcHh1b3WcNvHpGtYhJKRGTDLHVyZ46WUH3WCdX1mLWeACsdHHBiwQLsfvJJVHt6SlZu59RULHjzTfQ9fBjQ0Io3evRohIeHS1YfaWbo90GhUNjceMOGhgZLh2ByTDiJpGWVY0Jv3ryJ33//HadOnUJqairq6+vh6OiIsLAwhIeHY+TIkRgzZgzc3d0tHSoRkdmYK5mSakyoJU7aCjW0ANZLsEanKWVFRWHzK69g8jffIPjyZUnKdK6txbgff0TEmTM4cv/9KPf3Fx6TyWQICgpCRkaGJHXZOylbNMV+h/VN6iydILX1vK5du2amSIjIVlhVEtrQ0ICXX34Zn3/+OaqqqnTu6+joiEmTJuGhhx7C3LlzDZrxjoiIWpPL5W0momKS0NDQUKSkpBgchyEtoW3tb2gi7+HhgYqKCoOOFaPa2xu7nn4aA/fswbDt2yGXqCUs+PJl3PnPf+LkvHm4MGEC8FcLtrW2DtsTYxJDe2pZzMnJQW1trVnrNOf4dH6XiAxjNd1xq6urMW7cOLz//vuorKxU+wFpHqTffJ9SqUR9fT327duHxYsXo2fPnvj1118tFToRkV1pOdOlv0orWjMx3XGHDx+udoFwypQpEkWonaa4AgMDhduGnjCGhoYaNKOmPpRyOeJnzMD2lStR7ucnWblOtbUY8/PPmPXhh/AqKABg2OygpB9jEiF9Ww7F1mWJFtPjx4+bvU5TsHRrM5G9sZq/Qk8++SROnDjR6qpScHAwbrnlFowYMQLh4eFqfzibfxCuXbuGu+66C3PmzEGZRFPeExG1V8OGDYOTk5OwPWDAgFb7aErmXF1d1bY9PT0xb948jBgxArfffju6d+8ufbAtNGqYGVaqhMtc4/Tye/TAb//4B9IHDZK03KCrV3HnP/+Jjhs3QmZjYw4tyZQTDGnb58SJEwbVaY1u3Lhh6RCIyApZRR/WwsJCfP/995DJZFAqlXB0dMSqVavw6KOPIiQkRG3fhoYGnD17FocPH8Yvv/yCs2fPAmj6Id+5cydGjhyJgwcPokuXLpZ4KkREZmWKrmBubm5YuHAh0tPT4efnh+DgYI31hoaGIisrCwDg5eWFzp07t9rP19cXvr6+ksan6+TeVImiubvc1XXogH2PPII+R49i1KZNcKqrk6Rcx/p6dF69Gt5798J3zhyUBAVJUi61Zs6WM7F1FfzVEi6169ev448//oCrqytGjx4NDw8Pk9RjSda+bA6RrbGKJPTgwYPC+AcHBwds2bIFM2bM0Livo6MjRowYgREjRuC5557D6dOn8dJLL2H//v0AgMuXL+P222/HkSNH4OXlZbbnQERkTzw8PNC/f3+d+0yZMgXnzp1DQ0MDBg4caKbIdJ/4+fj46DzW0GTSIuO+ZDJcGj8eOX36YNK33yIwPV2yot3OncP8xEQk3HYbzs2ciUaVlm+yPWKToW3btpmk/qKiIuG2QqHA9OnThW0xY8zJ9lVWVqK2thZ+Eg4lIPtmFd1xm6+ky2QyzJo1S2sCqsmwYcOwd+9efPbZZ3BwcIBMJsP58+excuVKU4VLREQAnJ2dhdnKzdXy0VYyGBUVpdb9VlNXYltTFhCAP557DqfmzIFCwrGcDo2NGLJ7N+785z8RdPGiZOVSk/baSqa6hihg35Ngtdf3uKW0tDT89NNP2Lx5M/bu3WvpcMhGWEUSqjp9/sSJEw0q49FHH8XGjRuFCYy+++47sy5KTURkCfZ8gqeNruEWrq6umDNnDnr16oVhw4Zh+PDhao/bVEuoCqWDA87NnIltzz+PUpWJlqTgXVCAWR9/jInffQcXE84AbKssMSbUFHWRcfgaaxcdHS20dmdkZCA/P9/CEZEtsIokVHW9T2Oupi9evBgPPPAAgKYfiw0bNhgdGxERWQ+ZTIaePXvC09NTuG/06NFq+wQEBGDixIkYMmQIHBwcJKvXGhSGh+O3f/wDFwy8YKtLr7g4LH71VfSKjQV4wi2Ii4sz6DgmLU1s4XUoLS1FVlaWxonNqG0tlxRKl3DoQHuhUChQWFho0qXArI1VjAlVvaqdlpZmVFnPPvuskHzu27fPqLKIiMj6yOVyLFiwAGlpafDw8Gg1gZ0u1pJMGqPR2Rkxd92FDosXo9NLL6FDSYlkZbtWVmLihg3odfw4Yu66ixMXoWmuCUNInXzp+uzaQqJnrTIyMrB//34oFAr4+PhgwYIFGi9e2drERBkZGairq0NERITaUllkfZonV83NzYWDgwOmTp2Krl27Wjosk7OKltDBgwcLt3///Xejyurfvz+8vLygVCqFsaZERGRfnJ2d0adPH70SUGPoSgCCLJSoVY4bh21vvYVLY8ZIXnbQlStY8OabGLl5M5xqaiQvn/RnzrVdjU2urDk5ayk5OVnoSlpaWork5GQLR2S8uLg47N27F9HR0dixY4elw6E2ZGZmIjc3F0DTMmPR0dGWDchMrCIJ7dmzJ8aMGQOlUokrV67gyy+/NKq85llxORsbEZF9sVRLpq56e/bsacZI1NW5u+PI/fdj14oVqJB4KRy5QoGB+/Zh0auvovvJk+yiqydNiVhSUhLi4+MNStJ0HSN10idlEmqNCalqTNnZ2WqPnT9/3qByrInqnCgFBQUmW5pHG3vocWJOKSkpatu1tbUWisS8rCIJBYBPPvlE6P7wzDPP4M8//zSonJqaGuTl5UEmk5ntCjkREZmHsSc3169flyiS/7FkYtxcd3a/ftj02mu4OG6c5PV0uHkTU775BrM++AC+Jnj97JW2BOXkyZPIycnRuY8+5ZmCsRfxbbkRQNu4UGtNOMUoLS01Wdnx8fEmK5vsm9UkoYMHD8aLL74IpVKJ2tpazJ49G2+//Xarwc5tWb9+vXDMOBP8MSYiIttl6MmxtV7ZV42r3s0NR++9FzuefhrlHTtKXlfQ1atY8NZbGPXLL3Cqrpa8fHujK2mJjY01W12WKK+xsRFnz57Fli1btJZlyqTOmLItEa+UNCXRUk3Q1lJ5eTlOnjxpkrLbE01/X1RXDrFXVpOEAsDrr7+O22+/HUDTTFuvvvoqevTogU8//RSFhYVtHr9nzx6sWrUKMpkMcrkcjz/+uKlDJiIyG2tNhNoDazwhkMvlGj8TOX37YvOrr+LChAnS16lQoP/Bg1j86qvofewYZDbc4mVqJTomjKqqqtK7PHMmQcbWlZGRgdOnT4s6d7Nl1piYakpCTTWeWJ+uy6Sdpt/xa9euWSAS87Kq6bLkcjk2b96MhQsXYteuXQCaBus+/fTTWLlyJQYNGoTRo0cjMjIS4eHhcHNzQ3V1Na5cuYKtW7fi0KFDwg/CZ599hv79+1vy6RARkcQslYjrWrrBUjFpS0IBoN7VFTF3342UESMw7r//hd9fk15Ixb2sDBM2bkS/6GgcX7gQub17S1q+vTOkZcqcY0J19RgQU1dMTIyU4UjOnK+luZmzJVTb7yIvmBrP1j+HYlhVEgoAbm5u2L59O95991289tprqKurA9DUMnrmzBmcOXNG67FKpRL9+/fH2rVr201X3JKSEhw9ehTXr1/HzZs30aVLF3Tv3h2jR48260x6RETtlTWMCdUmv0cP/P6Pf2Dg3r0YvHMnHPUc4tIW/6wszP7wQ6QPGoQTCxagLCBA0vLtVfPfZ6nGhJozCRWzBqSYoVRKpdIqkxV9uuM2r+uYkpICf39/DB8+3GQJn1jmTEKtfexvRkYGiouLERERAR8fH0uHQy1YXRIKNP1hff7553HXXXfhzTffxI8//ojq6mrhB0Amk2n8MZDJZEhKSsLSpUsxZMgQDB06VPi/ownGx1hSRkYGVq1ahe3btwuJuqqgoCA89thjeP755022PlR4eLhB3QUef/xxrF271gQREZG9s8aTVksRk4QCgMLREedmzEDq0KEY98MPCDZw3UtdusXHI+z8eSRNnoxzM2agzt1d8jrsidQtoVLTVldRURH2799vtjisXXOvPQDIycmBq6srBg0aZLmAoDkxNFWjhDW31l26dAlHjhwB0DR50pIlS+Bupb9L1vw6mpJVN5WFhYXh66+/Rn5+Pr7//nvcd999CA8Pb/VmtfxDnJ6ejt9//x0vv/wybr/9dgQEBKBr166YP38+3nrrLezevRv5+fnmfjqS2bp1KwYOHIjffvtNYwIKNP0Y/uMf/8Do0aPNPjU3EZGpWOMSLZYil8vh5OQkev+ywEDsfOYZJDz7LGCCC7MOjY0YuG8fFr/yCiKjoyHT0YW5vbPGz5OqhoYGnD59Gnv37kVGRoZwv9QTKlkjYyYmsoZJerQ10piCqVtCi4qKcPLkyVZLmIjRnIACTZ/ns2fPShmayVn7b4QUrLIltCUPDw/ce++9uPfeewE0dUE9d+6c8C8+Ph6XL19W64LQ3M2j+cuYlZWF7OxsbNu2DUDTm6vvzLvWIDY2FnfddRdqVBYPnzhxIqZPnw5fX1+kpqZi48aNwqK3p06dwh133IFDhw7B1dXVZHH5+vrCz89P1L6dOnUyWRxERLp4enqivLxc0jItOSbUzc1N5wQ4rchkCHzuOeDFF3Hjb39Dx+3bJY/LraICY3/6Cf2io3Fy7lxcGzgQaAcnVKZmzu64V69eFW5nZGRg4cKF8PX1RV5enmR1WLL1R6lU4vr162rnUqqP2TJbWspHl7KyMmzdulWoo6GhAX369DG4vOZlkch62EQS2pKvry8mT56MyZMnC/fV1NTg/PnzQlJ67tw5nD9/Xm0GupaJqa2pqanBkiVLhB9NZ2dnrF+/HnfddZfafm+88Qbuvfde/PbbbwCAuLg4vPrqq3j33XdNFtuKFSvw+uuvm6x8ImofV0bbYuxrEBkZiRMnTkgUjWXJZDI4OzvrfZyXlxfg7o5rr7+OmF69MObnn9HRBOt/+ubmYtoXXyCve3ecmD8f+T16SF6HrTLkPKTlMbW1tUhMTIRMJoOHh4dUoWl04sQJ9LajyafOnDmD4uJiS4dh80x5Pn3q1Cm1JPfIkSNGJaHWzFbzEmPZZBKqiaurK4YPH47hw4cL9ymVSly+fFlISuPj4xEfH2+zU4avXbsWWVlZwvY///nPVgko0PRa/PTTTxg6dKgwffann36Kp556CsHBwWaLl4jI2phigg5LtoQa8nyax4fJZDLk9eqF319+Gf2iozHsjz/grKFlyFidU1Nxx3vvIWPgQJycOxelQUGS12GrjDn53LVrl9nOZ0pLS3HgwAGz1GUOuhJQW18n1Bq640pRn7ZW9+au4gUFBejevTv69etndF2WZiufLanZTRKqiUwmQ58+fdCnTx8sWbJEuD8nJwfnzp2zYGT6UyqVWLNmjbAdEhKClStXat3fyckJ7777rrDuak1NDb788ku8+eabJo+ViMhUjD25MfR4a2yFlslkBiWhzc+l+X+lgwOSpkxB6rBhGLFlC3ofPy5pnM3CExIQlpiIK6NH48zs2aj09TVJPbbA2JbQiooKs15QVyqVkne9tNYTb4VCgcTERNy8eRN9+vThECIrk5ycjMTERABNiaqfnx+6dOnS5nHW+nlrz6x6YiJTCQoKwsyZMy0dhl5OnTqF7OxsYXvZsmVtznp72223ISwsTNjesmWLyeIjIrIF1phMGkoulxs0+7m216Da2xuHly7FtueeQ1FoqLHhaSRXKtEnJgaLX3kFI37/Hc6VlSapxx6pnkSbe06L9nQCr1QqERcXh4sXL2Lbtm3CsC5beQ3MGacpf0+1PY+4uDid22Q72mUSaot27typtn3bbbe1eYxcLseUKVOE7QsXLqjNckdEZGusMYm05Iy9UrSEtpTfowe2vPgiji1ZgloTLWngWF+PQX/+ibv+8Q8M2rULjiboBmzNVCdNNOZ4c7HUepD19fUGHSfV66NQKGxuVtX2pqKiQtR+1nwRwZpjMyUmoTYiISFBuO3o6Ihhw4aJOm706NFq281dGIiI2iNTJIy2NiZUTLxKBwckT5qEX/75T1yYMAEKE60z6FJVhRHbtuGul1/+//buOz6u8k4X+DMz0qj33qttWbJkdTfJ3WBjGxsbO7RQNoRkQ8JNNgRICAskoYUsd0Nyw15gL4SsgQRibIODjQ1uuPcquahYlmRLli1Zvc7cP4wmGmlGmnLqzPP9fPxBZ3TKb4oO55n3Pe+L7C1boLMy7ZgrqqmpseuL4aEXqnKFQiHZcuFtbRo6Kdk1+rSbsXYukfKcKMZ9/lKT8j5eJWEIVYmysjLTz3FxcTZPt5KWlma2fObMGUHrGrR582YsWLAAMTEx8PLyQlBQEFJTU7Fs2TK89tprnKuUiAThSPfTocT6H3twcLAo+x2No89l6MBEY+kOCMDue+7B3595BpcyMx06ni182tsx7eOPcdcvf4msbdugdbAFTC2MRiO2b99u9zaDBiSeg1Wu0KuEFqLBGqSopa6uDlVVVU693pbqlPp1FOt4ll4XW1tCSXkYQlWisrLS9PPQ+zzHMnzdofsR0r59+7B161ZcuXIFvb29aG1tRVVVFTZs2ICf/vSnSEpKwk9/+lP09PSIcnwicg9KDaGzZ88WZb+j0Wq1Dj0fR7Zpjo3F5//rf+HzH/0IzTYMAuIovxs3MOPDD3HXM89gwtdfQyNx2JKSpTkqbeWKLaFaC63tQ59nW1sbDh48iDNnziginI6lvb0dra2to67T19eHGzduYGBgAAcPHsTGjRuxZcsWfP755xJV6Rxr5xIh3h9L+5D6yxcSl0uPjusqurq6zAYhCA0NtXnbkGGjDwo9SftQPj4+ptqamprMAmd3dzdee+01bNu2DZs3bxZttLkLFy44vG1ERAQiIyMFrIaIhObp6enU9mKMjqvRaBAZGYkFCxZgy5YtjpZmN0sX7bZwJohfmjQJtRMnInPnThR8+im8RRpYyL+5GbP+8hfkff45Di9ZggtTpsAoUpdgOTjSeuPqLaHx8fGoqakxe2zwefb392Pt2rWm64q2tjZMmTJF9JoAx1pCT5w4YRowJz8/3+ItVK2trdi4cSPa2toQGhpqNm1MXV0dmpqaEB4e7nC9cpKyBlunHhSjpsbGRrS3tyMxMdGpL0iV8J7JgSFUBYb/z8rWrrjAzWA42r6codPpsHjxYtxxxx2YPXs2UlNTTRc3AwMDOHbsGN555x289dZbpvs6jh49ittvvx3bt2+Hl5eXYLUMWr58ucPbPvvss3juuecEq4WInOfl5WX2hVZKSoqM1YwuPj5e0uNpNBqnAqWjFz5GnQ6n58zB+eJi5G/ciEnbtkErUkgJbGrCnHffRd7nn+PobbfhQlERjC5wD5gjXO2e0OEsfZYHQ+iFCxfMzgPHjx+XPITaymAwmI3YeuTIEWRnZ4+45jly5IipYcDSvKWOhlAlECtUWdqvv7+/KMcaS1lZGXbt2gXgZoPPypUrHf5i0F0xhNpp6DQpQgsKCkJAQMCIx4d32dHr9Tbvc/hJr6ury7HiLNi3b5/VFk2dToeCggIUFBTgwQcfxOLFi033he7btw+///3v8cQTTwhWCxG5phkzZmD79u0wGAxITExEbGysU/sTc2AiqQeSkHvgil4/P+xbvRpnZs9G0fr1SDt0SLRjBTc0YM477yD/s89wbNEinJs61e3C6NALcHdpORkM2/aO7C/n62PptqOmpqYRLXbnzp0bdT+O/n27+hQtjtYg9OsyGECBm4NXVVVVjRiHxVaWgrTc53cpMITaKUGkudMA4KWXXsJTTz014vHhLZ/2jBY3/GQ4vGXUGbZ2qS0sLMS6deswY8YM00nglVdewY9//GO7AjURuZ/09HRERUWhu7tbkFYBV/ofu7MtoUJpjYzEl9/9Lo4vWIApa9ci7uxZ0Y4VdPUqZr33HvI3bsSxW2/F2enTYXCyi7ZayBlCxficDX8Oo90DOLybrpSEGJjIke7TSvjbdpRYLfVK/vKltrbW4RAaFhYmcDXqwBCqAsO/IbFnMIPhLZ9ydVuYNm0aVq1ahb/97W8AbnY92bNnj+CDeaxbtw7p6ekObSvWfapEQlHzRYkzAgICLPYScYQrvYYajQYdIt2T6Yim5GRs/MlPEFdWhilr1yLcwTkwbRFw7RpK338fef/4B47feivKS0ow4EZfarpCCLXFaM+zv7/f6n14Qr4+9oZQSwGssrIS5eXlCA4ORkFBgajTikg5Oq4rnU+dJfRrrOTALRSGUBXw8fGBh4eHaXAie+asamlpMVsW6kLOEStWrDCFUADYu3ev4CE0PT0dWVlZgu6TiFyHWAMTyeXy5csObyvKRY5Gg7rMTKzNyED6wYMoXL8egdeuCX+cb/i3tGDGX/+KvM8/x/FbbkHZzJnoF2G8ASVwtYtSZ5+PUl8PSyF0aNdbjUaDoqIiKUuSnJT3hEqxrRzUVq8jGELtJNeHIiUlBefPnwdgX7eUixcvmi2npqYKWpc9JkyYYLbMuUOJyBUIeU/oAw88gLKyMhw4cMCm4yq2JUKrxYUpU1CZn4/MnTuRv3GjaCPpAoBvayumffwxcjdvxsl583Bm1iz0+vqKdjw5uFp3XFs4PHiWCC2hthqrK+rRo0cZQl0QW0Ltx2GcVCJzyCThtbW1NnfJraiosLofqQ2/H7Wzs1OmSojIXSk2tH1Dp9PZNcKi0p+PwdMTp+bNwwcvvIBDS5ei147R3R3h09aG4nXrcM/Pf47itWvhc+OGqMeTi7uEUEcprTuuI4QcmEjq7riO3vp148YNNDU1Wf29koOZO7XSCoUtoSoxefJkrF+/HsDN+yAOHTqEkpKSMbfbs2eP2XJ2drYo9dmioaHBbFmtQ48TkXqp4WLa1hp1Op0qng8A9Pn44MiSJTg9Zw5ytmzBpK++gqeFUUSFou/uRu7mzZj05Zc4N306TixYgFaVzwPtjheqanzOck+fo4TXzN4p+Lq7u/HRRx+ZxjEZP368Xc+juroaV69eRVJSktX53sV+XdgSaj+2hKrEbbfdZrb8xRdfjLmNwWDAl19+aVrOzMyUdY69ocNZA8qe749IicSYW9fdOHNPqLVBzwbnXxYiENraxTY0NBS+Kuxu2uPnh4PLl+OD3/wGJ+bPR7/II9t69Pcjc+dOrP73f8e8t95CmIyjrDpLzu64YvRcUss9oWprCXVWR0cH9uzZg/3791ucbmYoazXa+96sX7/ebCDNc+fOWTy2pf1WVFTgiy++wNGjR7Fhwwa7xk0RktSjJ7sChlCVKC4uNptj6p133hnzQ/vFF1+Y3T96xx13iFbfWHp6evDmm2+aPbZgwQKZqiFSp/T0dLPRIJOSkmSsRp2cubCzNuiZ0BcQY9WYnJxsOn+qpSV0uO7AQOxbtQof/uY3OD17NgZEnvNTazQi7dAhrHzhBSz6/e8Rc/YsoOKWBndoJQFc855Qpdu4cSNOnTqF48ePmzVkiKW2thY3nOg239fXZ/rZYDBg3759QpQlmfr6+hG9FgH3+BtnCFUJjUaDxx57zLRcW1uL//iP/7C6fl9fH5588knTsre3N77//e+PeozZs2ebvoXXaDSjTg49fOqXsfzwhz80C8SzZ8/mBTSRnTw8PLB48WIkJCRg3LhxKC0tlbskt2KtJVrIi05bWkJvueUWBAUFmda3x6xZsxyuTQydwcHYfffd+Ouvf42ykhIY7Lgf1lEJZ85g6WuvYdkrryDp2DFAJaFh6OfMFS5QxXwOcr4+Qh1byHtCbdXU1GQ2q0Jtba1pZgaxtLW12byuLc+trq7O4W2d4ej+9+7dK3Al6sEQqiI/+tGPzFpDn3nmGXz44Ycj1uvu7sY999yDEydOmB579NFHER8fL1gtqampePXVV8ecHqC+vh533nkn3n77bdNjOp0Or7zyimC1ELmTqKgoLFq0CHPmzFFld0y5idFyKPTFjT012rPu9OnTMX78eEdKEl17WBh2ffvb+Nvzz6N8xgxJwmhUVRVufeMNrH7uOWTs2gXdkBYVpXOFEDqcvQPqfPHFF9i4ceOI8SbE4oqv+XC9vb02PTZIqO64rsDR53zNyhRW7vAacmAiFfHx8cGHH36I+fPno6enB729vbj77rvx5ptvYtGiRQgODkZFRQX+8pe/oL6+3rRdUVERfvWrXwlay5UrV/DEE0/gqaeeQlFREfLy8pCeno7g4GAANwch2rdvHzZv3jziBPbHP/4RxcXFgtZDRGQLZ+4JtTbB/GALlVABV4wQmp+fj0mTJpk9psSLnNbISOy8/34cve025G7ahPF79kAn8v1SwQ0NmPk//4PC9etxes4cnJk1Cz0Oju4pJme6LLqiweucpqYmfPvb37ZrVGl7KPHvZDTOjI479HaPQT09PYr5wlPJI9Cq7XOiBAyhKlNSUoL3338fDzzwgGkwjG3btmHbtm0W1y8oKMCnn34q2gnEYDBg//792L9//5jrBgUF4U9/+hPuueceUWohIhqLM0HR2rQDQt8DJkYIVdu9o23h4dh13304ctttyN28GRO+/hoeIncL9G1rQ9GGDcj7/HOcnT4dJ+fNQ2tUlKjHtEdHRwcuXryIpKQkt7ngteV59vT0oKamBsnJyabHdDqdYH+X9g5MJBQ5/mYtPcfR7nlXYkuos8e+du0azpw5g4CAAOTk5Iz4cqOzsxM7d+4csd3FixdRWVmJ1NRUp44/yB3+xtkdV4VWrFiBEydO4I477oBer7e4TkxMDH71q19h7969iBLhf6JPPvkkZs6caVO4jY2NxdNPP42ysjIGUCKSlTMXdhqNBoGBgSMeF7KLq62j4w5d39H11BBMO0JDsfvuu/HhCy/gxLx5oo+mCwAefX3I2rED33r2WSx44w1EDZtvW07bt28H4BoXqLY8B1ufZ9+wrtRCtorKFUId5UydloK7I/u7cuWKzeta645qidjvQW9vL9atW4eysjIcOHAABw4cGLHOkSNHzMY4GWrr1q0oKysTtUZXwpZQlUpJScHatWtx/fp17Nq1C7W1tWhra0NUVBTS09Mxffp0q13HrBn8n5stXn75ZQA35yw9deoULly4gPr6elPrbFBQECIiIlBQUIC0tDS76iAiUqrY2Fi0traaPTbYQipHqHMmhIrVfVEMncHB2Ld6NY4vXIicLVuQuWOHqPOMAoDGaETKsWNIOXYMDSkpOHHLLajOzYVRxtdtcNoKtQQiqUjxt2fra27Lera00spxPhFqpO/KykoAN1sNL1y4AH9/f6sthGfOnBHkmIOc+ds4ceKE2Wtw4sQJTJ061WydserdtWsXJk6c6HANg9zhb5whVOVCQ0OxbNky2Y7v4eGB3Nxc5ObmylYDEZGt1ND6J0Y4tLRPNbwWw3UFBmL/ypU4duutyN66FVnbt8PLztHaHRFVVYUF//f/ojU8HCfmz8e56dPRL+O8va5wgTr8Ocg5rYpU+xo0dLBGezQ1NZmmIJk6dSrCw8NHrOPMPaH2toSOdg7p7+/H2rVrTXPMDo4f4gyx7wnlfdfSUs/XoERERE5SevCytz6xuuMmJibaVYfUevz9cWj5crz/0kvYt2IFOi10kxZDYFMTSj78EPf8/OcoXLcOPrxoFZWtoWP4Z9nenmBC1iKmrVu3or6+HvX19di6deuI3xuNRqfm9hTy/vZz586ZAigAHDx4ULB9j6WxsXHEYz09Pdi0aRO6u7slq8MZRqMRzc3NcpchKoZQIiJyG86MjuvM9o4cS8h1Ld2/P9q2zrZYSKXPxwcnbr0VH7z4Inbeey9uRERIclzvjg7kf/457vn5zzH7nXcQdumSJMcdpIRAJAVHn2dAQIDAlQjbHdcWw/8+W1tbzW4FaG1tHdFyd+XKFVOXbUdYqr1ilHuiRzuHWAqCzrL1tf36668tPl5TU4PTp08LWZJo+vr6rA466irYHZeIiNyG0ltCgZu3WdjKlufj7e1t8X6s0ba1NhKwUg14eqJ85kycLSlBypEjyN20CeESBEPdwADG79uH8fv2oX78eJycNw81OTmi3zfqCiHUaDSivb0d5eXl8PX1tficLl26ZFOrvJLuCRWLpVbK4fdwHjt2zKljWHqOJ0+eRGBgILKyspzat5Sampqs/u7w4cMoKCiQsBrHlJeXC3aPrlIxhBIRkdtw9mLVke11Op1dFxMhISFITEy0OgKjPfUkJSVhypQpFu8JHe3eUzWEdUuMWi0qCwtRWVCAuLIy5G7ahLizZyU5duy5c4g9dw43IiJwau5cnJs+HX3e3pIcW40GBgawYcOGUbtHnj17FlevXrV732LcEyp3CLVkeE1iDTa2e/duu0OoGOcQJb4HYuno6JC7BNExhBIRkduQOlzl5+ejsLAQb775pl3b3XLLLdi9e/eYw/2P9XzmzJljdSqv0bZVawg10WhQl5mJusxMRFRVIXfTJqQ42Upkq6CrVzHjr39F4YYNKC8pwek5c9AeFibY/t9++23B56aVw7lz52y6P+/69etjruOKLaG1tbWIiIiAj48Pjhw5Mmq32EHWQqiQXYmNRiNOnz6N+vp6XLx40ep6qj+HyMwdXj+GUCIiIpEMXhSWlJRYvU/J2nbJycmizjmXnJyMHTt2WPydK10AXU1JwZZ//VcEX76MnC1bMG7/fuj6+0U/rldXFyZv2YLsrVtRnZeHk/PnoyE1FXDytXWFAArYFi6VROoQeubMGVy4cAFJSUk4f/68TTWNNSBTa2srWlpaEBMTA08H59ytrKzEnj17HNqWbOdK52BrGEKJiMhtyDUwUWZmpl0hFBD/otfLywvTpk3D3r17R/zOFS+AWmJisPP++3Fw2TJkbduGzB074D1k9E6xaI1GpB45gtQjR9CYnIyT8+ahsqAARhFGcKWb5JyixdKotY7q7e21GkAtGa07bm1tLTZt2gSDwQB/f3+sWLEC3sO6i9vyXJ0ZfddZ7tQd1x1wdFwiInIbjoaryMhIp48nxIid9gxaNPz4lmRnZ6O4uNju7dSsKyjo5vQuL7+M3XfdhVYLcy2KJbK6GvP++79x9y9+gcmbNsHLDe77skbIQCHF59XWFmgppwCx557Q8vJy03Nob2/H4cOHRa1NDK4+UM9QrnwOHsQQSkREbsPW/7EXFRWZfg4ODkZSUpJd21s63owZM6zen2krS4HRWe5wsWNJv5cXTs+Zg7/++tfY8r3voSElRbJj+7e0YMonn+Cep57CjPffR9CVK5IdWynU0qrV2dk56r2PcrI1hBqNRlRWVpo9dvr0abS3t6N/SNd0pb8nmzZtkrsEybjDeZndcYmIyG3Y+j/2vLw8hIWFoaurC6mpqYJcECQmJuL+++/He++9h97eXof2ERwcbLY81kWjs92P3YFRq0VVfj6q8vIQVVGBnC1bkHz8ODQSXJB79vYia8cOZO3YgZpJk3By/nzUZWQ4fd+oGqipJXT79u2i7l8o9o6O+/7778PX1xcLFy5EYGCg4u/17JSg+7xSuMM5mCGUiIjIAlvmJxzL8AsJrVaruIsLS2FAaTVKQqNBQ3o6tqSnI6ihAdlbt2L83r3w6OuT5PCJp04h8dQpXI+Nxam5c3F+yhQMONly7q6EbtHr6ekRdH9CEeJ5dnZ24tChQ/D29lbs8yTXxBBKRERuQ+p5Qi2t78yFnlTh0C1D6BA3oqLw9b334tDttyNzxw5kbd8On7Y2SY4dWl+Pmf/zPyheuxZnS0pwetYstEt436pU1NQS6upsmZOYpOUOn2mGUCIichvO/o/dz89PoErGJsRFOrvjOqc7IABHlizB8Vtuwbj9+zHpyy8RevmyJMf27uzE5C++QPaWLbg4eTJOzZ2Ly+PHu0VXXbLNwMAAqqur4e3tjaioKJw6dUrukkbV398PDw9GD1t0dXXJXYLo+EkgIiKy0cSJE3Ho0CHTYB7jx48fdX1779Eay/BwmJCQgEuXLtm8viVKH4xECQb0epSXlqK8pARxZWXI3roViadPS3JsrdGIlGPHkHLs2M2uunPm4PzUqarvqivm585dPtOfffaZ6efBwdOUrKysDNnZ2ablpqYmGasZiV++SYshlIiI3IazFxmenp5YunQpjh8/Dl9fX7NRdC3x9fV16nhjycjIwIkTJ9De3i7ofoUOzy5Do0FdZibqMjMRfPkyJn31laT3jYbW12PmmjUo/uQTnJ0xA6dnz1ZtV112xxXWaCP4CvFaDx1F11FVVVVmIVTOaWKqq6tx5MgR+Pj4oKSkRJAptMg+DKFERER2iIiIwPz58y3+LiUlBVVVVQAAb29vJCcnO3wcWy6sPTw8cOedd6KmpgY7d+506ELRXVqNhNYSE4Ov770XB5ctw8Rdu5C1fTv8WlokObZ3Zycmb9mC7K1bcXHyZJyeMwf1Eya4bVddhlDxvfvuu07vY/i5pkOmeXJ7e3uxdetW07ype/bswa233ipLLe6MIZSIiNyG2Bers2bNQkBAAHp6ejB58mSnWhQt3TtlqX69Xo/09HScPXsWdXV1Y65Pwurx98exRYtwYsECpB4+jOytWxEh0UAvw7vqnp4zB+enTEG/l5ckx3cGv/xQl8HA5ozh77lOp3N6n44oLy83ez5SzQPb29uLnTt3or6+HvHx8Zg5c6Ykx1UqhlAiIiKB6PV6TJ06VZB9WbpAG+3C3dHAaW2f2dnZOHnypF37SkhIQEREBGpqapy+36ugoEDW7nr2Mnh44MKUKbhQXHxzvtGtW5F07Bi0EoWt0Pp6lH7TVbd8xgycmT0bbQruqtvQ0CB3CW5DKYF/eJCVK4Q6Ok+zs86dO4fKykoAwIULFxAfHy9LHUrBEEpERG5DTS2Dli7QBgYG7NqHM893ypQpOHv2rF0XbH19fSgsLEReXh7++7//2+FjA8qdm3FMQ+YbDWhqQtZXXyFj927ou7slObzXN111c7ZuxcWcHJyePRt1GRmAC9/nO/xzrpTQReaEaE0Vk9ifmz179pgtb9++XdTjKR1DKBERuQ01hVBvb+8Rj4nRcmDtwkur1SI3NxcHDhyweV+DwVGI11lN75U1beHh2Ld6NQ4vXYoJe/Zg0ldfIVCiEUE1RiOSjx9H8vHjaImMRNmsWTg7bRp6JZxmSCqu8FlxB8NDqNJDKYmLIZSIiEiB/P39ERkZicbGRgBAeHg4/P39Za5qdPa21LqLPh8fnJo3D6fnzEHS8eOY9OWXiD1/XrLjBzc2YtpHH6Fo3TpcKC7GmVmz0KSCKT3ItQwPnWposTYajfySQyQMoURE5DbUdjFx66234ujRozAajcjLy5P8+HK9XnqVz4FpjVGrRXVeHqrz8hB+8SKyv/wSqYcOQSdRePfo60PG7t3I2L0bjcnJODNrFioKC11uzlE1hBt3pMaW0Lq6Oofv3WSAHR1DKBERuQ21XRD4+Phg+vTpNq0r9MBEzuzLmddZq9Vi1qxZuHLlilBlKVJTUhK2/cu/YN/KlZi4cycyd+6Eb2urZMePrK5GZHU1pn70Ec7OmIGymTPRGhkp2fHJ/bS3t6OmpgYDAwPYsWOHbAME2XN+6uzstHv/bW1t2Lx5M65fv460tDTMmTOHcy9bwBBKRETkxsQIoc6466674O/v7/IhdFBXUBCOLF2KY4sWYc61awh+7z2EXbgg2fEH5xydvGULLmVm4szs2ajJzoZRRRfNg5+7/v5+NDY2oq2tTeaKlEVJLcObNm2SuwSrhPqS8uTJk7h+/ToAoKKiAmlpaU7NGe2qGEKJiMhtqK0lVG5Sv17e3t6m+17d7b0yeHigedEiHJ04EbrDhzFp2zZJu+oCQMKZM0g4cwZtoaEoKy3F2ZISdAUGSnZ8Z/T19WHdunVobm6WuxRSKaHC+qlTp8yWd+zYwRBqAUMoERERCcLZ7rgeHrwsAYCrKSnYlpJys6vurl3I3LFD0q66Adevo3j9ehR89hmq8vNRVlqKy+PHAwr9YmDbtm0oKChgACWnWAqhQnwZxgHbLOPZnoiI3IYrt64p6Z5QRyl99F8pDH0fu4KCcGTJEhxbuBApR45g0ldfIaqqSrJadAMDSD94EOkHD6IlMhLlJSU4N20auhXWOtrV1YWvv/5a7jJI5cQKoWoYgEkO6unwT0RERIJLTU01W/b09JSpEtg8CJOtFi5cKOj+pGDpotfg4YGK4mKsf+opfPLzn+Pc1KkYEGHO2NEENzZi6tq1uPeppzDvzTcRW1YG8OJaFZR0T6iSifU6MYRaxhBKRERuw5VbQh0VERGBtLQ0AIBOp8Ps2bNNv7P39bL1Ii4oKGjEY9OnT0d4eLhpOTo62q5jW5KYmIjMzEyn9yMVjUYz5mt+NTkZ2x96CO+//DIO3n47Oiy8lmLSDQwg7fBhLPnP/8RdzzyDyZs2wefGDUlrIOVTY/AVqyWULGN3XCIichu8oLBs3rx5KCgogF6vh6+vr8P7sfXC08/PD4WFhTh58iT8/f0xY8YM+Pj4mK3j6Nx8w0VHR+PMmTOC7EsKtn5GuwIDcXTxYhy/9VakHD2KrK++QnRlpcjVmQtsasKUTz5B0fr1qM7NRVlpKeoyMgAVjaxLNEiNwVnNGEKJiIgIwcHBgu5Po9GMelGXlpZmaoG1xF3n1bP3ixKDhwcqiopQUVSEsJoaZO7YgXH798Ojr0+kCkfSGgxIPXIEqUeOoDU8HOUzZuDsjBnokriVlshRRqORLaESYwglIiK3wQsK+4jVHZcss6U77miuJSZi17e/jf0rV2L83r3I3LEDwQ0NAlY4tsCmJhSvX4/CTz/FxZwcnJ0+HZcmTYJR4ntY6Z+2bt0qdwmqwPOXtBhCiYjIbbhyCFXCBdTQGsZqCSXLhHjNen19cWrePJyaOxex5eXI3LkTyceOQSvhAClagwEpx44h5dgxdAYG4tzUqTg7YwZuCHCvL5HQ2BIqPYZQIiIiF6CEwNff3y/YvnjxJwCNBvUTJ6J+4kT4Njdj4tdfI2PXLvhJPJCQb2srcr/4ArlffIErqak4O2MGKgsK0DfsPmAiuVgLoSQehlAiInIbDDbi0tnY5VLK90FN77mYtXaGhODw0qU4ctttSD52DJk7diDu7FnRjmdNdGUloisrMf2vf0VVfj7OzpiBy+PGASp6n2hsagx0YraENjY2CrIfV8IQSkREbkMJgSQlJQVVVVWC71eMi76xXq/i4mIcOHDAtDxt2jTJjk2OMep0qCooQFVBAYIvX0bmjh0Yv3cv9N3dktbh2duL8fv2Yfy+fWgND8fZ6dNxbto0dISGSloHiUNtIdRaS+j169eRnJzs9P57e3ud3oercc+h54iIiGRSXFwMvV4/4nEvLy+n9ivHRd/EiRMRHx8PnU6HlJQUs9FuXSlERkRESHYsKd/HlpgY7LnrLvzPK69g5733okmgaXHsFdjUhKING3DPL36BRb//PdIOHICOF+2qpuQQauncZC2EHjp0SJBj2tpLxJ2wJZSIiEhCQUFBWLlyJT744AOzxy0FU6Xz8vLCbbfdJncZoxIiDMfHx+Pq1asCVDM6uYJ7v7c3ymfORHlpKSKqqzFx1y6kHTwIT4mDoMZoRMKZM0g4cwa93t6oys/HualTb3bXddMpe9RKySHUGjFrZggdiSGUiIhIYgEBASMec/YCSI7uuErbr1jcZs5SjQZXU1JwNSUFe1etQvqBA5i4axfCL12SvBR9dzcm7NmDCXv2oD0kBOenTMH5KVPQEhsreS1kP7WFULEHJuro6BBt32rFEEpERDSEXAFJiSHUGWoLmqORshVDKe9jn48PymbNQtnMmQi/eBETd+1C+sGD8OzpkbwW/+Zm5G3ahLxNm3A1MRHnp0xBRXExugIDJa+FbKOUz7GtjEYjQkJCROvxcPToUVH2q2YMoUREREOoNYSSeNymJdQSjQZNycnYlZyMfatWIe3gQWTs2oXIixdlKSeipgYRNTWY+ve/ozYzE+enTEF1bi4GVNid3ZWp8Xzm7+8/6u+deU5NTU0Ob+uqGEKJiIhcgBov+tRCqhCq0WgU/T72eXujvLQU5aWlCKupudk6euCA5CPrAoDWYEDiqVNIPHXq5v2jeXmoKCpCXUYGjLz/TnZK/hxborZ6XQFDKBERuZVp06Zh7969AIDU1FRUVlaa/V6tLaFKuydU7u64M2fOFKwODioy0rXERHx9773Yt3Il0g4dwsRduxBZXS1LLfrubkzYuxcT9u5Fl78/KgsKUFFYiCvp6RzQSCZqC3W21Ku256R0DKFERORWsrOzERcXh76+PkRFReHNN980+71U4SkwMBCtra2m5bi4OKf2x6D0T5mZmUhPTxdsf1K2hKpNv7c3zpaU4GxJCULq6jBh926M278fPu3tstTj096OrB07kLVjB9qDg28G0uJiXE1KAlT4+qqVGgObGmtWM4ZQIiJyO6GhoXKXgAkTJuDgwYMAAA8PD0yZMsWp/U2ZMgXr1q0zLU+cONGp/YlJzLAVGRmJkpISQffpbMCPiIiwecATNV8IN8fFYd/q1TiwYgUST5zAhD17kHDqFLQyPSf/lhbkfPklcr78Eq3h4agoKsKFoiI0O/mFD41NyZ9jS7WxJVR6DKFERERDSNUalZubC71ej5aWFowfPx5+fn5O7S8yMhK5ubkoKytDcHAwcnNzna5Rzd1xB/UKMNellAMTGQwGyY4lFoOHB6rz81Gdnw/flhaM27cPE/bsQXBDg2w1BTY1Ie/zz5H3+ee4HhuLisJCVBYU4EZ0tGw1uTI1Braxalbjc1IyhlAiIqIhpApPGo0GWVlZgu6zuLgYxcXFgu5T7bq6upzeh5QhtL+/X9T9Z2RkoLy8XNRjDNUZHIzjCxfi+K23IqqyEuP37EHawYPQyzDVy6DQ+nqEbtiAog0bcD02FlV5eajKz8f1uDh22RWIkgObkmtzJwyhRERE5DJsvcDU6/WCtJIKSaPRoK+vT9RjlJaWShpCTTQaNKSloSEtDXtXr0bKkSOYsGcPYs+dk76WIULr6xFaX4+CjRtxIzISlfn5qMrLQxPvIXWKGoOeGmtWM4ZQIiKiIdx6TkiJSNlVV4gLS2frtWd7sVtCldBNut/LC+enTcP5adMQ2NiIcfv2Ydz+/QiUeS7FoMZG5G3ahLxNm9AWFoaq3FxUFRSgISWFo+zayRUDnSs+JzkxhBIREQ3h6ekpdwmKocR7QrVarem+SS8vL/SM0a1TiHss1Raa1aQ1MhKHb78dh5cuRVRFBcbt34+0Q4fg1dkpa10B166ZBjXqCA5GdW4uqidPxuXx42Hw4OXzWJT8ObZWG+8JlRb/ioiIiIZgCFW2qVOnYt++fdDr9Zg6dSq2b98+6vpqCqEajUY1F7re3t7o7u4WbocaDRrS09GQno49q1cj6eRJjNu3DwmnTkE3MCDccRzg19KCrO3bkbV9O3q9vXEpKwsXJ0/GpUmT0OPkgGKuSi2f40Fqq9cVMIQSERENERUVJXcJLkGs4DZp0iRMmjQJANBpobVs+MWkErrj2kMtF8OFhYX4+uuvRdm3wdMTVfn5qMrPh1d7O9IOHcK4ffsQVVUlyvHsoe/uRtrhw0g7fBgGrRZX0tNxcfJkVE+ejLaICLnLUwwlf47trc1oNKrqCyK1YAglIiK3VlRUZJqvU6vVoqCgQOaKlEMJ9w86S00toYCyL96Hio+PF7411IIef3+cmT0bZ2bPRmBDA8bt36+I+0cBQGswIPbcOcSeO4dpH32E67GxuJiTg4uTJ6MxOdmt7yNVy+d4KGs1NzQ0IJpT+QiOIZSIiNza4Hydzc3NyMjIgK+vr9wlkRU5OTlmy7aEQ7WFUDW5//77UVtbi3/84x+SHK81Kuqf949WViL10CGkHToE39ZWSY4/lsGRdvM2bUKXvz9qMzNxKSsLtVlZ6A4IkLs8STUp4EsCe4wWmvfu3Ys77rhDlcFayRhCiYjIrYkxXyeN7tq1aw5tNzwM2hIOvb29HToWjU6n0wG42SLq4eEh+qi+ZoZM97Jv1SrEnDuHtIMHkXLkCLxlHtBokE97O8YdOIBxBw7AqNHgalISLmVl4VJWFq6mpMDoxq2kcrN3YKIBme9JdlUMoURERCS40QJiR0eHaMcdfiGZlZWFQ4cOObVPqaZoUVOLq8eQEWIlDaDDGLVa1GdkoD4jA7vvvhtxZWVIP3gQSceOQT/GyMlS0RiNiKyuRmR1NQo2bkS3n59ZK2lXYKDcJdIoBv8u2RIqLIZQIiIiUgVHWkK9vLyQnJyM6upq02MzZ87Evn37HD6uWNR0keuhwGlKDB4euJSdjUvZ2dD19iLx1CmkHTyIxJMn4dHXJ3d5Jt4dHUg/eBDp39yLfi0+HnUZGajLyMDlcePQz9Z70fj7+zv8d6amv081UN4ZhIiIiFRPiOAWERGBq1evmpYzMjIc2s/s2bOxc+dO1NfXIz4+HmlpaXaFUKloNBqEh4er4n66we64SjWg15tG2PXs7kbSsWNIPXIE8adPw0PGlltLwmprEVZbi5ytW2HQatGYkoK6iRNRl5GBxpQUzksqoNGCpLXfDZ7Lent7RanJXfFTTURERBbJ/c3/lClTsHXrVnR3dyM3NxeBw7otWgq6lmrW6/WYP3++w3UIEagjIyPR2Ng45nozZszA+vXrnT4e/VOftzcuTJ2KC1OnwrO7GwknTyLl6FEknjwJT4UFC63BgOiKCkRXVKDgs8/Q5+WFy+npqP+mpfR6fDzvJ3WCvfeDDiovL8fOnTvFKMltMYQSERGRRXKH0NjYWNx3330wGAyydv8UIoQGBwePGUI1Gg2ioqKwcOFC7Ny50+I8qEpQWloqdwkO6/P2RmVRESqLiqDr7UXC6dNIOXIESSdOQC/ydDOO8OzpQeLp00g8fRoA0OvtjSvp6bg8bhyupKfjalISDJ6eMlepHgaDwaEgeuDAAbFKclsMoURERGSR3CEUuDl3q9ZKy49aBvKxt87ExESUlpZi8+bNIlXkuAULFiAlJUXuMgQxoNejOi8P1Xl50Pb1Ia68HKlHjiDp+HF4izh4ljP03d1IPHUKiadOAQD6PT3RmJJiCqUNqam8p1RgfX19os+H644YQomIiMgiZ0KoFAFRqhAqxHFs2YcaQnVISIjcJYjC4OlpGtRIMzCA2HPnkHzsGJKOH4d/c7Pc5Vnl0deH2HPnEHvuHADAoNWiKTERjSkpaEhNRWNKCtrCwwEVfLak4Mi8wWr4u1QjhlAiIiKySAktofZy5CJzLAyh/6T0AYmEYNTpbg4MNHEidt91F8Jqa5F0/DiSjh9HRE2N3OWNSmswmKaDmbRtGwCgKyDgZihNSUFjSgquJiejz8dH5krlY+m8ZjQarZ7vWlpaRK7IPTGEEhERkSpZCm22XjCqIfApkaWu0WoZ0dchGg2uJSTgWkICjixZAr/mZiSeOIGkEycQV14OncJG2rXEp60NSd/UDABGjQbNMTE3A2lSEpoSE3E9Lg4Der3MlYqvt7cXp77pyjycGr90UzOGUCIiIrLI3brjLl++HJ9++ikGBgYE3S9gf61KDcmW6vJ2o3sQO0JCUDZrFspmzYJndzfizpwxBTyl3kc6nMZoRGh9PULr65GxezeAm914W6Kj0ZSYaPp3LSEBfW703pK0GEKJiIjIIndrGfDz80NYWNiIUWzZHfef3ClwjqXP2xvV+fmozs+HxmBARHU1Ek6fRsKpU4i4eBEaFf39aA0GUzAdP2QO3ZaoKFyLj0dzbCyux8aiOS4OrRERnCaGnMYQSkRERBYpPYQKHdrECoEeHh5ITU3FmTNnZDm+kKyNVOzujFotGlNT0ZiaisNLl8K7rQ3xZ84g4fRpxJ85A5+2NrlLdEhwQwOCGxqAw4dNj/V7eqIlOtoUTK/HxaE5JgbtoaGAij8fSj/fuRqGUCIiIrLI3brjWtuns8fx9PREbGwsAgIC0KbSMEL26Q4IwIUpU3BhyhTAYEBETQ3iv2kljayqglbFgcejrw/hly4h/NIls8f7PT3RGhGBG1FRaImKQmtkJFqionAjMhLdAQGKHqGXAVR6DKFERERkkRouzGbMmIHd39zXBgBTpkyRsRrLPD09AQALFy7ERx99JHM1JDmtFleTk3E1ORlHFy+GV0cHYs+eRWx5OeLKy2+2NLoAj74+U5fe4Xp8fHAjMhJt4eFoDwtD2zf/2sPC0BYaqoi5TWU73xmN8OjthWdPDzx6euDZ3Q3Pnh4Y6urkqUciDKFERERkkRpCaGZmJnp7e1FZWYnIyEhkZWU5tT8xWlfT09Nt2rcauuOS83r8/FCVn4+q/HwAgN/164g9exbxZWWILS+H340bMlcoPK+uLkRevIjIixct/r7bz+9mKA0NRUdwMDqDgkb86/b3V213X83AADx6e0f88+zpga6vD5rhU0sZjfDs6pKnWIkwhBIREZFFzoTQvr4+ASuxTqPRIC8vD3l5eYLsy57HbZGQkID4+Hib9jP092oKpKGhoaitrZW7DNXqCA3F+WnTcH7aNMBoRPCVK4grL0dseTliz56Fl4uHEQDw7uiAd0fHqPOwGrRadAYGojMoCD1+fuj290ePn9/NnweXfX3R4++PHh8f9Hl7o8/LC/16vTjh1WiEdmAA2v5+6L75r0dfn+m/um/+efb0wLOrCx49PTeD55AAqu/qgr6zE/quLnh1dd1c/uZfmQhzHisJQygRERFZpIYQqmRpaWmYO3eu3GWIbvLkyTh16hQMLn7RLAmNBi0xMWiJicHpOXOgMRgQUleHmPPnEXP+PKIvXIBva6vcVcpCazDAv6UF/jbOBTxUn16Pfi+vf/7XywsGnc70z/fjj5HV0YHEri4YtVoYtFpAo4HGYIDGYIDWYIDGaDRfNhjMAqh2YAC6b/6rHRiArq/vZounCuaSlQNDKBEREVnkTAhVQ1deWznaKhkREWHXtmpq/RzKx8cHy5cvx9q1a+UuxeUYtVpcT0jA9YQEnJ47FzAaEdTYiOjBUHr+PAKvXZO7TMXz/KYF0sfaCmfOIAJAhIQ1uTuGUCIiIiKoNwQqQXh4OJKSknDRyj1/JBCNBjeionAjKgpnS0oA3LynNPrCBURVVCCyqgrhly5By1ZpUjiGUCIiIrLIlVozlcBV7wkdpMaaXUFHaCgqiotRUVwMAND19iK8pgaRVVWIrKpCVGUl/JubZa6SyBxDKBEREVnkjiFUyHlCGcpIDgN6PRrS09HwzajMAODb3HwzkFZVIaK6GmGXLrnFgEekXAyhREREZJE7hlB7RURE4OrVqxZ/Z28IZWglsXSGhKA6JATV30wLA6MRAU1NCK+p+ee/S5fg09Ymb6HkNhhCiYiIyKLRQmhYWJiElchrtHCYm5uLEydOoKGhQcKKSE733nsv1q9fj/b2drlLcZxGg7aICLRFRKCqoODmY0Yj/FpaEFZTg4iaGoTW1iKkvh6BV69Cyy+kSGAMoURERGSRtRDq4eGB0tJSh7ZVMkdaIv39/bFs2TJUVlZi69atTu2PLaHq4OnpCW9vb3WHUEs0GnSEhKAjJAQ1kyebHtb19iL4yhWE1tcjpK7u5n/r6xFw/bqMxZLaMYQSERGRRZaC5MKFCxESEoKAgAAZKlIeIadgGTrPphpDvDtxp/dnQK/HtcREXEtMNHvcs6sLIfX1CGpsRHBDAwIbGxHU0ICgxkZ49vbKVC2pBUMoERER2Sxx2IUoWWdvy2ZPT4/pZ3cKOWqj0WhwjXNzos/HB41paWhMSzP/hdEI35YW83Da2Aj/a9cQcP06vDo75SmYFIUhlIiIiCzSarVylyApa6FRqm6yQwO+GkMouxMTAECjQWdICDpDQnB5woQRv/bs6kLAtWs3Q+m1a/C/ft207NfSAp+2Ns5z6gYYQomIiMii7OxsnDhxwrScnJwsXzEKNVrw6h3WJXG0ddPT0+Hn52daVmMIdRcM287p8/HB9fh4XI+Pt7yCwQDv9nb43rhh+ufX0gK/5mb4tbTAu70dXp2d8OrogL6rC7qBAWmfgMCMAHp9fMz+9fj4oNpoBE6dkrs80TCEEhERkUV+fn4oKSnB0aNH4efnh+LiYkH2q7aLeEfrvXDhAnJzc21ad/hryxBKbkurRXdgILoDA3E9IWHM1XW9vfBua4PvjRvwaW2FT1sbvDo7oe/qgmd3N/Td3fDs7oZnTw88enqg6+uDR38/NAYDNAYDtAYDNAMD0A7+bDBAOyTYGr/5+zdqNMCwn30CA9HZ349eAAM6HQweHjDodDDodBjw8MCApyf69Hr0e3mhX6+/+fPQZS8v9Hp7AxZ6ndRev84QSkRERO4pMzMTmZmZcpehWIMB1VJQ7e/vt3s/g1wthCYkJKCtrQ0tLS1yl0IuZkCvR0dYGDpsmTbKYIBuYADa/n7ovvmn7e+HdmAA2oGBm8vf/Dz4bzCsWrJw4UKUHzmCxsZGgZ+V62MIJSIiIvqGkK20fX19Dm+rxvtxrb12t912G+Li4vDxxx9LXJE41NaST0NotRjQam+2UNqz3bBW0sEWVBQVobW1Fde8vKAxGm8GVqMRGqMRGPrfwf1Y+nJpsHX1m58HW1lbVXgOsAdDKBEREUlKqRfxzgxMZKnlMjs72+FjR0dHQ6PRqL5F1MvLC/HW7v0jUgutFoZvQqHZHajR0eiNiEBHR4fgh+xQ+b2uY2EIJUFVVlbi8OHDqKurw8DAAOLi4pCTk8OuXERE5NIshcXh09nYE769vb1RWlqKnTt3Ol2bnJT6hYMzXPE5EUmNIVSFGhoacOjQIbN/V65cMf3+gQcewLvvvitpTdu3b8cvfvEL7N271+Lvc3Jy8Mwzz+DOO++UtC4iIlKekpISuUuwy2ihY/B3lkKoh4ftl1mWjpGRkQF/f3/84x//sHk/SuZu4S0tLQ0VFRVyl0GkSAyhKvLee+/h6aefRm1trdylmPnlL3+JF198cdQuQydOnMCqVavw0EMP4e2331blvS5EROS8uLg4pA2f3F4hnAlJlv4faM/+XDWguerzSk5ORnV1tdXfh4eHQ6/XS1cQkcowhKpIZWWl4gLoa6+9hhdeeMG07OnpiVWrVqG4uBgeHh44evQoPvjgA3R2dgIA3nnnHQQEBOD3v/+9XCUTEZFMHnjgAej1epcKJqO1hA7/wtWVnretXPU5p6amjhpCiWh0DKEqlpKSgsLCQhQWFuLJJ5+U/PgnT57Ez372M9NybGwsPv/8c+Tk5Jit9+///u9YuHAhysrKAACvv/46br31Vtx2222S1ktERPLy8vKSuwSHODowkVIDWFZWFk6fPi34fpX6fIVmy/PUaDRu83oMGqt12FW52/ssFPaJVJG8vDy8+OKL+OKLL3D9+nVUVlbib3/7G5544glZ6vn5z38OwzfzJmm1Wnz88ccjAihwc2CGTz/9FL6+vqbHfvGLX6h+xD8iIqJBauqOm5eXJ9mxXPUC3dHn5enpKWgd06dPR3FxMWbNmiXofonExhCqIsuWLcPPf/5zLFiwACEhIbLWcv78eWzcuNG0vHr1akybNs3q+mlpafjRj35kWj5+/Di++uorUWskIiL5KP2LRqHC0eB+DBYmsxcihIrxOvr6+iIpKUnw/Voy9Hm5SiC1tSXUkuLiYouPOzqNTVhYGHJzcxEZGenQ9kRyYQglh3zyySdmy9/97nfH3Obhhx8edR9ERERSsafl0pbQodPpRjwmxCB8Sg/z7kroQD19+nSntrdUT2xsrFP7JNu4ypcrUmMIJYcMbQUdnMtsLOnp6UhJSTEtf/bZZ6LURkREJJXBC1BL3SyHX5y6+sWqpefnii2hwNjPxdo9oc580WHJaF9S+Pn5cfwNUiyGUHLIiRMnTD8XFBTYfI/D0G/6Ll68iBs3bgheGxER0ViEDkRDxz1w5BiuFNCGctXnNRalPO/4+Hj4+flJciy22pM9GELJbpcvX0ZLS4tpOT093eZth88NNzhiLhERkZSE7o4bFRUFf39/03JkZCQ8PGyfhEDKe0LJeUKHTKUMdOQMpQRvUgeGULJbZWWl2XJiYqLN2w5fd/i+iIiI1GTwwluj0WDRokVISUlBeno65s+fb3VduQQHBzu1/dy5c+3eRu7nLJawsLBRfy/UFC0xMTFWfxcQEICIiAjT8UgefO0dw3lCyW6tra1my6GhoTZvO3xU37a2NkFqGnThwgWHt42IiODockREbsKeVk9bLzJDQkKwYMECp+oSi16vR0lJicPb+/j42NXzaZDSL9Cjo6Nx5coVu7cLCAjAuHHjcP78eYu/F+p5T58+HX//+99HPB4TE4OZM2eOuu3QL0iIlIYhlOzW3t5utuzt7W3ztj4+PqPuy1nLly93eNtnn30Wzz33nGC1EBGR6xP7Al+o7rh33303vLy8HN7vuHHjnK5BiWFo7ty5eP/99x3ads6cOaiqqkJ/f7/N29j7Gmg0Gmi12hFTAM2bN8/ifchEasEQaqfa2lrR9h0UFISAgADR9i+U7u5us2W9Xm/ztkP/BwgAXV1dgtRERERElgUGBo74/+9Y/Pz80NHRYVrOyclx6NhKDJ5DOTuNTkxMDC5dujTicXuft7NfNij9dXZltr72YWFhuHbtmsjVqAdDqJ0SEhJE2/dLL72Ep556SrT9C2V4y2dvb6/N2/b09JgtD28ZJSIikovQ02fYw55BjOzlyOA1U6dOxblz59De3o7Jkyfb1OrGIGTOntfDWgjVaDQcnMpFzJ8/H3/961/lLkMxGELJbkNH/wNGtoyOZnjL5/B9OWvdunUO3bMCwHRzPxERka3U0B3XkS/QQ0JCsGjRIqePrfR5QsWqyd4vNOx9n5X4WtLonG11dzUMoWS3wMBAs+Xm5mabtx06tQsAwbsfp6enIysrS9B9EhGRexPqgt+e21eEotfrMXny5BGPjxZ6goOD7Rp0cDSuHpZGe35CtYSK7f7778fRo0dx8uRJ0Y81Gm9vb7saNtTG1f8W7MUQaid2iQBSUlLMlmtqamze9uLFi2bLqampgtRERETkLEcuEu3ZxpGWEGevO1atWmX3/aC33XabU8ck8e8JHb5/Z8KwXq9XREAaN26c7EFYTEp4jZWE7cJkt9jYWLO5xuyZFqWiosJseeLEiUKVRURE5DSxLxR1Op1d6zs7Aqqfn5/Fx62FHp1O5/CtMs5MbyMXqbvjWiNGS6it2yrlPVJrQ4+trx+745rjq0EOGTpK3uHDh9HX12fTdnv27DH9nJiYiKCgIMFrIyIichXR0dGq+X/l8GlEAOXfE+osoZ7TaPuxJZw5G1aVEJDUFkLtec1TUlLs/gLK1cn/iSNVGtpVp6urC7t27Rpzm4qKClRVVZmWlyxZIkptREREQhLqvj9HLV261OEpUqRUXV0tdwmKodFo7GoZtnYPrlQjNishILlqCE1KSsLcuXNFrkZ9GELJIXfccYfZ8ltvvTXmNsPXGb4PIiIiGsnX1xdTp06Vu4wx9ff3j3hM6a2fSumOq9FoRBu4ypZahGgJdfa1VGsIHet55+TkQKfTKf5vQWoMoWQye/Zs0zd3Go1m1G80x48fbzZ0+9/+9jfs3bvX6vqVlZX4wx/+YFrOzs7mt0JERKQKYreEhoWFOb0Pe0k1GmtnZ6do+1YCIZ9TTEyMzfsX+rVkd1z7qe2eW6WR/xNHqvXSSy+ZTloGgwGrVq2yOKpZTU0Nli5davY/ohdffFERJzwiIiK5lZSUyF2CaNrb2+UuYVRitoTaO1CT0IMQ2bM/dscVH8OoOU7RojLp6eljrrN27Vp8/fXXIx6fMmUK1qxZI1gtkydPxssvv4wnnngCAFBXV4eCggKsXr0aU6ZMgU6nw7Fjx7BmzRqzAProo4/yflAiIqJvREVFSX5MMS74w8PD0dTUJPh+3ZlUwUWIhgFnR3JWGzamOIchVGWGT3FiSVtbG9ra2kY8Hh8fL3g9P/vZz3D9+nW88sorMBqN6Ovrw5o1a6yG3fvvvx+///3vBa+DiIhILHIPTCSG8PBw1NfXC7rPcePGMYR+Q+w5Z5XYHTczMxOnT592eHtvb2+na5CSrfeEkmWM8OS0l156CVu3bh110IRJkybhb3/7G/785z8rossHERGRO8vNzRV8n2NdjFv6fWpqquB12MPZACHkPZvOdKl19osSIa7NPD09kZGR4fD248aNc7oGKfGeUOewJVRlxOwvv337doe3nTt3Lvbu3YuKigocOnQIdXV1MBgMiI2NRU5ODiZNmiRcoURERBJyxZZQpbQ6JSUlobKyUu4yRCHEZ0NNAxNpNBpER0ejvLzcoe1DQ0MxceJElJWVQafTYWBgYMQ6+fn56OrqQllZmbPlOs2REZDHEhcXh7q6OkdLUhWGUBJUWloa0tLS5C6DiIiIyMTX19dsfIpBYrWEBgcHw2AwOH08Nd0TKsR+SktLkZubC09PT7z33nsjfl9YWAgAigqhQr1H/v7+WLx4MdasWYOOjg5B9qlk7I5LRERERE5zpDuuFCFr8uTJWLlypejHGSo7O9vubSz1dpOqy6dQt0oJEWYDAgIU01I/GnvfG0f+PlwZW0KJiIiIHORqF45SPx+pQqiUoSYnJwd6vd7u52YphArVTXYsQrWEutrfw2iEfq7uNtARW0KJiIiIyC3Ze8Hv5+c35jphYWEOHc+ellBb6rZn9GOhwq47TVviLmFRLO7zSSEiIiIag9j37Ik5wKDcxJ6WRAlKS0vNlsXuYuxMd9zW1tYxtwsNDQXAllBHiNUS6i7YHZeIiIhIBTQajapDrFwX2UKNbvzggw9Cr9cLUZJFQreE2mKwm7KS7glVC3u7z9p6T6i7hFH3+aQQERERqdi8efPkLkFwarngzszMtDuACtFKLvbrI3TwcXQ/avkcDMV5Qp3DEEpEREQ0hsmTJwuyH2daMlNTU5Geni5IHUqhlgt0e1okHX1OYoVQW1qC5Z6iRY1fsAjd6suWUCIiIiIyU1RUZPFxqe8JjY2NdWr7sbjiBbCSugFLOTCRLQaDlFBh19H9JCYmOn18qQndHdfdMIQSERERjUGr1Y466imNfZFdV1dn9zZic/b4AwMDAlXi3BcUjm5bWFgIQPhQK9V2chI6fMr9tyA19b3jRERERArhbheOQpP79XP2+FVVVYLv0xbDj2EwGOzeR3Z2NsLDwwHI3x1XjThPqHM4Oi4RERHRN9zlApDsI8XAPc60hPr6+lp9zNIxV6xYYQqgY9VlK2e649q6f0dERkaisbFR4Gp4rnCW+3xdQURERKRySr7wdYd5QsXkTAi19Dra0yopd3dcMT8Hy5cvF2W/Yo0s7C5/EwyhRERERA5ylwtGscjRdVUqUg9aNZw9XXTlnqJF7n07Qqx63KVLs3s8SyIiIiInCR0SxJaUlCR3CW5JKWFptM/r8BpduSVULGINTKTG18IRDKFEREREDpL6gtHW4/n4+FidVkaI/dPYhJiixR4xMTFmy7m5uTZvK3VLaFRUFABAp9Nh9uzZghxbakKHxpSUFEH3p3QcmIiIiIhIImlpaaioqDAtD16MC2nSpEnIz8+Ht7e33dsKfV+iEij1iwKhTZ06FZ9//jm6u7sRFhaGCRMm2LytUAMT2dIS+sgjjwAAuru7odFo4OXlZfP+lUToejIzMwG4T3dchlAiIiIiiRQWFuLSpUvo7e2Fh4cHpk+fLvgxIiMjHQqggLDzXtpCLRfcSgtAlkRERGD16tVob29HSEgIdDodANtql+OeUEc/o0ohdHdcvV5v1/pqxxBKREREJJGgoCDceeedaGhoQEREBAIDAwU/hjMXsQyh6ubt7e1QuJP7nlBbDK0xOjoaV65cEe1YthArLLpLCOVfPhEREZGE/P39kZaW5lAAdcULVFu7Y6qNvfeEysmWumz5vEr1pcK0adMkOc5oODquc9zjWRIRERHRmJxpmXV0nlBXC6FKC5q21DPYddfZ43h6ejq9H1uEh4fbtX56errgNQyGRaHfb6V9fsTCEEpERETkQpy5iJ0xY4aAlSjD4OsRGxvr9D5clVarRWJiotP70Wg0iI6OFqAiy/u29LMtMjIyhC4HhYWFgu8TcP3P2iCGUCIiIiICACQkJAi6v7FaVqW84B7ehTM5OVnU4yk5TFiqbd68eQgODnZ638XFxfD19XV6P0Ly8fERZD9hYWHw9PREXl4eQkNDbdrG3s+Bkj83QmIIJSIiIrKBs/M4Kr0GZ1oKrcnKyhJ8n5bMnz9/zHXCwsJM9fj7+yM/P1+UWkZ7jxwJGKmpqc6UYzNPT0+H5pYdLjo6Gvfccw8efvhhAar6J2fCmVDBbuXKlXjooYfMXid2x3UMR8clIiIiwWVmZuLMmTOm5eLiYhmrcR0Gg0G0fTt78Wtpe6laxEbrSjq0rhkzZpimxRH7Yr+zs1OQ/QxO3SEFNYyS6+rc5bVzj2dJREREksrJyTF1xQwPDxflniwxKP0C0JaWUEeDhJJaYIRokbNGo9FI8lzPnTsn+jGUREmfn+HkrI3dcS1jSygREREJLjAwEHfeeSe6u7vh6+ur+HA3KDIyEtXV1XKXYZUSugTbY6wLamu/z8vLQ0xMDHp7exEfH48PPvgAHR0dDh9HDr29vRYf12g0kr6P9rw2SnwdBymhO64U1FSrM9TxfwQiIiJSHQ8PD/j7+ysygFq70IuPjzdbnjRpkhTl2EzM8CJGd1xbWHtO0dHRSExMhFardTjM2mLixIlmy1OmTHFq/6O9RwMDA7YXJgNXC0CzZs0S/Ri8J9Qxyvu/AhEREZHIrAWF8PBwzJkzB/Hx8Zg8ebLZvaxKaIV0te64UhxzrGNMnjwZ4eHh0Gq1yMzMtGuKkdG+YBk+Gi8A9Pf327xvtRH7vbR3/6WlpZgwYYJD28pJTbU6g91xiYiIiIYYN24cxo0bJ3cZFok5MJGaaTQaeHh4OBTyAgMDsWLFCtPy1atXnaplMJgmJSVh9+7dZr8zGo2Sd8e1h6sEoNDQULMWbjXdE6rEniNicI9nSURERDSEWi+2ldwdV04ajUYxIwcPruvp6Tnid3KETzW/r0IR8zXg6+sYhlAiIiIilVBbCBXzXs7hrIVQMUOCpVarweNZOu5o758SWkeVHKiUXJuQ2BJKRERERIoSGRkpdwlWuUprk1ADNFkKE0oImlKaOXOm2XJJSYksdaipO67bhG25CyAiIiIi28TExCAxMXHUdRwd/EaOllC1s/T81NySJfT7lZ6ejvT0dHh7eyMtLc2pe605RYtr4cBERERERCqh0Whwyy23oK6uDjqdDjt27EBbW9uIdRzdt1IptTZLLZtjtYQq4blYq0HooOfh4YG5c+c6vM+hnGlFVsJrbis11eoMhlAiIiIiFdFqtUhISBB8v3LNE6pmo4VQe+8JFYtQ74vcLbxKnWOV84Q6Rr39BYiIiIgk5Or386l9ntC8vDzB9jWctTrVEELtMdr7IXcIdWb0YzUFO7lfZ6m4x7MkIiIickGWLq5tveBOSUkxW87PzxekJrlkZWUJsh97AoulaVh8fHysru/KIVTsoOdMS6iaBiZyFwyhRERERG6osLAQoaGh8PT0REFBAYKDgwU/xlgX4EKGMl9fX8H2ZSsvL68RjwUGBo66jVpDidx1KzXAszuuY3hPKBEREZELsfViPSQkBHfeeadgx3X04lmp4UIMSn+uSu6O6wx3CXZqot5PExERERG5BbnnCRXq+EoPoaNRc5Bjd1zlYQglIiIiUimlX+AqvT6pKWV0XEemaGFLqDTUVKsz1PtpIiIiIiK3oNQLc3vrUnpLqJIHJlIqd33ezmIIJSIiIiKn8WJ8bEoPoaNR8/ur5tpdFUMoERERkUrx4lp4Yr6mo43gq4SAGhISYvV3av6sCVH78CmNyDkMoUREREQ2UEJIsIWS6lRzcBFCenq66WdPT0+MGzdOxmrG5uHhgRkzZti9nY+Pj+Dv9bx588yW58yZY/O2w2sRorbCwkKbjmXv751dX604RQsRERERkQhKSkrg4+ODrq4uTJ48GR4eHnZ/STB+/HiUl5eblv38/IQu00xWVhZ2795t1zYlJSWC15GSkoLCwkLU1tYiNjYWaWlpgh/DHqO1Eo9GSV8KKQlDKBERERE5TcwWHLmnaHGUXq/HtGnTnNpHdHQ0UlNTUVlZCU9PT8ycOVOg6uxj7XWZOHGiKF1VtVot8vPzkZ+fb/H3kZGRaGxsFPy4lkRERDi0nUajgV6vF7ga18AQSkRERESicJeuhfZwpGVs/vz5aG1thV6vh7e3twhVjc3ae6nT6SSu5KaSkhKsW7cOBoNBlP1PnDgRly5dgl6vd6iLMgCMGzfO7hDqLn8zDKFEREREKuUKF6zsrmibwMBAuUtQlPDwcCxfvhy1tbU4cOCA4PtPS0tDaWmpQ9sWFBQgOjoasbGxNq3vCn/H9uLARERERETkNLm64yYmJop2XFK28PBw5ObmylqDpc9mXFwc4uLibP6bcMcQypZQIiIiIhfiLi2Ler0efn5+KC4uFnS/7hgIbMHXRTzu+NoyhBIRERGplNIvXm2pz9HQ/OCDDzq0nSP6+/stPu7I6y/1lwRCfUaU/llTs6Gvrbu8zuyOS0RERGQDd2lhpJHKysosPq7Wz4S7BB1nsCutuBhCiYiIyO3wwpGssfTZ6Ovrk6ESUit7zy9sCSUiIiJyA2ptwbKFXM/N0sWzq3cFVUN3XKEo9T2wJCQkRO4S7KKm11YoDKFERERERDQqJQeloYNTaTQaFBUVyViNsl8rpeDAREREROR2XOUiUU3PIysrC6dPnx7xuFpbBkk5Jk+eDK1Wi+bmZkyYMAEBAQGSHVuIv0E1/R0LhSGUiIiI3I4jwYdhaXRjXUiPHz/eYggVYt9knTu8dhqNBjk5OYLvUyq8J5SIiIiISCBa7T8vNfV6vYyV2M5dQoC9rL0uBoNB4kpcj06nk7sEyTGEEhERkdtxlaCh9OcxNIT6+fmN+H1AQABbmL+h1tdBrXULRYgBuTw9PYUqRzUYQomIiMjtuPuFs1SGXox7eHggPz/ftJybm6ua1lFX48iXF2wJFY+Hxz/vkFT6F0tC4T2hRERERC5EroA9tNXT2mOFhYVIT0+H0WhU7DQalkJAWFiYDJWoA0Oo8/z9/eUuQXIMoUREROR23KW1QUq2hFAACA4ONltWQ6v0pEmTRD+G0j+TbAm1nb3vZWFhoUiVKBe74xIRERGplJKCi6VaLIVQNfLx8RFsX6mpqWbLg61gSg/jDKGWCfE36I4toa5xZiAiIiIiAPKFGSEGaHEHRUVFpnsANRoNZs2aBQBISkqSsyyHuXsIFZq7/M2wOy4RERGRSqm19Uyu/SjhWEFBQVi5ciXq6uoQERGBiIgIAEB2djbKysrQ1dUFAJg3b56odQhF6Z9BR7nSZ06JGEKJiIiIbOCqF9tCsdT11pbXTA2vq9AhISgoCEFBQWaPeXl54c4770RNTQ2Cg4MRFRUl6DGdlZGRgfLy8hGPu3tLKHsAOIbdcYmIiIjIaZamWxk69YQUlBbc7OXj44MJEyYo8nlERkZi/PjxIx539xAqNHcJsAyhRERE5HZ44Sy8wMBAhIeHm5YjIyPh6+sraQ1CHM/VQoCQz2f27NkjHlPL35KUI9Da+5oPXd9VBvMai3s8SyIiIqIhEhMT5S7BJS1cuBBZWVnIysrCrbfeKth+5Q6G1o4vd11KoJYQmpmZafYliVK5SwjlPaFERETkdtLS0nDu3DnTsqUWHrWSugvsUL6+vpgxY4Zsx2colJ5aQqi3tzeWLVuGjo4OfPHFF7h+/fqo68v1WdLpdLIcV2oMoUREROR2EhISMGvWLFy8eBGxsbEYN27cmNuoYQAdAEhJSZG7BLuo5XV1JUIGLLWEUOBmwAsMDISnp6dg++zs7BRsXwBbQomIiIhc2oQJEzBhwgS5y3CKpVZPd2lJIWVQUwgVQ01NzYjHnAn57hJC3eNZEhEREbmgrKwss2UljqqqNuzSa18QcvcQKkRoHPqZc5cvkRhCiYiIiFQqNTUV0dHRAG5eDGdnZ8tckf3YHVd55s2bZ7Y8ffp0q+tGRESIXY6iWfrSwplgHhoa6kw5qsHuuEREREQqpdFosHTpUjQ0NMDX1xeBgYFylyQrsVox1dw66kjtSUlJyMnJQU1NDaKjo5GRkWH63YwZM7B7927TvqWc+kSJLL2+znyxEhgYiJSUFNTX1ztTluIxhBIRERGpmEajMbWGkvPUHDiFotVqMXXqVEydOnXE77KysqDVanHt2jWkp6cjKChIhgqVzd6W0OGfufnz57v855AhlIiIiIhkY0urEbvsKsvEiRPlLkExLN0T6ux9shqNBjExMU7tQ+l4TygRERERuQR2xyVb2PJ+2vqeC31PqLtgCCUiIiIiciMM1cJhCHUMQygRERERKZpSu+MyzJGluXrdfYAwWzCEEhEREZFslBowiWxh6Z5Qe0OoO36ZwRBKREREZAOGJeUT4mLenvd5ypQpZsvp6elOH5/UhecFxzCEEhERERE5IC4uDmlpaQButn7l5+fLXBEJxdYvNBhCHcMpWoiIiIhI0eS+0LcWSLRaLebNm4dZs2ZBq9Va7JopN3fs6iklIT6b7vgeMYQSERERkUuQ62Le0uA05B7k/oJErZT3dQ0RERERuQ2lXcQrrR4iV8QQSkRERESKJncwdMfukq4sLCxMsH05+9mMj48XqBJ1YQglIiIisoHcQchVZWdnmy1HRkY6vC9nth1kqWutj4+P0/sl5cjLyzO7f9eZeT2dPS/MnTvXqe3ViiFUhRoaGrBx40Y8//zzWLp0KWJiYqDRaEz/HnzwQUnqSE5ONjuurf9++MMfSlIfERERKV9OTg78/f0BAHq9HtOnT3d4XxMmTICvr69puaioyO596PV6JCUlmZajoqIQFBTkcE2kPL6+vli+fDmysrIwY8YM5ObmOrwvb29vh7cNDAx0ans1413UKvLee+/h6aefRm1trdylEBEREQnC19cXd955J5qamhAUFAQ/Pz+H96XT6bBy5UqcP38e/v7+SE1NdWg/8+bNQ1lZGQwGAzIzMx2uh5QrPDwc4eHhAICzZ886vJ/CwkJUVlaalrOysmzeVomjKUuFIVRFKisrFRtAQ0JCEBoaatO6ERERIldDREREaqLX6xEbGyvIvnx8fJCTk+PUPjw8PEZ0E3YlvMfVnKXXw9bXKDg4GKWlpThz5gyCgoJQUFBgdd3s7GycPHnStFxSUmJ/sS6CIVTFUlJSUFhYiMLCQjz55JOy1vLYY4/hueeek7UGIiIiMSUmJuLcuXNyl+GWeD+u4xg4xTdx4kRMnDhxzPVycnJw7do1XLt2DePHj0dMTIwE1SkTQ6iK5OXl4cUXXzQFz5CQENPv5A6hRERErq6goACVlZXo7+8HAMyfP1/miohICFIFdT8/PyxZskSSYykdQ6iKLFu2DMuWLZO7DCIiIrcUEBCAFStWoKamBmFhYYiLi5O7JCISAFuLpccQSkRERGSj4OBgBAcHy12G22F3XBKTOw8QJBe+4kRERERE5LacGZiIHMMQSkREREREbouBU3rsjkuC2Lx5M3bv3o1Tp07h+vXr8Pb2RlhYGLKzszFr1izcd999iIyMFL2OCxcuOLxtRESEJDUSERERkXKwO670GEJJEPv27TNb7u3tRWtrK6qqqrBhwwY8/fTT+MEPfoAXX3wRXl5eotWxfPlyh7d99tlnOc0MERGRAvGeUGGx5c8cXw/pMfaTYHx8fBAXF4e4uLgRQbO7uxuvvfYapk2bhqtXr8pUIREREanRjBkzzJYzMjJkqoRcEVtCpcdXnBym0+mwePFivP3227hw4QI6OjpQW1uL2tpadHR04NChQ3j00Ueh1+tN2xw9ehS33347enp6ZKyciIiI1CQ2Nhbjxo0DAISEhCA3N1fegsilsCVUeuyOa6fa2lrR9h0UFISAgADR9i+0ffv2ISIiwuLvdDodCgoKUFBQgAcffBCLFy9GY2Ojabvf//73eOKJJwSvad26dUhPT3doW2vPhYiIiOSl1WoxZ84czJ49m4GBBMeWUOkxhNopISFBtH2/9NJLeOqpp0Tbv9BsDW2FhYVYt24dZsyYYbqn45VXXsGPf/xjs1ZSIaSnpyMrK0vQfRIREZEyMIDaj6/Z2PgaSY+xnyQxbdo0rFq1yrR8/fp17NmzR8aKiIiIiIg4T6gcGEJJMitWrDBb3rt3r0yVEBERERHdxO640mN3XDtxiHDHTZgwwWx58B5RIiIiIiK5sNVTeoz9JBkfHx+z5c7OTpkqISIiIiK6iSFUegyhJJmGhgaz5fDwcJkqISIiIiK6yVIIZe9HcTGEkmR27dpltpySkiJTJURERETuga18Y2MIlR5DKEmip6cHb775ptljCxYskKkaIiIiIvfFYGrO0sBEDKHiYgglk8EJoAf/VVdXW123q6vLrn3/8Ic/RE1NjdmxkpKSHC2ViIiIiEgQbAmVHkfHJYekpqbi3/7t33DfffchJibG6nr19fV47LHH8Pe//930mE6nwyuvvCJIHdeuXRt1mUiJGhsb8ac//cm0/IMf/ACRkZEyVkRkG352SY34uaWxKDGEuvo1LkOoyqSnp4+5ztq1a/H111+PeHzKlClYs2aNIHVcuXIFTzzxBJ566ikUFRUhLy8P6enpCA4OBnBzEKJ9+/Zh8+bN6O3tNdv2j3/8I4qLiwWpo7m5edRlIiW6evUqnn/+edPyqlWreEFEqsDPLqkRP7c0FkvdcQ0GgwyV/JOrX+MyhKpMRUXFmOu0tbWhra1txOPx8fGC12MwGLB//37s379/zHWDgoLwpz/9Cffcc4/gdRARERHRSB4evNwfixJbQl0d7wklhzz55JOYOXMmfH19x1w3NjYWTz/9NMrKyhhAiYiIiCTk6ekpdwmKxxAqPX41ojJi/kFs377d5nVffvllAEB/fz9OnTqFCxcuoL6+Hu3t7QButnpGRESgoKAAaWlpYpRLRERERGNgCB0bQ6j0GELJKR4eHsjNzUVubq7cpRARERHRMOyOOzZLIVTue0JdHbvjEhERERG5KEsBi/OEmrMU1IOCgmSoxH0whBIRERERuSgGzrFptVpkZmaalhMTExEYGChjRa6P7fNERERERC7K0vQjNFJJSQkSEhIwMDCA5ORkuctxeQyhREREREQuii2htktKSpK7BLfBr0aIiIiIiFyUpVFe2TpKcuMnkIiIiIjIRTGEkhLxE0hERERE5KIYQkmJ+AkkIiIiInIjDKEkN34CiYiIiIhclKWWUCK5cXRcUrXe3l6z5ZqaGpw+fVqmaohsc+HChVGXiZSKn11SI3f/3F64cAH19fVmj/FaSflqamrMlodf86qdxsivR0jF/vCHP+Cxxx6TuwwiIiIiItG8/vrr+NGPfiR3GYJhd1xStcDAQLlLICIiIiISlatd8zKEkqoFBwfLXQIRERERkahc7ZqX3XFJ1VpaWrBjxw7TckJCAry8vGSsiIiIiIjIOT09Pbh06ZJpedasWS4VRBlCiYiIiIiISDLsjktERERERESSYQglIiIiIiIiyTCEEhERERERkWQYQomIiIiIiEgyDKFEREREREQkGYZQIiIiIiIikgxDKBEREREREUmGIZSIiIiIiIgkwxBKREREREREkmEIJSIiIiIiIskwhBIREREREZFkPOQugMhRp0+fxokTJ1BfXw+dToe4uDgUFhYiJSVF7tKIiNzaoUOHUF5ejvr6evj4+CAuLg7Tp09HdHS03KUREUnGaDSioqICp06dwqVLl9Da2gpfX1+EhoZi8uTJyM7Ohk6nc/o4ajznMoSS6nz88cf49a9/jRMnTlj8/fTp0/HCCy9g9uzZ0hZGRKRgBoMBZWVlOHTokOnf8ePH0dXVZVpn27ZtTp07/+u//gu/+93vUFFRMeJ3Op0O8+bNw6uvvoqcnByHj0FEpGRtbW349NNPsWHDBnz11Ve4evWq1XVDQkLw0EMP4fHHH0dMTIzdx1LzOVdjNBqNchdBZIuBgQE8/PDDePfdd8dcV6vV4he/+AV+/etfi18Y0Sg0Go1D27366qt4/PHHBa6G3NXKlSuxefNmdHR0jLqeoyG0s7MTK1euxKZNm8ZcV6/X4/XXX8f3vvc9u49D7keML0+qq6sd7jX10Ucf4c4773RoW3J9bW1tiIyMRHd3t13bhYaG4u2338Ydd9xh0/qucM5lSyipxk9+8hOzAOrr64t7770Xubm56O3txf79+/H3v/8dfX19MBgM+M1vfoPQ0FD85Cc/ka9oIiIFOHz48JgB1FEGgwH33nuv2cVQSEgIvv3tbyMzMxNtbW3YsWMHNm7cCKPRiN7eXvzrv/4rwsPDsXLlSlFqItdg65cnREoxMDAwIoCmpqZi1qxZmDBhAsLDw9Hd3Y2TJ0/i73//O5qamgAA169fx6pVq/DRRx+NGURd5ZzLEEqqsHHjRvzhD38wLWdmZmLTpk1ISEgwW+/48eO47bbbUF9fDwB4/PHHMX/+fGRnZ0taL5ElkZGRCAgIsGndkJAQkashd+Xl5YWcnBwUFBSgvb0d//M//+PU/t544w2sW7fOtFxaWor169ebfYYff/xxfPXVV7jjjjvQ2toKo9GIBx98EKWlpYiMjHTq+OS6xPzyZKjY2Fj4+PjYtK6/v7/I1ZArCAwMxEMPPYR/+Zd/sdoV9rXXXsOPf/xjvPXWWwBuBtjvfOc7KC0tRXh4uNV9u8w510ikcAMDA8acnBwjACMAo6+vr7GiosLq+rt37zZqtVrT+kuWLJGwWiJzg59DAMZ33nlH7nLITT3zzDPGN99803j48GFjb2+v6fF33nnH7DO6bds2u/bb3t5ujIqKMm0fExNjbG5utrr+Bx98YHa8H/7whw4+I3IHSUlJps+Kl5eXsaioyPj973/feN999zn1ua2qqnJqeyJr2trajE899ZTx2rVrNm9zzz33mH0en3/+eavrutI5l1O0kOJ9+eWXZoMQPfbYY0hNTbW6/vTp07Fq1SrT8meffYYLFy6IWiMRkZL96le/wne/+13k5+fD09NTsP2+//77aGhoMC0/++yzCA4Otrr+XXfdhSlTppiW3377bbS3twtWD7mW+++/H2+++SYOHz6MtrY2HDhwAG+88QbmzZsnd2lEFvn7++Oll15CaGiozdu8+uqrZuNHfPbZZ1bXdaVzLkMoKd4nn3xitvzwww+Puc13v/tds+Wh3RaIiEgYQ8/Pvr6+uOeee8bcZuj5ubu726aBNcg9ifXlCZGSxMbGYuLEiaZlSyPdDnKlcy5DKCnexo0bTT+npaUhLS1tzG1KS0vh7e1tWh7tWyUiIrJfd3c3vvrqK9PytGnTbLrnecGCBWbLPD8Tkbsbeq+xtfugXe2cyxBKitbS0oKamhrT8tSpU23aTq/Xo6CgwLRsbU5RIiJyTHl5OXp6ekzLtp6fExMTERcXZ1rm+ZmI3F11dbXp5+joaIvruNo5lyGUfJIj1gAAE7FJREFUFK2srMxsOT093eZth7aYNjc348qVK4LVRUTk7oQ6P5eXl8NgMAhWFxGRmnz99ddobGw0LU+bNs3ieq52zmUIJUWrrKw0W05MTLR52+HrDt8XkdTWrFmDmTNnIjIyEnq9HqGhoRg/fjy+9a1v4b/+67/Q2toqd4lENhPq/NzV1cUvCUlW//mf/4kpU6YgPDwcnp6eCA8Px8SJE/HAAw/gL3/5i1nrE5HQfvvb35otr1692uJ6rnbOZQglRRt+UW7PaGPD51lsa2sTpCYiR23duhW7du3C1atX0dfXh+bmZpw/fx5/+9vf8K//+q9ITEzESy+9pIhvKInGwvMzuYr169fjwIEDuHbtGvr7+3Ht2jWUl5fjvffew/3334+kpCS8/fbbcpdJLuiDDz7Ap59+alrOzc3FsmXLLK7raudchlBStOHDSA8dbGgswyeeVsqQ1OTe/Pz8kJCQgOjo6BGjPd64cQO/+MUvsHDhQnR1dclUIZFteH4mVxIYGIjExERERkZCp9OZ/a6hoQHf/e53cf/99/NLQhLM6dOn8cgjj5iWPTw88NZbb0GrtRzPXO2cyxBKitbd3W22rNfrbd7Wy8vLbJkX9SQHvV6P1atX44MPPkBNTQ3a29tRU1ODy5cvo729Hbt27cJ9991nNkfYli1bcO+998JoNMpYOdHoeH4mNfP398e//Mu/YN26dbhy5Qpu3LiBixcvoqGhAa2trdi8eTMWL15sts1f/vIX/PSnP5WpYnIlly9fxuLFi83C4Msvv4zCwkKr27jaOddD7gKIRjP8W57e3l6btx1+D8fwb4GIpFBbW4uIiAiLv9Pr9SgpKUFJSQnuvfderFy5Ep2dnQBuzgX20UcfWb03hEhuPD+TWsXExKCurg6BgYEWf+/r64tbbrkFt9xyC95991185zvfMbWA/ud//ifuvvtuFBcXS1kyuZDr16/j1ltvxcWLF02PPfLII2N+weFq51y2hJKiDZ03CRj5LdBohn/LM3xfRFKwFkCHW7hwIf7f//t/Zo/9+te/FqMkIkHw/Exq5eXlZTWADvfggw/ixRdfNHuM52ZyVGtrKxYuXIiTJ0+aHrv33nvxxhtvjLmtq51zGUJJ0Yb/T6K5udnmbVtaWsyWbZnQl0hO3/rWt8y+XT916pTZ3GFESsLzM7mLn/zkJ4iPjzctb926VRHdGUld2tvbsWjRIhw8eND02J133ok///nPVu8DHcrVzrkMoaRoKSkpZss1NTU2bzu0mwMApKamClITkZhWrFhhtrx3716ZKiEanVDnZx8fH6uTsxMpgV6vx5IlS0zL3d3dOHbsmHwFkep0dnZi8eLF2LNnj+mx22+/He+///6IgbCscbVzLkMoKVpmZqbZ8oULF2zetqKiwvRzSEiIIv7giMYyYcIEs+WhE1gTKYlQ5+eMjAybWgGI5MRzMzmqq6sLS5cuxc6dO02PLVq0CB999NGIUfJH42rnXPkrIBpFcHCw2QS7trYK9fb24vDhw6bl7OxswWsjEsPwwQIGByoiUpqMjAyz0RltPT9funQJdXV1pmWen0kNeG4mR/T09GD58uX46quvTI/Nnz8fa9eutWt0W8D1zrkMoaR4t912m+nniooKVFZWjrnNrl27zG7YHtqNhkjJGhoazJbDw8NlqoRodN7e3pg7d65pee/evTbNPffFF1+YLfP8TGrAczPZq7e3FytXrjQ7582ZMwcbNmywa47PQa52zmUIJcW74447zJbfeuutMbcZvs7y5cuFLIlINLt27TJbHn4PCJGSDD0/d3Z2Ys2aNWNuM/T87OXlhUWLFolSG5GQeG4me/T39+Ouu+7Cxo0bTY+Vlpbi008/dWp6FFc65zKEkuLNnz8fkyZNMi3/4Q9/QFVVldX19+7di48++si0vHjxYowbN07UGomEcPXqVXz44YemZR8fH5SUlMhYEdHo7rnnHkRGRpqWn3/++RGjMA714YcfYv/+/ablhx9+WBFTBRCN5vTp02bdKZOTk5Geni5jRaRkAwMDuO+++/DJJ5+YHps+fTr+8Y9/wM/Pz6l9u9I5lyGUFE+r1ZrN0dXR0YGlS5fi0qVLI9Y9ceIEVq1aZZpUWqvV4oUXXpCsVqJBfX196O/vt3n9/v5+fPvb3zbrWvOtb33LoS47RFLx9/fHL3/5S9Py5cuXsWzZMosXRV999RW+973vmZb9/PzMtiWSQnd3N4xGo83rt7e347777jNdVwA35w4lssRoNOI73/kO/vrXv5oemzp1KjZt2iRI+HOlc67GaM9fIpGMHn30UfzpT38yLfv5+eHee+9Fbm4u+vr6sG/fPnz88cfo6+szrfPqq6/i8ccfl6NccnPV1dWYP38+fvazn2H16tUICQmxuu758+fx8MMPm42c5+vri7KyMrOBuYgctXbtWjzxxBMjHm9razMb5TM2NtZiV7Hf/va3I6YPGmQwGLB8+XJ8+umnpsdCQ0Nx//33Y+LEiWhvb8f27dvx2WefmS7+NRoNPvzwQ6xevdrZp0Zu6N1338VDDz1kWt62bRtmz55t07bbt2/Hj3/8YzzxxBNYtmzZqC1Thw8fxoMPPohTp06ZHouJicG5c+cU05pEyrJr1y7MnDnT7DFr59XR7NixA3FxcRZ/5yrnXIZQUo2BgQE89NBD+Mtf/jLmuhqNBk899ZRZCyqRlKqrq033DHl6emLatGnIzc1FSkoKAgMD0d/fj8uXL+Prr7/GV199ZfYtu06nw/r167F48WK5yicXM/yi3V7vvPPOqK0/HR0duOOOO7Bly5Yx96XX6/G///f/xg9+8AOH6yH3IMaXJ9u3b8ecOXMA3Pyyb8aMGZg8eTLi4+MRGBiInp4eXLp0Cdu3bzeb0xG42Qq1bds2FBYWCvH0yAUN/Xw5o6qqCsnJyVZ/7wrnXA+5CyCylU6nw3vvvYclS5bg17/+tdk3k0NNnToVL7zwgtkIYkRy6uvrw86dO81aOq2JjY3Fu+++iwULFkhQGZEw/Pz8sHnzZrzxxhv4j//4D4ujmGu1WsydOxevvvoqcnNzpS+SVKe1tdVsfkNr6uvrrW4/ms7OTmzZssWmC/mMjAysWbMG+fn5Y65LJDZXOOeyJZRU69SpUzhx4gTq6+uh0+kQGxuLoqIipKamyl0aEVpbW/Hv//7v2LdvH44ePYre3t5R109LS8MjjzyCRx55BMHBwdIUSSSSgwcPoqysDJcvX4aPjw/i4uIwffp0xMTEyF0aqYgYLfi1tbV44YUXsG/fPpw8eRIDAwOj7iMnJwff//738eCDDzo1qimRmNR4zmUIJSISWU9PD44fP47KykpcuXIFHR0d0Ol0CAoKQnR0NIqKihAfHy93mUREbqWjowNHjx7FxYsX0djYiM7OTnh4eCA4OBjx8fEoLi5GRESE3GUSuSSGUCIiIiIiIpIMp2ghIiIiIiIiyTCEEhERERERkWQYQomIiIiIiEgyDKFEREREREQkGYZQIiIiIiIikgxDKBEREREREUmGIZSIiIiIiIgkwxBKREREREREkmEIJSIiIiIiIskwhBIREREREZFkGEKJiIiIiIhIMgyhREREREREJBmGUCIiIiIiIpIMQygRERERERFJhiGUiIjIxcyePRsajcbqP7Lfu+++O+pr+u6778pdIhGRajCEEhERuanq6upRg5Wz/4YaHuIcCW3bt28328dzzz0nzAtBRESS8pC7ACIiIhJPQEAAIiMj5S5D9QIDA5GWlmb2WEVFhUzVEBGpG0MoERGRC1uxYoXVVkdPT88RwcqS69evo7m52bQcGxsLHx8foUpUhRUrVmDFihVmj7FrMxGRYxhCiYiI3FRcXBwuXLgw5nrPPfccnn/+edPymjVrMHv2bBErIyIiV8Z7QomIiIiIiEgyDKFEREREREQkGYZQIiIiO7W1tSE+Pt40Suvtt9/u0H5eeOEFs9Fey8rKBK7UfSUnJzs1sm91dbXcT4GIyGUxhBIREdnpueeeQ11dHYCbg/v87ne/c2g/+fn5Zsu7d+92ujYiIiKl48BEREREdjh16hRef/110/Kjjz6K8ePHO7SvgoICs+Xdu3fj4Ycfdqo+uik5ORkeHrZf5ly+fBmdnZ0iVkRERIMYQomIiOzwxBNPoL+/HwDg6+uLp59+2uF9RUZGIjg4GC0tLQCAEydOCFEiAdi+fbvN6+7evRvz5s0zLU+YMIFzqxIRiYjdcYmIiGy0b98+fP7556blRx55BOHh4U7tMy4uzvRzRUWFU/si+1VUVGD58uXo6ekBAISHh2Pjxo3w9fWVuTIiItfFEEpERGSj5557zvSzp6cnHn/8caf3GR8fb/r5xo0buH79utP7VIOHHnrI7sGC5syZI2gNzc3NWLx4MZqamgAAer0en3zyCdLS0gQ9DhERmWMIJSIissH58+exefNm0/KSJUvMWjEd5ePjY7bc1tbm9D5pbH19fVi5ciXOnj1reuy///u/UVJSImNVRETugfeEEhER2eCtt94yW37wwQcF2a9GozFb7uvrE2S/ShcZGYmAgAC7tunq6kJ9fb0gx//e976Hbdu2mZafeeYZ3HfffYLsm4iIRscQSkREZIM1a9aYfg4ODsaiRYusrltTU4OamhoAQFRUFMaNG2d13cFBjgbpdDonK1WHV155xe4gv337dkG65L744ot45513TMt33XUXnn/+eaf3S0REtmF3XCIiojGcOXPGrAWutLQUnp6eVtf/5S9/idLSUpSWluK9994bdd+1tbWmnzUaDWJjY50vmKz66KOP8Mtf/tK0PG3aNLzzzjsjWqSJiEg8DKFERERj2LFjh9nyrFmzRl3/8OHDpp+zsrJGXffSpUumnyMjI+Hl5eVAhWSL/fv34/7774fRaAQApKSkYP369fD29pa5MiIi98IQSkRENIbTp0+bLefm5lpdt6WlBeXl5abl8ePHW123vr7eNDIrABQVFTleJI2quroat99+O7q7uwEAQUFB+OyzzxARESFzZURE7ochlIiIaAznz583W87IyLC67vbt22EwGEzLQ6dgGW7v3r1my9OnT3ewQhrNjRs3sGTJEjQ2NgIAPDw88NFHHyEzM1PmyoiI3BNDKBER0RiGdpnVaDSIjo62uu6mTZvM1h2tpe2LL74wW547d64TVZIl/f39WLVqlVlr9h//+EcsWLBAxqqIiNwbQygREdEYOjs7TT/7+flZHcG2v78fa9euNS17eXlZHfBmYGAAn332mWk5ISEBxcXFAlVMgx599FFs2bLFtPxv//Zv+N73vidjRURExBBKREQ0hqFzd/b29lpdb8OGDbh69appub+/3zQIznAbN240G3H37rvv5gitAvvd736HN99807S8bNkyvPrqqzJWREREAEMoERHRmCIjI00/9/b2oq6ubsQ6RqMRL7/8MgAgJCQEwM0QeuXKFYvrDp2X0svLC4899pjQZbu1Tz75BE8++aRpOT8/H2vWrIFWy0sfIiK58UxMREQ0hvT0dLPl9evXj1jn9ddfx8GDBwEAd911l+nxrVu3jlj3hRdewJEjR0zLjzzyCOLi4oQq1+2dPHkS9913n2mAqLi4OGzYsAF+fn4yV0ZERADgIXcBRERESrdkyRJ8/PHHpuVf/vKXyM7ORmlpKQYGBvB//s//wU9/+lMAN+cQXbVqFd544w0AwLPPPovS0lIkJyejubkZL774In73u9+Z9jVu3Di89NJL0j4hF3f48GGz+3g7OzvHnNt1uB07dvCLASIikTCEEhERjeHOO+/Ec889h+rqagBAc3MzZs6ciYiICHR2dqKjowMA4O/vjzfffBPx8fHw8/NDR0cHqqqqkJaWhujoaDQ2NqK/v9+036ioKHzyySdsoRNZc3Mzmpub7dpm6H3AREQkLHbHJSIiGoOfnx8++OADhIeHmz1+9epVUwANDw/HP/7xD4wfPx6+vr74zW9+Y1rPYDCgvr7eLIBOnToVu3btQlZWljRPgoiISCE0RmvD9hEREZGZ2tpavP766/jss89w6dIl9Pf3IzU1FUuXLsVPfvITREVFma3/4Ycf4g9/+ANOnDiBvr4+REdHo6ioCN/61rewcuVK0UbDnT17Nnbs2AEAeOCBB/Duu++Kchx3N/T9e+edd/Dggw/KVwwRkYqwOy4REZGN4uPj8dvf/ha//e1vbVr/rrvuMhukiIiIiNgdl4iIiIiIiCTEEEpEROTC/vznP0Oj0Zj9I/u9++67fB2JiATCEEpERERERESS4T2hRERELiYuLg5paWlyl+FSAgMDR31NAwMDJayGiEjdODouERERERERSYbdcYmIiIiIiEgyDKFEREREREQkGYZQIiIiIiIikgxDKBEREREREUmGIZSIiIiIiIgkwxBKREREREREkmEIJSIiIiIiIskwhBIREREREZFkGEKJiIiIiIhIMgyhREREREREJBmGUCIiIiIiIpIMQygRERERERFJhiGUiIiIiIiIJMMQSkRERERERJJhCCUiIiIiIiLJMIQSERERERGRZBhCiYiIiIiISDIMoURERERERCQZhlAiIiIiIiKSDEMoERERERERSYYhlIiIiIiIiCTDEEpERERERESSYQglIiIiIiIiyTCEEhERERERkWQYQomIiIiIiEgyDKFEREREREQkGYZQIiIiIiIikgxDKBEREREREUmGIZSIiIiIiIgkwxBKREREREREkvn/vIGKmy5QvIoAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s=bay.omega[-1]/flux_resample.freqs_THz[-1]\n", + "cubic_mean_spline=bay.model(bay.omega_fixed, bay.parameters_mean)\n", + "cubic_max_spline=bay.model(bay.omega_fixed, bay.parameters_mean+bay.parameters_std)\n", + "cubic_min_spline=bay.model(bay.omega_fixed, bay.parameters_mean-bay.parameters_std)\n", + "f, ax=plt.subplots(figsize=[3,2.5])\n", + "ax.plot(flux_resample.freqs_THz, cubic_mean_spline(bay.omega), color='red', label='Best Bayesian',\n", + " linewidth=3, zorder=1)\n", + "ax.fill_between(flux_resample.freqs_THz, \n", + " cubic_max_spline(bay.omega), cubic_min_spline(bay.omega), color='red', alpha=0.3, zorder=1)\n", + "Nf=5\n", + "ax.plot(flux_resample.freqs_THz, st.md.tools.filter.runavefilter(bay.noisy_data, Nf),\n", + " linewidth=1, color='black', zorder=0,\n", + " label='Window filtered', alpha=0.4)\n", + "ax.set_xlabel(r'$\\omega$ [THz]')\n", + "ax.set_ylabel(r'$\\rho$')\n", + "plt.legend(loc='best', fancybox=True, framealpha=0.0)" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": {}, + "outputs": [], + "source": [ + "sdata=np.loadtxt('data/bayesian/mock_data/mock_data_sin.dat').T\n", + "\n", + "s_noise=sdata[1, 1:]*np.ones((2,2,(sdata[1,1:]).shape[0]))\n", + "true_s=(np.sin(sdata[0]/2.2 - np.pi/4)*0.98 + np.sin(-sdata[0]/2.2 - np.pi/4)*0.98)/2" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "(4001,)" + ] + }, + "execution_count": 8, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "sdata[1, ].shape" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "[]" + ] + }, + "execution_count": 9, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAABA0AAAJ3CAYAAAD/FKhwAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAC4jAAAuIwF4pT92AADfHElEQVR4nOzdd3wU1doH8N/MbAoBAoRepffeexMEpNoF20W99t5fvVfvtV+7olhQsaOCFOm99w4JJZAQkkCA9J5sdmbeP0LK7s72vvv7fj73SnZnZ042u3POPPOc5wiqqqogIiIiIiIiIjIh+roBREREREREROSfGDQgIiIiIiIiIk0MGhARERERERGRJgYNiIiIiIiIiEgTgwZEREREREREpIlBAyIiIiIiIiLSxKABEREREREREWli0ICIiIiIiIiINDFoQERERERERESaGDQgIiIiIiIiIk0MGhARERERERGRJgYNiIiIiIiIiEgTgwZEREREREREpIlBAyIiIiIiIiLSxKABEREREREREWli0ICIiIiIiIiINDFoQERERERERESaGDQgIiIiIiIiIk0MGhARERERERGRJgYNiIiIiIiIiEgTgwZEREREREREpIlBAyIiIiIiIiLSxKABEREREREREWli0ICIiIiIiIiINDFoQERERERERESaGDQgIiIiIiIiIk06XzeAyuXk5GDr1q2VP7ds2RIRERE+bBERERERERHZUlpaipSUlMqfR40ahbp16/quQW7GoIGf2Lp1K2bMmOHrZhAREREREZELli5diunTp/u6GW7D6QlEREREREREpIlBAyIiIiIiIiLSxOkJfqJly5ZGPy9duhTt27f3UWuIKBS9veokNp+6AgD47/RuGNqugY9bREREROR/xn9UVYuuRpiEjyY1MZpqbnptF+gYNPATpkUP27dvj27duvmoNUQUinb+nITwhtcAAJacE/HPaTwHEREREZkKb5hU+e/IcAnt2xsHCYKtoD2nJxARERERERGRJgYNiIiIiIiIiEgTgwZERERERERETlB93QAvYNCAiIiIiIiIiDQxaEBERERERETkBMHXDfACBg2IiMiMEAo9IBERERHZxKABERGZUUNhgh4RERER2cSgARERERERERFpYtCAiIjMcHoCEREREQEMGhARERERERE5JRRmdDJoQERERERERESaGDQgIiIiIiIickIozOhk0ICIiIiIiIjICZyeQEREIYmFEImIiIgIYNCAiIg0qKEQNiciIiJyUSjcZ2HQgIiIiIiIiMgJoXCfhUEDIiIyw+kJRERERAQwaEBERERERETklFC4z8KgARERERERERFpYtCAiIiIiIiIyAmsaUBEREREREREIYtBAyIiIiIiIiInsKYBEREREREREWni9AQiIiIiIiIiClkMGhARkRkhJJLtiIiIiFwTCiMmBg2IiIiIiIiInMDpCUREREREREQUshg0ICIiIiIiInICpycQERERERERkSZOTyAiIiIiIiKikMWgARERERERERFpYtCAiIiIiIiIyAmsaUBEREREREREmljTgIiIQpIQCmFzIiIiIrKJQQMiIjKjhkLYnIiIiMhFoXCfhUEDIiIiIiIiIieEwn0Wna8bQEREvhV7IRc6yThOzukJRERERAQwaEBEFNLWxKbhoV8OMUhARERERJo4PYGIKIQ99MshAKxhQERERETaGDQgIiIiIiIiIk0MGhARERERERGRJgYNiIiIiIiIiEgTgwZEREREREREpIlBAyIiIiIiIiLSxKABERGZ4QqMRERERMaWHE5F99fWGj0WCmMmna8bQERE/ocrMBIREREZe/qPo2aPhcKYiZkGRERERERERKSJQQMiIjITCql2RERERGQbgwZEREREREREpIlBAyIiIiIiIiLSxKABEREREREREWli0ICIiIiIiIjIClUNhXUStDFoQERE5gSWQiQiIiKqICsMGhAREVUJ4Wg6ERERkSkDgwZEREREREREpEUvK75ugs8waEBEROY4PYGIiIiokkFmpgERERERERERaWAhRCIiIiIiIiLSFLohAwYNiIiIiIiIiMgCBg2IiCik7DqbgalzduDVZbFQgrgScn5JGTIKSn3dDCIiIgpwOl83gIiIAlducRkEAYiODPN1U+w269u9AIDjF3IxplMjjOncyMctcr+UrCJM/2IncovL8NntfTC5Z1NfN4mIiCighXBJA2YaEBGRcw6ez8aQdzZiyNsbcTg5G0/9fhjD/7cJa2Iv+bppdtudmOnrJnjE26tOIqtQD1lR8ehvh3zdHCIiIgpgzDQgIiKnPPTLQRTpZQDADXN3GT2e9O5kXzXLIcG6sOTpS/m+bgIREVFQUUO4FCIzDYiIAkipQYbshXn49lxMp+dzvjwRERFRsGOmgQlVVZGQkIDY2FikpKQgLy8PUVFRiImJQa9evdCjRw9IkuTrZhJRAEjLLcYve85jUJv6GNmxocv7W3I4Fc8vPIZ2DWvhr0eGolYET+FERERE5FkccQLIz8/H8uXL8ffff2PTpk1IT0+3uG29evUwe/ZsPPfcc2jalIWliMiyR389hEPJOfhicwL2vnwtGkdHurS/p/84CgA4fTkfP+5KwqNj2rujmaHNSkqFqqrYGp+O+jUj0KNFHe+1iYiIiPxP6M5O4PSE/Px8NGrUCHfccQf++OMPqwEDAMjOzsZHH32E7t27Y8mSJV5qJREFokPJOZX/Xnzoglv3fTItz637C1WClajBvO2J+Mf8/Zj+xQ4cTcnxXqOIiIiI/EjIZxrIsoySkhKjx9q2bYtRo0ahU6dOaNCgAUpKSnD8+HH89ddfyMjIAABkZWXhlltuwcKFC3HDDTf4oulEfi23uAyz5+9DSnYxPr2tN4a2b+DrJvmUEsrr9ASot1edAgAoKvCvpbFY/vhwH7eIiIiIyPtCPmhQITo6GrNnz8a9996Lnj17am7z0Ucf4amnnsK8efMAlAcc7rvvPowYMQINGoT2BRGRqa+3JlTeaZ/17d6AqabvKYqbixcyBOFducVlvm4CERER+VAoj71CfnqCTqfDSy+9hHPnzuGTTz6xGDAAgKioKHzzzTeYNWtW5WPZ2dmYO3euN5pKFFB2JmT6ugl+RXZ3pkEo91xuJATrmotEREREbhLyQYNatWrhnXfeQUxMjN2vef/99yFUG2muWLHCE00joiDihVUSiYiIiMhDQnmmacgHDZzRrFkzdOnSpfLnhIQEH7aGiAKB6uaeRvVCqoGiqHh/7Sn8Y/4+xF7I9fjxfMHeRANmJBAREVGoYk0DJ9WqVavy34WFhT5sCREFAtndNQ08HDMQBGBL/BV8sbk8KHo4OQdHX7vOswclt1BVFYkZ7JeIiIjIPZhp4KSkpKTKfzdp0sR3DSGigBCI0xPWxF6q/DcLAQaO1dX+bkREROQe3sjy9FcMGjhhx44duHLlSuXPQ4YM8WFriCgQuHvJxVCeV+dOwTjt4JFfD/m6CURERBREGDRwwnvvvWf086233uqjlhBRoHD3kotERERE5D2hfMOGNQ0ctGDBAixfvrzy5969e2P69OluP87Zs2edfm3Dhg3RqFEjN7aGiFzl7iUXQzlFzp0Eu0shEhEREYUmBg0cEBcXhwceeKDyZ51Oh3nz5kEU3Z+wMWPGDKdf+9prr+E///mP29pCRK5zd3TaG9FuVy+o80rK8NmGM4gKl/DImPaIDJPc1DL3CcbpCURERETuxKCBndLS0jB58mQUFBRUPvbuu++if//+PmwVEQUKd6+eEAj+t/oUft2bDACoHRmGf45s6+MWERERETkn9EZyVVjTwA5ZWVmYMGECzp8/X/nYAw88gGeffdaHrSKiQOL+6Qn+ryJgAABvrTrpw5YQERERkbOYaWBDXl4eJk6ciOPHj1c+dscdd+DLL7/06HGXLl2K9u3bO/Xahg0burk1ROQqNZSr5/gxzk4gIiIie1gay4XCEI9BAysKCgowadIk7N+/v/Kxm2++GT/++KNH6hhU1759e3Tr1s2jxyAi73H39IRQ6KCIiIiIyPc4PcGCoqIiTJ48Gbt27ap8bNq0afjtt98gSf5XzIuI/Jv7SxowauAWrIRIRERELgiFoQQzDTQUFxdj6tSp2LZtW+VjkyZNwsKFCxEWFubDlhFRoFICrBBiCPR/mg4nZ+P1FSfQsVFto8edfT8URcWJtDy0qh+F6Ej2H0RERIHKUpZnKGR/MmhgorS0FDNmzMCmTZsqHxs3bhwWL16M8PBwH7aMKMAE8BlUVVUcSs5Bs7qRaFqnhtFzOUV6CIKAOjUcuwB0eyHEwH17XZJTpMflvFJ0bFwLggdC+7Pm7UVxmYzDyTlu2d+rf8filz3JaFGvBjY+OwoROmaqERERUWDh9IRq9Ho9brrpJqxbt67ysTFjxuDvv/9GZGSkD1tGRN706cYzuOnLXRj/0TZcyi2pfHx3QiYGvb0Rw97dhNgLuQ7t09GL/O1n0jFvWyLyS8oce2EQyy0qw7iPtmHCJ9vw2cazbtmnadihuEx2y34r/LKnfAWJ1OxiLD+a5tZ9ExERke+FwvQEBg2uMhgMuP3227Fy5crKx0aMGIHly5ejRo0aVl5JRJoC+Az6yYYzAICCUgPmbDpT+fi9P+xHqUFBQakBz/x5xKF9OhIzSEgvwF3f7cNbq07i1WVxLu8vWHy38xwyCkoBAB9viHfLPr35Mc0p0nvvYERERERuwqABAFmWceedd2LJkiWVjw0dOhSrVq1CzZo1fdgyIvK1iotUwPgudPzlAo8d84vNVXfRlxy+oLlNKC7heLla1gcREREReUfIBw1UVcV9992HP/74o/KxwYMHY82aNahVq5YPW0ZEwcSRi/xgjAcEcOIJERERUVCOz+wV8oUQd+zYgR9//NHoseTkZPTp08eh/WzduhXNmzd3Z9OIyINUVcVDvxzE5lPpeHFSZ9w3vI2vm+QQf++3PJEJofr9b22dJwo3EhERhYrMglL8e1ksZEXFGzO6o1Ft1pzzlpAPGsiyedGrixcvOryfsjIWKyMKJHvPZWFt3GUAwBsrTng8aBCIl7uuXOMGSjReCNnFJYmIiALL/9acwqrjlwAAOknEF7P6evX4lm5eBMqYxxUhPz2BiDzEz8+g5zMLvXtAN78dnn57Xb0rfjgl200t8Sze/CciIgoMfx5Irfz3ymNckcibQj7TYPTo0SFZUIzIn6TlFuPUpXwMb98AYZJ3YpmB/rX3dPNdPS/OnLfX6Gdb1+aqqiK/1IDaETqLAYtA/5sRERFR8AmFGxDMNCAinyosNWDSp9sxe/5+vLjomK+b4zGBPh/fUXqDYvSzrd/+1WVx6PmfdXjk10Oea5QGe/t51iMgIiIKbZZuXoTCTQ0GDYjIpxYfSkVOUXlNkMUWlhf0hEA/v3s6Q8qbF8mlBhk/7zkPAFgde8ni1JFA/5sx7EBERKGo1CDj9KV8GGTF9sbklxg0ICKHnbmcj9OX8q1vZOdFZ0GpeTFSb/B2VHjV8Ut4YsFhXM4r8e6B/YS1T4OsGP8xKoJIREREFPju+nYfJnyyDY/+5t1sQnezNHQMhWREBg2IyCHb4tMx4ZNtmPjpNmw6ddnl/YXCibbC30cv4qW/gncKhqd5ItATSp8/IiIib0tIL8C+pCwAwNq4yyjWe/9mkaqqOHExD0V6g4f275Hd+hUGDYjIIf/86QAUtfwEee8PB3zdnICz+XS6W/YTaB2UO6Y7eKIuhLPtKimT8X+Lj+Pu7/fh7JUCN7eKiIgoOBSZZJQaFO9PUfhwXTyu/2w7Rr63xSdBi2DAoAEROaTUYOfJ3s6rWl/d6PVkYcKFB1Jwx7d7nH69v6zowrvwVUzfigX7krFgXzK2xafj4V8O2rcPvp9ERBRi/KHv+3zzWQBARkEp5m1PdHo/lsZn/vA7elrIL7lIRORO2YV6PO+FVSA8vRrD2SsFqBcV5tFjOMw/YikAgIXV1oo+w0wDIiKigJCSVeTrJgQkZhoQkU8FW3Q2yULl/0CTW1yGDSev+LoZNpWUyTiemosyVmQmIiLye76O/xeUOl/XQAnhJReZaUBEFIACrYPyRGxIVVXc/s0eHEnJwbgujfDtPQM8cBQiIiIKFs4GDVRVxewf9rm5NYGDmQZE5Bl2phAITlxOHk3Jwb0/7McXm886Pf8/0C66TQV6+6tz9neJv1yAIyk5AIANJ6+g1OB4cSN3ZrrM25aIu77biz2Jme7bKRERUQCJu5iLedsSkZ5fqvm8r8cvpWXWMxN3nc3A+I+24okFh42yGPckZiElq1jzNcGWNauFmQZEFHBu/Xo3Sg0KNp26gsFtY9DvmhiH9xFE19yaivUyFuxLRpsGNTGmcyNfNwcGRYWiqBBF53tW07+Z6dJJvhyIxF/Ox1urTgIAtp/JQNK7k822CYExBRERhbDCUgNu/nI3istkrIm7hL8eHhpwF9Szvt0LoLxe0ciODXFzvxYAgJRsy7UQfB0I8QZmGhCRTznTmVRfwWHTKf+Yd683KNiVkIHc4jKvHK+iEOKpS3nYdOoyFJOJdm+vOonXV5zA7B/241hqjlfaZMtPu5Ncer1pVone3pU8rLA30yUxo9BqVguzC4iIKNStP3EZxWXlWX8Hz2drb+TjC2xHCknvOptR9bpQiAxYwaABEXmGv59c3dy+R349hFnz9uIf8/e7db/WnL2Sjymf7cC9PxzAJxvPGD33857zlf9+a+VJr7XJmv8sP+HW/S0+dMGt+7Pl76MXvXo8IiKiQKJojK2cmYbqL6r/NtbqLQdaNoUzGDQgInKDDScve/V4qgq8u/oUDFczDD4zCRpUp/ezlQVyivT435pTmLvlLJIyCjUHGVpMt/rjQIrx8x6OUz35+5HKf5sOEOwZLwihMKogIqKQ5e/3iwDH2lg9u0C28sJA+L1dxZoGREQBSAXsngphkP2rN/tySwK+3pYIAHhvzWmM69LYa8c2TS909jo+FAYIREREwcaR7rv6tpyeQETkQ766+2rvqT8Y+ogyP8s0qAgYVHBXlkZGgXal5upM/55u+/Qxi4CIiMgmR2oKVLc1Pt09x3dgYFd9U1kJggGhCxg0ICLP4EWU0+zqlhzouwwh0tE9+fthrx3L1sf7/h/3Wy4CRUREFKKcvRlzz/f77N42JasIWYV65w5UjXFNg9AYS1nC6QlE5Bl29gr+ElpQVTVo55wb/CzTwFm2PlKHknNs78M9TTFj+snZcPIKNpz0j5U9iIiIfMV0aOXpS+9FB1Px3MKjiI7UYcXjI9CqfpTTx6+elRAMmaeuYKYBERF81xnsSsjAcwuPGi3rYw9H0vvK3FTTYI6VYove4MpvceJiHm6cuxNPLDDORnBXnChI401ERERu5enaAM8tPAoAyCsx4K1V5qs2OVQIsdq/rRVCDAXMNCAin/LVxZY/nPv1BgWz5u0FUB4ZP/3mREToJLteq6r2v3fuqmnw4fp4ZBbqUaQ34PGxHdyyT3e7mFOMd1afQoNa4XhxYmdEhpW/n/f9uB9puSUAcnzWNgYWiIgomGkNrbydaVBdUkaR2WPOHt/a9IRQ6N8ZNCCikGQa6fZFDOFKfonRzxdzStCmQU23H8edNQ1+2JUEADiRlue2fdrLnrsTzy08il0JmQCAlvWicO/wNgBwNWBgzl3rRwfyOtRERETe4g83bexWra2KlbFUQP1OTuL0BCLyKX+51HImXe6d1SetdiKOqkips4cjR/VETYPYC94PGtijImAAAN/vPOfDlhAREZFpUN3Z1RPcxpHVE6q1NcTrIDJoQEShyfTc70xf8PXWRGw74/wSQKb9liPV9h0JcgRLgUdH/0be/LWD5C0mIiLyrAC6+DZactHKuCsUxgAMGhCRZwTYGdTZ1LLNp654vKgPOceeP0uAfUz9iqqqiL2Qi/ySMl83hYiI/JQvaxpocWz1hKp/c3oCEZEneOkM6q655M6my/24+zyK9LJb2uAIR1obaBfG7mpvanaxe3ZkB3uabM82ZbKCZUcu4HCy/VknvvLqsjhMmbMDkz7djlKD978DREQUeHx9ge3Y6gnlG7+x4gQ+33zWQy0KDAwaEJFP+Sp13rTTcKUT+8zHSxEGG4t/iwCP5OcWl+GVJcfxn7/jUFhq0NzmvTWn8OTvR3Djl7sQfznfyy10zM97zgMoD86sPJbm49YQEZGv2ZN56euaBo4cX1WBU5fy8N0O1kji6glERC76elui14/p60i9t+QWl+FSbgk6Nq7l66ZY9faqkza3+WBdfOW/a4RLeHFiZ7Nt5m0vH5ioKvDemtP49p7+7mukB+UUcYoCERGZM701FEjjFxXAmcsFvm6GX2CmARH5lL+kzlvqxPy1bzuSkmP3tn7yFjusoNSA6z7eigmfbMOH6+J9fnfCmrwS7cwBS77ckmBzm0BK+fffvwwREfkTX/cXDk1P8HVj/QiDBkQUkvy5H7C3k8oO0ru7T/5+GJdyS/Dz7vO4nFcKAPh881lkFOid2t+ig6kWnwuWlSWIiIj8kVkhRB9fiTt2eH8eLXoXpycQkU/56pLNtNPy57vYlpy9Epwpc0mZRXhp8TE0q1vD6PF957Ic3tegtzdUBh60MGTgHr4eBBIRBbv9SVlIyijE9N7NEa4L7Pu+5zMLUTcqHHVqhHn92NZ6q3dXnzLell1bJQYNiMgznLyDq6qqx+/+XskvQUJ6oclxPXpInwrEu+lbTqfjpr4tXN6PtYABAOw9l4nsIj1mDmxlFqQgIiLyB6cu5eHWr3dDVYGTafl4dWpXXzfJad/vSML3O8+hQa0IrHlqBBrUivB1kwAAyZlF+Gqr+dTBIB4eOiSww1RE5L/svQo3uaB19OLd0QyB85mFGPXeFizYl2yyH/I33pjTvzbuMuZsOosHfj7g8WMRERE543+rT1WOj77f6b+V/O0ZS1W0P6OgFF/ZUd/HFVlFelzJKzF6zFJmXHJWkdljHBtWYdCAiPyKp0/Q764+heIy84tRX6RXax1SVlSUaLQvWJTJit3blhrs39ZVsRfyHNreG8kbgZghQkRE7ufN/tBRiqJaHUNZG16lZhd7oEVV0vNLMfTdTUaP6S2MQ0SNLldRVew4k+6JpgUcBg2IyKfMl+Jx7OJdcHBWekq2eSQZ8J9o8uTPtmPdictu3ac/XXquOHbR7m39cZBU8fn0RoxpW3w6HvjpAOIv53v+YERERA5acjgVHf+1GtO/2Ilivaw5pvP1+MqgGLcgMb0QCw+kmG+oMVgqkxX8ecByMeVQwpoGRORXPN25WAoy+EtNg1OXgvsCcctp+yP2pX6YcaGogOSmKMyl3BK8uiwWNcIlvD69u2ZBqHUnLiPuYh52vjTWPQf1EH/5/hARkfc8/cdRAMCx1Fws2JeMWpG+ubQsKZPx7fZEiFrpAhqeX3QMTevUwPAODSof0xofZjq5alMwYqYBEfmU+VI8vmmHz0PhbtDjP2sx8ZNtyC4Mjk7OH/8kqqri4PksxF10bDqDlleWHMe6E5ex7MhFfLrhjMXtLuR4Nn2TiIjIVacumfeLquqdcd3XWxPxwbp4vLfmtN2vufO7vUY/c0agdQwaEJFf8XQim6VOwfcJdK7LLzHg1KV8zN1y1uhxf+oIHWqKH/5JVAAz5+21uZ09Np66Uvlvfy5sVeFkWh4mfbods+btQZafBaZ+3JWEYe9uwgdr7R8wEhFRlYyCUhgcqDtkD1vduLvGJx9viHd5H340VPJLDBoQkU+ZpoOFUpqzpwIV+85leWS/7uBIcb+E9AIPtsQ5qgro/bDWgjc8/MtBnEzLw66ETHy83niA5sugm6KoeO3vOFzIKcbnm8/iIjMziIgc8vaqk+j/5gbMmrfX7YWh3dE/5JeUuaEl1mlNbQilMaktDBoQUUixdMkaVB2Di8tY+otMP7ubDZSvbhGqkjKriogud6CgpTvsOpuBhQdSNFffkE0+4AwaEBE55pttiQCAfUlZ2JPo3I0HrbGGuwIQ//zJ88si21kOIWSxECIR+ZS/1DQIpktBdnzOsWdwUzGwCnU5RZ6/61PhSEoOZn1bPiUkMaMQL07s7LVjExGFmoyCUrftS4V947qcIj1eWHQM+SUGvHtTD1xTv6bR884GMhzDwZM1zDQgIr/ijjQ2VVXxr6XHMeHjbdh0yr7lC92djudLokkkJmBrGniZPVkE7pg3SY75z99xlf/+ckuC2fNB9NUlInLY5tNX0OO1tbj+0+3IKXIsQ09vUHDTl7vc1xgnz8efbDiDdScuY3diJka9vwV3f7/PK1MSqvOnsZI/YtCAiNxOUVQcTc21a1vzNX1dP/6Osxn4ZU8yTl/Ox70/mKS0WegVLB02EC9I2O85J4RnHrjMk98TWzUkgqGIKRGRNdYuaGfP34/8UgNOpOXhy63mgVVrlh6+gIPns+0+lqPsXT3ht33JRj9vi0/H+3YUtk3KKMTyo85Pl7uYU4xFB1ORXag3u+ECsH+pjtMTiMjtNp++YnsjC9xxej6QlG3xOX+oabD86EVM7dXMY/vX6vjINiUQI0Rk9t3lX5GIgoFBVmBQVESGSXa/xtr4R8tJjWUSTQtUu6Lba2twU98WFp+vGK5oHfGn3efx32ndrI7PJn+2HYV62en2DX13EwCgR/M6eOuG7k7vJxQw04AoQO06m4E1sWl+mVa/OyHT7m3Naxq4YXqCU6/RfpUn3t/HFxzGxZxizwUqzHrf8gcOJGXhjRUnNNdS9ho/jmf4usjhquNpPj2+K/zvLEREFLjySsow4ZNt6P7aWiw9fMHu1zk6Zpm/M8nsMXfedyiTVfy+P8XmdpaOmZpdbDWg70rAoLrjF3I1C+1SFQYNiALQjjMZmPXtXjz0yyF8t8P/1nd35QLCLRcfzlyNW3jJxlNXMGveHhSUGlxrk4mt8elu3V91WoUQS8pk3PzVbny34xwmfrIdK45dRJ6X5wsC7r2D4W6Fbv4bO+qRXw9ZfO7voxex82yGF1vjGD+MXRIRBazvtp9DQnohDIqKp/444uvmeJylsYGiql6cOmjeBk5brMKgAVEAenbhkcp/v7nypO8aUk1KVhG+3pqAhPQCh15n2lG44+LD2kneUjTb2mF3JWTiu+3uDc7oPLjEgdb0hOMXjGtMPPbbYcyev99jbQhEA9/e6OsmWPTEgsO449u9DmXxeNNfh1J9dmwGLIgo2JxIs50RWCYr+NrBGgb+ytLYLKtQj+1nPHeTxVYbOG2xCmsaEAWgwlL3pGO5i6qquOu7vUjKLMK87YmY0tOF+fpuOD9bK1zj7KX68Qs5Tr5S2+W8Eo+ldJt2fIKgfWFlWvyI/N//LT6GdU+PQqlBRu3IMF83p9LZK44FC92JhaqIKNjYc636+75kvLP6lNuP7cotDWfPx5aOecNcN67s4ATGDKow04CIXJZfakBSZhEAIKNA79icedOaBm5ZctHx1ySmF1p9PtrNF2gfrIuHrHhm/pxmBWD2fEHhYk4Jxn20Fb1fX+/QPNdgxo82EYWify+LM3ssUE+Hgh8UcGZfYh2DBkTkdq6ceLVeu+NMBr7YfBbZhfatP+zM4T9cZ31pn5oR7k/MOpGWb9d2wXTB7wfjgoCmlxUkZxVBvjrP9fZvdqPjv1Zj4QHbhab82durTmLQ2xvw464ks+dsffqD59tBRFTB82c2xcJcTl/00/4wNtAaawXT+MtVDBoQBSBfnVt3JdhXiM2RU2xKVpHV16ZmF+HO7/bi/bWn8eJfx8xe7+gcNEvR7Owi6wGJkjL3Twmxt/Ceo33W9jPGfycB/nNh5QfjgqCyJzELeoOC5xeZfzcCxfnMQnyzLRGX80rx2t/md85s4aCOiIKNs6c1R/pY2Y/Onf4wNtBaQYmFEKswaEAUiHx0dr3z271u3+ecTWetPl99dYh1Jy7bt1ONk3xmQSkWH0pFZkGp5ktspcYtPOj+Qm92Bw3ccCx/GRuUGLikERk7n1lkeyMr/OSjTUQhokxWsORwKg4kZfm6KS6xvMyw9weZ/jA9gQEC61gIkYjs5o0TqqN3DQ+ez4aqqkYdjukeVFXFzHl7EH/ZcrE2Dy5mYJG3Clqq8J9iccuPXvR1E0JamaxgyaELaFA7HGM7N/Z1c9zCXwJiRBQaPlh7Gl9vS4QgACseH45uzeq4/RjOntYceZ2B0xOMaE5P8JOxkz9gpgERuZ8rNQ1Mf7axr10JmfjApB6B6Yk/Pb/UasAA0C4e6GlFevsyDe79YT+mf77D6eOk55di1jz3Z4lQ4Pli81m88Ncx3PvDAew6qz3d6OyVfEz+bDtu/Wo3ruSXeLmF5mx+MzmmIyIv+npbIoDy8ck7q9y/eoG3WM40cJ43plV4itbb4aF61QGJQQOiAOSpk6uqqjiQlIXLea5dKLgSmXWmw/lis/E6xab7sGfeni+CBpai/Ka2xqfjaGquh1tDoeCTDWcq//3iYu06CI8vOIK4i3nYl5TlkwGxo9lGvBNERL7iiXpHgHdqtXgiaOAs/5ieYP5+XMgp9kFL/BODBkRU6d3Vp3DzV7sx/qOtyLJzpQItggthjcJSAz7dcAa/70t2utM07Qft2Y3og7OhP3XYFHoMsvbn72Ra1ZKpSw5fQOwF/w5YcXoCEfmKp04/3jitGazcRl9x7CK+3Z7osaBIhYrxou9DBtaLaBNrGhAFJE9FZCtS7vJKDPh+xzk8N6GTU/tx5c7f6A+2VP47pma4144feyHP9kZuxqABBYJbv96NE69P9NrxVNV4fiuXXCQiMqa3UFRY67o3v6QMH66LhyAAz17XCbWuLiFtaQyyOyETP1xd/vZyXglemdzVrja5ci7210wDqsJMAyLSlOlCpoG7vLXqpMPZBpfzSjB/Z5LRY/buYfuZdIeO5SpbyzwSeZKqAv9eGou+b6zH/J3nLG5XpJeRX1LmvXa5+nqO+4jISzw1jcDWbtfGXbJ7X59sOIMfdiVh/s4kfLaxaoqapaBBRcAAAOZtt9w3uJMfxAzw295kXzfBrzFoQBSAvHFyDdS1z19dFmv2WFJGoV2vveu7fXYvg+gOK46lee1YRKYu5ZXg5z3nkVWox3+Xn7C6rScHU64HCQLzXEVEgc9X0xMKHBirVF+6+purGaWA/dmO9o6hXOEHMQNsOHnF103wawwaEHmRqqoo0hsCYpDrSpqWu349AY53yGvjLps99sXms3a//sD5bAePSBT8vJl55HghRGP+cMeKiMiT3DHOsrcY8wuLtIvmanG2WYF+3i4uk3HXd8G9ShWDBkRe9Nrfcej66lo8+fsRl/bjjXOrI9PtPRkDcUvHaKHgm5YA77eIPMKb9TccPVIAxGCJiBxiGjy1t8C0I6dDxc7z+r6kLAf26piVx9Mw4eNtuJxX6rFjeMulXN8vUexJLIRI5CUlZTJ+2n0eAPD30Yt4fkIntIyJ8nGrLHMk02DuFvvv5DvK3qKGBlmBTtKOg3JJNgp1ry6LxalL+Va3UVXVYjGq6umtnuZoEIDfbyLyFUfOV6nZRdAbFLRtWMvl49q6M2+QFSw6mIq6UZYLSnvizOnMjZfTl633TeQfGDQg8hK9bFzpNre4DC2d3JdXqsw60Jt8vTXR6Gd3dURJmUVoVte+uXTvrD6Ff0+xr8IvUaipCFhaY7pqgbe4PF2LMQMi8hFLpx9VVfHR+njsTczC0+M7Iipcwi1f70aZrOCLWX1xfY+mrh3Xxnnvq60J+GBdvEvH0PLt9kTsSczEo2Pao0+reubtcvsRyV9wegIRaXLlxO/Omg27EjLt2u67HeeQnFnk8vECfV4dkbN8tdyU6VEdzRzgIJWI/M2B89mYs+ks9iVlYea8PXhu4VHoDQpUFXjk10M2X+/q6diegIGjx4i9kIs3V57EhpNXcPNXu51sGQUqZhoQhaiSMhlFehmKquLx3w4jz2RJNX9dr/ZynuU5Y+ezPF/hlyhYKSpwMafY68c1XfHE4ekJ/nmqIqJQoKqYv/Mcvth8FlN7NcNrU7sBAHaezTDa7JwXViBwlKMB2q3xVctSe7PODfkHBg2IApCrN8OzCvWYOmcHLuYWQxIEzQq6/tofDHp7o8OvceSiwt5iQ0T+yJUsnyMpOVh13D3LgBpkBXpZQVS49WFGmawgJcu1QAVrGhCRr6hA5ZK183cm4e4hrdGmQU3N7Rzbr+fPa+4OuKoqg7jBjNMTiAKQqyn0X21NwIWcYqiq5SV37L340Kq+eyg5x5XmOc1Sk9mHUahwZcB269e7UayXXW5DSZmMaZ/vRLfX1uLnPdZrKbjjbhUHqUTkL1KzXZ8mCfC8Rv6HQQOiEHTGjkq1sRdy7drXP3864GpzPM6Ru6+saUCh7I8DKS7vY+HBVJxIy4OqAv9eGmv7BSYcXz2BiMg3LJ2vTLMW3T20cEcmgquBidYvrTR7jGOo4MWgAVEIsmf1haTMIhSWGmxut/HUFXc0yS3iuWwPhThfXkBXBOcSrhQYPf711gTH9uNoIUTekiMiHzE9X7kr49HWaW3lMQtTyRw4Hzpyrt13Lgtr4y7Z3idPx0GLQQMiL3HvidQ7odwNJy975Tju8ubKky7vg0FyIudYmmnwzupTVl7j3btlsRdyccEHxR6JKDhZzDRwcTBh64Le3pWlrB7DgXPnrV/vxrFU+zJQKTgxaEDkLW4MGrjaGdn7cncGOvYmZmL7mXT/vyvIqAEFMF9+v5w5ttZLXP0VLL3++x3nMGXODoz7cCuS/LCSOREFHtPzjaXxmT8OLfx1lSzyTwwaEHmJP1X49sWcs9u+2YO7vtuHRQdTvX9wB2QV6n3dBCKn+fIs40xNQ62XuPo7WApevL6ivMJ5cZmMd61kPxAR2cveC293T09whx92Jbl1f38dSsXLS467dZ/kPxg0IPIS/wro+i7m/fyiY14/piNv/WO/HfZYO4iCmbXBs6VVEjwxPcGePV7KK3H5uEREnhrbObtbR163+NAFJ49CoYhBAyIvcWe/4otL/nMBnM6blsMLBAoNb169m+5vymRF83Ht6Qm2z5bHUnNww9ydeObPIyg1GC8Tac8gnhW+iQLT4eRs9H9zA679cAvScn1fn8RS4DMhvUDzcaJApfN1A4i8RVVV/LI3GYeTs/HI6PZo36iWr5vkNJdrGjjx+vt+2O/aQX2IdxWt08GABshFQyEXdYUC1EEh6giFqINCRF/9b22hGBEoQwT0iBT0iEAZIlH+XwkWLggB6BGGEoSjBOEoVcv/XYowFCESuWrN8v+h/L95iEKOWgsZqIMral2UIMK7b0SAyygoxY+7z/vs+NayBspkBZFhktnjWgECewKsd367F3klBhxOzkGDWsafE3umgjFmQBSYZv+wHzlFZcgoKMVbK0/i81l9fdoeS2ebZUcuembHblAmK5yiRQ5j0IBCxrHU3Mo1w/edy8KOF8d69fh+XwDQhkQ3Zhr8suc8bunfAhE684sIci8BChoiF62Ey2glXEEr8QqaIAuNhWw0EnLQSMhGfeRDFPzv85mnRuGKWheX1Xq4grq4rMYgRW2IZLURktVGuKg2QBm7sUq+rsdh7RRnkLWfdPa0mFdStRzsmliTZcD876NMRG6SU1RW+e8tp9Od3o+iqNh+NgPN69Zw6SaS6dhuyaEL+H7HOaf3V7lfD57Ilh25iO/c0EYKLRxtUchYfrQq6pua7f2UNo5jq/xraSxUVcVdQ1r7uilBIxqFaC9cQEcxFR2EC2gtXEIr4QpaClcQKZTZ3oEfihaKEC0UoT2079jIqoA01Eey0gjn1cY4qzbHGbU54pUWuIQYhNr9ZEsX5t5iK9NAi2YhRAd/DbN10u14jcD5CUQBz5WbMR9viMecTWcRLolY9/RItG5Q08k2GP+8+LBn6gTsSsiwazt73pJFB1NcbA1pEYN8pM+gAZGXuDPRQHDxYsgfhsv/XhbHoIETdDCgo5CK7uI5dBZS0EFIRUcxFY2FHJf3nadGIVutVTldIBc1kafWRA5qoUCtUTnNoEQNQynCUYLy/8oWyuMIUBGOMkRWTmu4+l/oUVMoQR0Umk2HqCMUIsbOzAdJUNECGWghZWAojOfy56s1cPZqACFebYHjShucUK9BAaJcfp/8la+Xz6o4utZAvsyRQogeWnKxOn84BxKRa1w5VczZdBYAoJcVjP5gC6LCJQxuWx/f3t0fomj/GcJTZ13T85gzq9NY4uoYkoA6KEAP8Rw6C8noLKago5CCsvDz6O/rhnkQgwZEXuLOVDPeJAsNYTCgo5CCHuI59BDOXQ0UJCNCMNh+sYlMtTZSqqX1X1br4opar/y/qOdXNQR0MKA+8qpNochBYyEbTZGJlkI6WopX0AyZVgMLtYVi9BHOoo941ujxBKUp4tTWOK60QazaBrFKG+QHSSDB4M5RpRPUq8kEWq0oMzhQCNHFc6U9rz9wPhtb49MxqmNDl46lJatQj/1JWRjWvgFqRXCYReQp7oyTFullbDp1BZtOXcG4ro0daINnzrsHzmd7ZL/kuGgUopuYhJ5CInqIiegpJKKVaD41Jk6QNV4dPNibEXmLh8fzqqoiJasYG09dxtB2DdCpSW2L2zLo4J/qoAD9xHj0F+PRT4xHLyHBoakFeWoNnFFb4IzSHAlqMySrjZGsNkKK2jCg7rAboMNlxOCyGmPxexMGA5oL6eV1GoQraCNcQgchFR3EC2gqZFncdzsxDe2QhmnSbgCAogqIV1vgoNIRB5SOOKB2RIraCIF4L1pWtC/MvcXaxbrl1RM8sOSinbu85/t9OPLqeNSNCtd8vkxW8M6qU0jMKMDL13dBx8ba59TCUgNqhEkQRQGKouLGuTuRlFmEAa3rYeFDQx35VYjIx85cKXAoaJCUWeT2NmQWlLp9n9VxDGiNijbCJfQXT2OAcBr9xHi0E9N83Si/wKABkZc4OjRWVRVHUnLQODoSzerWsLn9i38dw58HUit/PvrqdagTFaa5rb2paZ7uWI6k5Hj2AH6uCTIxVIxDf/E0+ovx6CjaNxdSr0qIV1siVmmNeLVl5Tz+y6iHQLzYdUYZdEhSmyJJbWr2XEV9h/biBXQUUtFNOI9u4jlEC+a1TERBRWchBZ3FFNyBjQCAK2rd8gCC0gm7lG44rbaAGgArFPu+poHl54rLtO/AOFPTwFagwZF3YU9iJiZ2N/8MAeV1cL7fWV4sLDG9ENteGGO2zXtrTmHulgSM6dQQ3/9jAOIu5lVeROxPykapQWbBVyIP8USxQH+4oP7rUKrtjVzgD7+jv5Ago7twrjxIIMajv3gaDYQ8u16bqdZGnNIap9RWiFdbYL9eB+AdzzbYhxg0oJDh65OkozfU5m5JwPtrT6NmuIS1T49Ei3pVd4pNf5WcIr1RwAAAer2+DknvTtbct73vRUWbPZV+d8tXuzyyX38VjQIMEU9gmBiHYWKsXdHrUlWH02pLxCptcFxtg+NKG8SrLaGHdkCIgDzUxCG1Iw7JHSsfE6CglXClcppHd+EceojnUEcwv0vUSMjB9dI+XC/tAwBkqNHYo3TFTqUbdirdkeynmQiyr6cnWDlPFJQYT6k5nJwNRQWaawREbf0WM77YaXJc+9vhiCXVCpolZ2nfTZy7JQEAsPl0Oo6m5vr8b0AUShz5qucWl+G/f8ehxCDjP1O7ea5RFpiel2Iv5KJ78zqVP+cWl+HHXUlo3aCmx2sOhHZNg/JMguHicQwXYzFEPIFojXGAqRy1Jo4pba+Ow9riuNIGF9AA1ccCetV3Sx57A4MGFDJ8veKhoxHx99eeBgAU6mV8tC4eH93Wu/I508rfRXrtu3hX8kvQqHakYw3V4Kn3rszHd0Y9TQcD+ovxGCkewzAxFj2EczYL/GWqtatS5ZVOiFXbMEDgBipEnFeb4LzaBCuUIQDKAwlthbTyKSFCvMU0xAZCHqZIezBF2gMASFUbYKfcHVuVntiu9PSbmgiyj09y1q6X80urggYbTlzG/T8dAAD8e0pXh49zNDXX6Ge9ydQHR94Fa2+Z5EAxNAC4kleC+rWM64L4ut8hCmaWvl6qqmL5sTQkZxbinqGtUTsyDJ9uOFO5soG1mVy2vvUXcpxbfcu0rVPm7MBnM/tgWq9mAID/Lo/D4kPl7ZvUvYlTxwAAvYX6MdX5+iaat8UgD8PFWAwXj2OYFIvmQqbN15xWWuCA0gn7lU44pHbw25sF3sSgAZGXuDJ4vJJvfX6bpQ7AUucRah2GN8UgD6PFIxgrHcFI8ZjNCPZ5pRH2KF1xQC0PEpxTmyDUOyZvUSEiQW2OBLk5/kR56nkM8tDvak2JIeIJzUBPCyEDt+m24DZsQZkq4YDSCZuVXtik9MFZtTl89ffzeSFEK5fr1TMNKgIGAPDGihNm26qqiu1n0vHllgSM7mS7UGG66fnRTW+DxBMlUUA6cD4bTyw4DAA4n1mE92/pVTnVCADWxF1yet8v/XXMqddpjQGfWHC4MmhQETAAgNWxzrfv9OV8lFiYDhY6VHQRkjFWPIxrpUPoLSRYvWGjVyUcU9th/9UgwUGlI3JRy4vtDQwMGlDI8PX4z5VxrK2l1CylmrnjLpeiqCgxhHoHZI2KrsJ5XCsewljpCHrZ6Jwy1GjsuprmvlPphlS1kRfbSrZkIRrrlf5Yr5QvnFQ+peQkhohxGCbGoYNJ3YkwQcYQ6QSGSCfwMhYgRWmITUpvbFL6YpfSDWVe7GZlH2fuVE1nMn/ONBvA6n4A3PVd+dSQXQmZCNc5Vk9ChYqjKTlYdDAVU3o2xaC29a0eyxJHll2ztEdmGhB5kIXvV0WmJgAsPJiK92/pZfcubY0Vt5/JsHtfvrLooPWaCIHwOzgqAnoMEeNwrXgYY6XDNrMJTiqtsEPpjp1Kd+xVOqMYrmflBjsGDYi8xJV5ts6+1NLr7J3PpkLF3d/vw46zwdfBuEKAgt5CAiZK+zBJ3Ke59E6FUlWHPUpXbFN6YqfSPWCK6lG5PNTCWmUA1ioDAACNkI2hYhxGSscwWjyCGKHAaPuWYjruEdfjHqxHnhqFDUpfrJUHYKvS0+NLWqZku7+KtyOsnaccOYeZbmtPum11sgLc+OUuyIqKn/ecx4F/jUODWtrvvbV2ORUzMN2/p5fNIQphnvx+ZRfqUTtSB50UeP11ioUaLMGmFoowVjyCSdJejBKPIUqwnJWbpsZgu9wDO5Tu2K10Qzrqeq+hQYJBAyINsqJi37ksdGhcq3KweSGnGKuPp2Fcl8Zo3aCmw/t05Y6TrUwDe15nkBUsPXIR9SysqKBl19lMBgyuEqFgoHgKE8T9mCjtt7qsX5oag81yb2xS+mCn0o0R7CByBfWwVBmOpcpwiFDQS0jAGOkwxopH0F1MMto2WijCjdIO3CjtQJEagS1KL6yRB2KT0tsjS2D+d7l5qr83WTtPLTyYgim9miI60vP1OfKKy4wKEvZ/cwN+uW+Qw/txtKaBFlszRnKLyrBgfzJ6tqiDoe0auHw8InKNAAEfr4/HpxvPoFfLulj88FC3nAu8KZhDldEoxLXiIVwv7cNI8RgiLCxLragCjqrtsFHug01KH5xQrwGnfrqGQQMiDS8vPo4/DqSgQa1wbH9hLCLDRNz57V6cyyjEN9sSsfv/rvVqJ2LaAZimz1lKp6v+uq+2JuCDdfEAgOhI+776vr5z6WsCFAwQTmO6tAsTpP1Wl+E5pLTHRrkvNil9cFJtBXZOwU+BiMNqBxw2dMBHuBWNkI3R0hFcKx7GSPEYagj6ym2jhNLKFRlKVR22KT3xtzwUG5S+QRNUsjZQPZycg6d+P4Lv/zHAjv24NuTVevWd3+11+Fiig3PaTAvUArYzzF7861jl/OodL44xWiXHXsmZRTibno+RHRoG5F1RImdZ/Hq5eNX86cYzAICjKTnYePIyruvmfGFCX/DUile+Eo0CTJAOYJK4D8PF4wgXtKfMFqoR2K70xEalDzbLfZCBOprbkXMYNKCQoTWgs+SPAykAgIwCPRYfTsXkHk1xLqMQQHlRwjNX8tG5SbRDxzdfFsyR19qqaaBNUVVcyi1BSZlcGTAAgDyT5c8s2ZNo+W568CovoDNd2oWp0i6L8+JkVcA+pQtWKwOwVh6Ay4jxcjvJ31xBPfwpj8Gf8hjUQAlGiccwSdqHseJh1BaqKm5HCAaMlw5hvHQIhWoE1in9sUweih1KDxgCuFtWbNxW33Tqin07cnG862xmlilbgWF7Bua2Mg2qF2T7fkcSXp3q2GoSWYV6TPx0G4r0MmYNaoW3b+jh0OuJTl/KR3QNHZrWMV/+1N954tLYdKh4Ka/EA0fxLFcKKfqLcJRhjHgYM6SdGCseRoSgPW7NVmthndwfq5UB2KV052pTHhS4oxMiL8ktLnNLMSvTO1qO3E1z9vh/HkjB11sTnXtxiGkhXME0cRdmSDvR0aTYXQW9KmGX0h2rlYFYL/dDFhwLHFHoKEYk1igDsUYZiHCUYagYi0nifoyXDhjVQagplOIGaSdukHYiS62FlfJgLJOH4qDaMShrXxgcKIjoNDddSdjKNLDrvOzhG37zd56rXHL3t73JDBqQQ37dex6vLIlFVLiEFY8PR9uGgVUx3mLgLsQT/VKznVsW0tcEKBgonMZ0aQcmS3tRx8LqU5lqbayVB2CVMgh7lC4BHWwPJHyXiWxwJWCwNzET/14Wiw6NauPJcR2c3q/pnTOzsayFDpIBA+tqoQhTpD24WdqG/mK85jayKmCH0gN/y0OxXumHPDhez4JCmx5h2KL0wRalD1423Ich4glME3dhorQP0dUyEGKEAtyl24C7dBuQqjbAInkkFskjA2aFjVnf7sGKx0ZYDYhO/2Knzf24ep3troCszaCB5qPGr3Ek68GZFX7y7cwaI9LyypJYAECRXsYbK05g/uyBPm6RY4IrCT90dRBScYO0A9OlnRazOzPUaKyWB2KVMgj7lM6QIXm5lcSgAZENK4+lOb1c423f7AEAxF8uQNM6xvOWrXV2sRdyjX42TXG1d/UDMidAwSDxFG6RtuB6cZ/RvPPqDivtsVQehpXyYM6LI7eRIWGH0gM7lB74t2E2xohHMF3aibHiEaOCTi2EDDylW4yndIuxS+6KhfIorFYGenwFBlekZBXjq20JVreJu2i5LkgFV6cXODT1y8pzOqemJ5hmlGm7kleC73cmWd0/kTddyAm8u9Pemrp/Jb8Eiw9dwDAWK3WbWijCVGk3bpO2oLeo3W8Uq+FYq/THUnk4dijdmVHgY3z3iWw4kZaHE2m2B7q2bI03XpbPUlrdhZxizDC5G1esl1GkNyAqvPwra3onjUEE25oiEzdJ23CLtBXXiNpzqxOUplgqD8MyZRiS1cZebiGFmlKEV05hqI0iTJD2Y5q4C8PEWEhC1Xd8qHQCQ6UTeF39ASvkwVgoj8IhtQP8MQd3XdwlDGlX36V9yLYKAdjgyMut1SUQbQUNXNj/U38cwa4E4ztq/vfXJAo9m08bjw8EAI/8cggHzmcjQhd8U8a8S8UA4TRu023B9eJezSUSK7I7l8jDsU7pj6IgKRQcDBg0oJC1/Uw6nvr9CFrGROHHeweiTg3vFk+xNOD8cstZGExGvacv52PQWxvx8/2D0LtlXY+3LViEowzXiQdwq7QFw8VYiIL5u56t1sJSeRgWySMRp7YGh+7kC/mIwiJ5FBbJo9AI2bhJ2o6bpa1oJ6ZVblNbKMZM3WbM1G1GgtIUv8tjsEgeiWw/qq2RkF6IhPRCl/ahuFj2QHZbIUTrz9tzGEsBDNOAAeDc9ASiQJVbXIYtp69gSNv6aBTtPxeGO8+afzcPnM8GAJQavFCTJQg1vNqn3WLSp1V3XGmNxfIIrJCHIB11vdtAsguDBhSy7vpuHwAgs1CPedsS8dyETh49nunY0dKAs6Kolan8UgMe++0Qdrw41uy5xxcccrF1waWFkI5Z0kbcKm3RXCZRUQVsU3riT3kUNij9WG2X/MoV1MOX8jR8KU9FX+EMbpG2Yoq0x2gFhnZiGl4Rf8NzuoVYqQzCr4ZrcVDtiGAIerl60e+u5cZs1zSwfRxnl488kpKDR345iLpR4fjh3gFoVNt/LqqI3OEf8/fhcHIOmtetge0vjLGZ2eOQACp2cCm3BE3qBN/3W4CCEeJx3CltwFjxMHSCecAlR62JJfJw/CmPxkn1Gh+0khzBoAEFrdziMqw4dhH9r4lBpya1rW6795x24RV3Mp+n63ivVlER13Q6QmgujWhMhILR4hHcKW3AaPGoZlZBktIYC+VRWCyPQBpcS6Em8jwBh9SOOGToiNcNd2GiuB+3SFsxVDpRuUWEUIYbpR24UdqBU0pL/Cpfi6XycOQjyoftdo3sYqqBK9MbzmUUoqRMRsuYKLOgwe/7ktG0bg2M6tgQAPD5prM29+ds/OL+H/cjo0CPi7kleHf1KXx0a2/ndkTkhwyygsPJOQDKp2QeTc1Bn1b1PHpMQfBeDQRHfLIhHu/e1NPXzXCbusjHzdI23CltQGvxstnziipgh9IdC+VRWKf0RynCfdBKcgaDBhS0nlhwGFvj0xEZJmL/K+N83RwzFjsvG51aSVl5fQMq1wC5uFXajFm6TWghZJg9X6KGYaUyCH8YxmCf2hnBcCeWQk8xIrFEGYElygi0MFzBbdIW3C5tRkOhqmhqZzEFb4g/4P90C7BMHopf5WsRq7b1XaOd5OqqjP9dfsL2RldVPw9vP5NemYEGAO0aGq+U8tLi4wCARQ8NQf/WMZhjEjTQynBw5CJFqBakyCioKtC68aR2DRaiQGX6tXC1jokZjW5e0DiuP0jLLfF1E9xARS8hAXfpNmCquNuoqG+FqhWBRiFVbeiDNpKrGDSgoFVReLCkTMGyIxd9f6moWv2xkq3K4SPe22w0oAxN5cV07tatwwRxP8IF8ykdiUoT/Cpfi0XyKOQisNaeJrImVW2EDw234jPDjRgnHsQd0gYMl+Iqn48SSitrHxxR2mG+YQJWKYNRFiBdvtsvIOz0z58OGP1sqTbDa3/HYeUTI+zap6srQbhrH0S2BPPH7OyVAocKpHpTdlHgjuciUYpp0i7cJa1HDzHJ7HlZFbBJ6YNf5XHYpvSEAhaSDGSBMYIgcpGtQej+pGy8vvwEHhjZ1mtzyyx10Lb6tfR882qzoSIcZZgq7sZs3Rp01+igDKqI9Uo//CKPwy6lG1R2UBTEyqDDamUQViuD0MaQhpnSJtwibUU9oaBym95iAj4Nn4tX1N/wi2EcfpOv9fslRL15kVy95kBJmX0pDgbZ/vY58ptYDGz76cUOkbM8/hU32f/kz7Z7+IDOO5aai882nvF1MxzSHOm4W7cOt0ubUUcoMns+XY3GH/IYLDCMxQUwqyBYMGhAIePnPeetPv/9znM4kZaL3x8Y4pHjmxdC1O41gzna76yGyMEdug24Q9qAhhqFDdPUGCwwjMUf8mhcRowPWkjkW+fUpnjbcAc+NNyCSeI+3KnbgP5ifOXzjYQcPBO2CI/qlmKFMgTzDRP8duqCrzIN7GWpPqKg8YSi8buUlGkXu7XEv98NskVVVWQXlaFujTD3FvsLYKYFQrfFp6N/a/f13ZfyjFP+/X3Vg4/Wx9veyOdU9BPica9uNSaK+42WBa6wV+mMXwzjsEYZGDCZbWQ//kUpJKiqanFVguo8WVDQNEjgZEmDkNJdSMRs3RpMFXdrTkHYIXfDT/J12Kj0hQzJBy0k8i+lCMdSZTiW6oejm5CEe6S1mC7tqpxjGiEYcJO0HTdJ27Ff6YgfDBOxVukPgx8NB6Z/sdNrx3J3kNZ0f7/sOY/eLetiYvcmlUGFJxYc1n6xhetJd60GQb7x0l/H8ceBFEzo1hhf39Xf183xC6Yf6c82ncWQdg0wpJ3rBYqXHbmA5Czzu99OC/G1UMNgwPXiHtyrW4NeYqLZ8wVqJBbLI/CLPA7xaksftJC8xX9GCUQhxuL0hBAfIEqQcZ14ALN1azBQPG32fIkahiXycPwgT8BptZUPWkgUGOLU1njB8CDeNczETGkT7tKtRxMhu/L5AWI8BoTHI02NwY+G6/CbfC3yUNPKHoOPu5MaTHf39bbyQfZP9w7EyKurLqw7YV5R3JF9UuAoKZPxx4EUAMDauMtIySpCy5jAXdnEFlVVcfxCLprXrYH6tSIceu3LS45j83OjXW7Dk78fcXkfBNRDHmZKm3C3Sb9R4bzSCPPliVgkj0RBAK/WQ/Zj0IDcLj2/FI/9dgh5JQZ8entvdGxsfblDb/CHQZf5gosWpid4vil+KQoluF3ajHt1qzVXQbik1sNPhvFYII9FNqJ90EKiwJSFaHwhz8DX8hRMEvfhH7q16CdWzaFtKmThpbDf8ZhuKf6Qx+B7w8SQmYf63MKjaFQ7ovKC3h5a0xAqaE1HAICX/jqGXf93LbafSXe4jSEeRw5oepOlQHKLy+Cv92Ld8TF7f+1pzN2SgJia4dj87GjUiQrTPpbGwfR+PoUgVHQQUjFbWo0bpR2I1FgFYbfcFd/LE7FR6cvChiGGQQNyu/fWnMLec+Vp/o/9dgjrnh7l4xb5B7NOkvMTAJTXK/iHbg3ulDZoFtQ5pLTHfMNErFYG+lUKNVGgMUCH5cpQLNcPRU8hAf/QrcWUalN/agkluE+3GvdIa7FSGYx5huv9tu6BO939/T4kvTvZLfuydPrWXy2eWH1JR1MCBFzIKdaYymZ/pzBn4xk8fm0Hu7cncqe5WxIAAFmFeszfdQ5PjeuouZ3WZ7rYwVof3nL4vPld9uCjYqBwCg/qVuBayXz6VKmqw9/yUMyXJ+KE2tr7zSO/wBE4ud2yIxcr/x1/ucDKlt7jD3dqTDtJFeVz737dm4xb+7fEzf1aaG4XrNoJF3C/tAo3StsRIRiMnitTJaxSBmG+YSKOqO191EKi4HVMbYdnyh7BO5iJu3XrcZe0HnWF8iUGdYKC6dIuTJd2YZfcFd/Ik7FV6cXVSOxgaeUHe6adHUrOxnc7ElFmsjqDI1MoPlwfz6AB+YVMK0tDa30dsgr1WHbkAqb3bu7BVjlu8eELvm6Cx4hQMF48gId0K9BHPGv2fLoajV8M4/GrPM7vV90hz2PQgNzPBzVjvt2eiLlbEjCtVzP8Z1o3s+cduQzPKrS9Zq7gxC9p2kmWlMmVc+/2ncvCpO5NUDNC5xcBDs9R0V84jQd1KzFeOmj2bL5aA7/JYzHfMBGX4HpBJCKyLh318KHhVsw1TMMt0lbcL61CK7EqhX6odAJDpROIV5pjnjwZy+Rh0EM75ThUWD37Wzh/y3ac2Peds1CI10d9wr5zWUjLLcaUns0gseq/xyiKih93J+FSbgkeGtUO9WqG+7pJHmfpI/3k70esBg1CveaTu0RAjxul7fintBJtxUtmz59UWuI7+Xr8LQ8N+fM9VWHQgILCmytPAgB+2JWEe4a2RpsGzhfzWrAv2eY2Cw+kYOXxNIzr0hhvzOju1HEyTYIT6fmlQRs0KI9mH8SDuuXoqxHNvqTWw3zDRPwmX4t8FtQxUy8qDNlF5nMLidylGJH4SZ6AX+TxmCDux4O6FegtJlQ+31G8gPfFb/C87k/MN0zEL/K4oPquZtsRLK5grZi6pawAS7UO7OGL7LMjKTm49evdAICE9EI8M147zdyfLTtyAb/uScbN/Vvg1v7+WkkAWBN3Cf9dfgIAcDG3BHNm9nF4H6cu5eHRXw+hZoQO39zVH03qRLq7mW7l7MX/6cv5bm5JaIlGAe6UNmC2bi0aCrlmz++Uu+FreQq2KT3hkzuA5NeYa0h+S29QsPzoRZy6lOfQ6y5kF5s95kgHVWrHvLpvd5xDWm4Jft5zHsdSc+zar2kTTNcir7iTE0zTE8JRhpnSRmwIfw5fh39sFjA4rbTAc2UPYkTpp/hanhpUFyHupJNcP1XPGsSVJsg2BSJWK4MwQ/86bi59FevlfkbPNxJy8GLY79gZ8Tie1/2O+jAfeAaiF/86Zve2cRfzLK6rbun87coqDaZ9R1JGIT7fdAZnrFxApeUW4+Yvd2H6FztxPrPQ6v5TsopQUGo8Rey1ZbGV//5s4xnTl/i9UkN5Jt++pCy8sOgY8kt8E3S1Z+hR/bO0/OhFK1ta9uivh5CQXohjqbl4Y+UJp/bh7rv4JWUycou133dnj1Rsx9LZZK4ZMvAv3c/YHfE4Xgj70yhgIKsCVsiDMbX0TdxR9gq2Kb3AgAFpYaYB+a3/LI/Db3uTESYJ2Pr8GDSrW8Ou11maU+opZy4XoGeLug6/7te9541+rrh7FQyZBpEoxUxpEx7UrdBcqmeP0gVfG6ZgC+dJ28UdmcENHVz+ikKdgANqZxwo64y2hou4X1qFm6TtiLhaTTtaKMajur9xn7Qaf8ij8Y1hSkCvuODoMoiWLqQtBQdMg8SOqN6nqaqKu77fi5SsYszfmYRJPZpovuY/f8fhwNUCbs8vOoY/Hxyi2ab31p7C11sT0bROJNY8NRJ1apSnIvtrUboKx1NzsTo2DTf0aY4OGis05RUbB0Eu55WgdqQP0qy91J8npFcFhlYeS8MXsxzfx8WcEtzz/T5EhUt458YeqBvl2jSJhQdTseTwBXw2sw+u79HU6DlnxzmufI9CUXshFQ/r/sY0cTfCBOPvdIkahj/l0fhWvh7JamMftTBwzRrUCjf3a4Eb5+7ydVO8hkEDK+Li4nDs2DFcvHgRkiShefPm6N+/P9q0aePrpvk1d8Unf9tbPk2gTFbx1dYEvD5dexqAeaVp1zj6enuDFKbtjL1gnEEx/H+b8cWsvgGdZ1ATxbhLWo/7davQQDD+/WRVwGplIL4xTMExtZ2PWhiYRGv50A6YObBV5fSbmQNbYsG+lMrn3r2xB15afNwtx6Hgkqg2w8uG+/Gh4RbM1q3B3dJ6RF9d6SRSKMM9uvWYJW3C38pQfGmYirNqCx+32Hcs3a21p6aBxX1W+3dOURlSssqz6TIL9Thjodjw2riqIIhWrQRVVfGP+fuw/Uz58rZpuSX4cVcSnrhaRNGZuj3eojcouOXrXSgpU/DngVTsf+Vaq8tg+pI94wN/madfXCZja3x5PZMGtSKcnnpZnUFR8civh9y2OomBQQO7dBOS8KhuKSaK+yEKxu9ZtloLP8nX4UfDdcji8tVOqxkuoWvT0Hr/GDTQsGjRIrzxxhs4dkw7XXHo0KF46623MHr0aO82LISVlMk4npqLE2m5mNarOWqESxa3VVUV5zKsp2Na42j/XX3zoyk5qBkhoX0j8zsf9uz20d8OYVyXwIv4RqMAs6W1mK1bU1mBvUKpqsNCeRS+kacwmu0kdwyHVQBvzuiOm/o2R9uGtRAmCZVBg8gwEbUi2R2QdZmogw8Mt+Frw1TcIW3AfbrVlWmuYYKMm6TtuEnajrVyf8w1TMPREFv5JCWrCDvOZmg+58qFoSeuKY+l5lYGDCpczKma2uen1+AAyufvl5QpAICMglIU6mXUijA+f/nLND/TVny34xxqRkh4ZHR7u7MnfeHnPectBg1yi8oQESYiMszyOMwmZhp4RG/hLB7TLcE4jWUTU9UGmGeYjD/lUSiGf9e8CASq6t/nSU/gKLEaWZZx//3344cffrC63a5du3Dttdfi5ZdfxhtvvOGdxoW4S3mluGHuThgUFbsSMvHp7VWFgkwHVCqA5xYeNXosu8j+IlcbTjqWplrR+f11MBXPLjwKSRTw54OD0e+aGOPN7O7rAqdTjEEe7tOtwt3SetQWjGtJFKvh+FW+Ft8YpuAK6vmohcHBXXfRJFFA/9ZVn8sfZg/AmthLmDmwFVI1aoEQaclHFL6Sp2G+PBG3SFvxoLQCLautuDBBOoAJ0gHslLthrjwNO5XuCIU5sq+vsDyX3F0XO6angr2WVlywQavgb6AOgE2bHX85Hy/7SdaUabBoydXl+5KzivHTvQPLt/F6q5z35/4UvLj4GFrWi8Lyx4ajTpRzUz6cDerYyjQo8fNpNZ4ySDiJx3RLMEKKNXvutNICXximY6UyGDJcCPSQERXuywINFAwaVPP0008bBQyioqJwxx13oHfv3tDr9di7dy/++usvlJWVQVEUvPnmm4iJicHTTz/tu0b7IXd8h0wLN22LrxqQLjty0ThoYPpiFTh43nge/RebE0y3sujUJeeq8z57NVAhKyqeX3gMm54bbdIse6cxOHV4r2qEbDygW4E7pI2oIRgHZPLVGvhJHo/vDZOQyXV9/YfGB2t0p0YY3akRAOBCDoMG5JhShOMXeTwWyGMxRdyNh3XL0VmsmvIyTIrDMCkOR5S2mGuYjvVKv5CtYeJvN0h/359i9lgg9D32mD1/v9+czyz93auPaQLJC1cLhiZnFWHe9kQ8N6GTw/v4ZEM8VhxLs/h8YnoB2jaspfmcrCgWX5eUUYibvwqd+eWAihHicTymW4pB4imzZ2OV1phjuAHrQvi860mqah6wjK6hg+VPduBj0OCqlStXYs6cOZU/d+3aFWvWrEHLlsbL9Bw9ehTXX389Ll4sr3D73HPPYdy4cejRo4dX2xvs7v1hv9XnT13KQ6ROQmuNpRU/32y+pJ8nqVChNxh3ZBdznR+wJNmodO1LzZGOh3TLcau0BRGCcaGpHLUm5hsmYr48AXnQ7vCDXafGtT2yJJQ7AnFBcj1gl1eu74IP1p1GqcHyAJPcR4aEZcpw/K0fimvFw3hEt8xopZTeYiK+Cf8YJ5WW+MIwA6uUQVA4iHWKt2oNmGY3lRpkfLQuHlfyS/HixM4Wl/QrKZPx295kNKtbAxO7axdp9DR/CRgAdt4ssLGJqqrYcPIKYmqGo981/pO1d/aKdj0Na46n5uKTDdZX43jqjyP4+7Hhms+VyeZv1owvduK9m3virZUnkVFgf1Zp4FJxrXgIj+uWGi2LW+GQ0h6fGW7AFqU3AiHD6/7hbfDtjnO+bobD+rSqa3ae7NOyHk77qD3ewF4bgKIoePnllyt/joqKwvLly80CBgDQq1cvLFy4EKIoar6W3KN6JWAtEz/ZjvEfb8Wh5Gyz9D/TLANPi7uYh5u+NI5ua6Us2XsXx9bv7guthTS8p/saWyKewV26DUYBgww1Gu+W3Y7hpZ/iU/mmkA0YAMBDo9t6ZL/uCBp01KgwXl1F1XRr7hlyjUPHfNaOtd0fH9sejaPdv7JDiGUN+gUVIjYo/XCj/r+4Xf8vbJONg+ldxBR8Hj4H68JfwA3idkgIrVRif7+7XP07Y/r1+XN/Cr7eloglhy9U3m3W8sHa03h9xQk89MtBzQKMIccN0dqvtyXinz8dwE1f7sLB84H9nu49l2lzm2Opxsu4FutlXMotAaA9zedISg4e+uUgDnl57OdtIhRcL+7BqvCX8V34h2YBg91yV8zUv4Ib9f/FFqUPAiFgAARuXz2pexOzd1hyx1JXfoyZBgA2btxoVPTwiSeeQNu2lgf/Q4cOxS233II//vgDALBixQqcPXsW7duHVtEnXyuTVTzzxxGsf2aUT9vx0+7zZo9pnTYC8U5vByEVj+qWYqq4G5JJBd5Laj18bZiCBfJYlIDL+QGem9/m6t3FER0aYJKNu35D2ta3uZ86Di7BZU+hrKhwnUdSt11NtRaE4EnX9j4Be5Su2KN0RXdDIh7VLcMkqSp7rL14ER+Hf4mnlL8wV56OxfIIlIXAcOTu7/d55TjuqMZveir797K4yn9bC35Uv2P43+VxWPnECJfbYsq5X883g3l3nNveXV2Vev7KkliseWqk6zv1kVXHHUveLig14PpPtyM5qwjPju+I3OIyze0S0wtROyI4zyESZEwVd+Mx3VK0Fy+aPb9F7oXPDdNxQO3sg9a5zl9XPrGmS9No6CTR7Fwb7EEDZhoAWLJkidHP999/v83X/POf/zT6eenSpe5sUkDz5lJNSZlFXjuWI1zJNPAH3YRz+DLsY6yPeAEzpF1GAYMUpSFeLrsPI0s/wXx5EgMG1TjT+d012LG79874+b5B0EnWT/eiKMBmf+fgh9iet0OF6nffjRphEpY9OgwzejfzdVMCXqzaFg+XPY3rSv+Hv+UhUNSqD8U14hX8L2weNkc8gzul9YhAKKQWO+fVZbFQVdWudHfnv09Vfxt/Hseb/noL9iVj9Pub8amNtHd32Z+UhYd/OYglh1NtbmvX38uBYxeUGmxv5CXOFDM8lJzj0Pa/7T2P5Kzycd6H6+OtprHn+9F74w5hMOA2aTM2hT+LT8LnmgUM1sn9MLX0Tfyj7MWADRgA/psPEW5jzASYj/l0DBoEv5UrV1b+u127dmjXzvYa8iNGjEBkZNWcvhUrVnikbVr+2J+Mnv9Zi0d+Peg36/tas+GE5dUIVFXFwfPZyC3Sjh7bwy/fAo3zRkZBqffb4aC+Qjy+D3sPKyNeMbozCACJShM8V/Ygxug/xG/ytdDDuarJZOy562wXkvLWAN6lJbQ02BN1V1Xrd0YfG9MeDWo5luHg6nJrCx4YjJ4t6uKDW3rhX5O7uLQvKhevtsQTZY9jnP59/CWPgEGtGn60EDLwZth8bIt4CvdJqxAJ/z9XettPu8/j+UXH8MyfR21uq3ihU4x3oHZLdqEe0z/fgUFvb/DIlIU3V55EUmYRPt4QjzSL9YTc957c8tVurI69hKf/OGrWr5eUyXhtWSwe/fUQLuQUu3184q/BnCK9AT/tTnL7fkNxVZ8I6HGXtA5bIp7G/8Lm4RrxSuVziipguTwYE0vfxQNlz+K46pkpkQRMcKImi07y0y+om4R80CAnJwfJyVVLDw0ePNiu14WHh6Nfv36VP1ef3uBJa2LT8OJfx5FXYsCq45csrgntS6ad2v0/HcCRlBzNbf/zdxxu+nIXJn66DfklzgUO/GU95uoC67ShYogYh1/D3sLiiP9grHTE6NlTSks8rn8M4/QfYJE8CoYQSCP2JkEEHhltPVDprc+TrQGuo980e6drWNvvcxM6Yemjwxw8svOD67sGX4PeLesCAHSSiPtHcFDmTolqMzxb9nB58NEwBnq1KlDVWMjBv8N+wY6IJ/GQ9DdqIvQuGKxZdDAVm05dsbld53+vcflYtr67WYX2Z4V8uvEMjqbm4nJeKe78dq+rTbPqgocvMk2X9Iu9YDz//ufd5/Hj7vNYeTwNLyw6alcAx5GbP97M5HTEK0ti8Wq1KSzu4p+/rWfUQAnul1Zie8RTeCPsBzQXquo/GFQRf8kjMF7/Hh4vewKn1FZeaVPD2l7IJPXTP7IAWCw8aqnJkhjcl9XB/dvZ4eTJk0Y/O1KXoHpGQnZ2Ni5duuS2dlny0C+HjH6Ov+x49VpfeHGRdlDlx6v1ANJyS/DV1vKiLqWGwC+OJYoCkv106kQVFaPEo1gY/l8sCH8LwyTjDv+Y0gYP6J/GJP07WK4MZbVzOzjT94mCgEfGtMedg70zCLDG1gDX0btmoihgQrfGNrerYSPDwd/XQr5/eBtfNyHgpKiN8bLhnxhd+jF+NIxHqVqVudRAyMNLYb9jZ8QTeEJajGj4X3FYf2ZrLXt72PrGaX0nr+SVaG67tVoNBL1seUWTK/klOJmWZ1f7LPH0/OgrecaZBQ1qGV9UfbsjsfLfO89m+k2mQalBxnMLj2L2/H0eGZssOXzBrfv7YvNZTP98B9ZZyVQNFrVRhEekpdgZ8QT+FfYrGgk5lc/pVQm/GcZijP5DPFv2MBLU5l5t2+on3V+TxJS/BsJUAA+OdOymQbuG5iu6BZOQv2WYmJho9HOrVvYP3E23TUxMRJMm3l1iqCJCnZJVhJoROsTUdCyN11usDRQqnL5UHgD5z9+ORav9cXqCAOCpPw77uhmaBCgYLx7EY7ql6Cmazw88oHTEHMMN2Kr0hN+GgP2UMwM6USgvBvjmjB7of00MnvrjiNk23vqI2840UNG8bg27lzQTBWDOzL7Yn5SFOyzcYVRVFe/f3BOzrNyBdFe69cyBLbFgn/n69NU58zdsVT/KyRbRRTTAa4bZ+NwwAw/oVuIOaSOihPILs7pCIZ4JW4T7dSvxozwB3xsmIhvRPm4xAYDpdN+8kjJc98k2zW3t+f5ezCnGhE+2Ib/EgH9N7mI1w8fanXnLU6Lc05cV6o3nzYuCAFlR8fryOJxIy8PlPPun1qiq6nCQo2JrRVHx99GLCNeJNovcAsDbK09i0cHyGgwttifijRndHTqut72/NpgXritXF/mYrVuD2dJaRAvGgZwSNQwL5LH4xjAFabBdpNhTJC8E7P35nsC4LrZvenx7d398t+Mcru/ZFEpmss3tA1nIBw3y8oyj2jExMXa/tl4947SV/Hz3rc9+9uxZ2xsBuHTpEj79Ox0f78pAzXARn17fFD3bNkOjRo3sev25jELE1Ay3a7k1W1RVxdurTqJIb54pkJxVhHdXn0KfVnUxoZt2B1fR19sa1AcCQRAcLvjjaSIUTBb34FHdMnQWzd/jnXI3fC7PwG6lKxgscI4AweZF9ZhODbH5dNWdt+p37CylwnkrMGZPpsGcWX1w49xdVrerIAoCwnUihrVvgJEdG2pWXVdVYGj7Bvj1/kHILtLjxMU8zN2SYLaNO7w+vTtGd2qEB38+aHEbZ7NFqvvniDbYey7LbOkwd2pWJxIXc7Xv7AaidNTDW4Y78aVhGu7XrcLd0jrUEsp/v2ihGI/rluJeaTV+kcfhW8NkpKOubxscYOy5QDV62ua2xs//tjcZOSa1iSo2sSdo8PH6eOSXlF+Qv7nypNPTgjzdc5n+LipUrIm9VJk1aWt7o9eqwNkr+WYFnbfFp2Nkx4aar6l433/Ze75yOsCcmX1strt6+37ecx4n0/K8Ov867mIuujWr47Xj+bMGyMX9ulW4U1pfeY6rUKhG+NU5zp8v6L1BFMvHMHqD5Ruf47o2xriu5cGFn1cF/vWLNSGfb1xQYJzeX724oS01atSwui9XzJgxA927dzf7n6n33n8fH+8qr2tQqFcw850FmDt3rtV9bzx5GXd9txfXfbwVYz7Ygms/3IpMNxTp252YiXnbtSvbyoqKr7Ym4MGfDyIhXft9CqaTkyPzPT1NBwNulrZiffjzmBP+uVnAYJPcGzeW/gd3lL2C3Uo3hFrA4Nb+Ldy6vx/vHWD1edMhpD2p91oDzz8fHGJ7tQMH2XNt3rO55YHfixONKzhXn3bw9Z398JmVwe2w9g0wpWczPDiyHTo3qY0InYhv7iqvG1PTTUtphUmixaBlBWfSm00rJj84qh1u7ufez1V13ZtHo02QpkFmIRrvGW7HsNLP8KnhRuSpVVkcNYVSPKhbie0RT+I13Y9oAttrvlO5vQ4WILR3ekJBqQGz5+8zWhbQlGI70RAXLRQwVFXVoTn/shsjrDvPZmB3gvFnzHT3qgpsOGk5hf6vQ5bT9mVV1cyw+sd8y0tzVvxdqtcPeHyB41mNB85nY0+ia0UpHXmrP14f79KxgkFjZOFV3U/YHvEkHtItNwoY5Kk18JlhBoaXfop3DHf4RcDg1/sHeWU5RE8e4as7+7q8jwidA5fKQT58DvmgQUmJcZQvPNz+9P6ICOO5bMXFbi7AI0rQ1W9RXinNIpPlPuqVLxG2JzET325PNCsuqKoq7vvxALafyaish5BRUIpvthtP03DGngT7BnBzNydoPu7svCZ/nJ7gD8JRhlnSRmwOfxYfhH2NdqLx+sir5QGYXPoW7i17AYfUjj5qpe89NMr2aimOaN+oNppEWw4+mk43rn69aemzrPX4wDYxWOvm9bptDc6b16thMcgRJgl4YGRbjOlUfoesblQYJlZLm60RLuG6rrZT/epEhWH1kyNw6o2JuO7qBX5MzXCHaz6Ynk/+MbS1Q6+vrnOT2kY/T+1lvBSjaBI0EAUBijsWaLfgwZHu/cz6o1zUwseGmzGs9DO8V3YrstRalc9FCmWYrVuLbRFP4W3dt2gh2C4OGOr2OniBaOtaoSJt+a2VJ40yp6qLvZCH5Mwim+cVWVGx86z5+GHz6Svo+upajP94m9GNDWt7c3bMXiYrWBt3CWevlI+Llh25gDu+3YuZ8/ZgTWxVvSqtX8Xae/XZRsvLQMqKivR88xs21U8dKVkm9Qe8eFFSvejjL3vO4+FfLGdo2RKhc+/KPIGkhXAFb+m+w7aIp3Cvbg1qCFU3lbLVWvig7BYML/0MHxlu9avpV8PaN/D4zbyv7uzr8jGsTcvudbWocYXXp3dzeDWmj27tbfe2QR4zYNDANLNAr7f/DnFpqfHJ3jTzwDUCGt3yOprf/xUaTH/R8lam3zbFgHwlHDPn7cGbK0/ipcXHjZ6WLQxk03JcT3O1NyL51yHttY2DKdPAlyJRitnS6vIBddh3aClWDehkVcBSeSjGl76Hh8ueRpwa2gXcnruuI9o2rGV7QzvZ8xk2HUBXvwi3dyWQOwaVX0B3aFzbrXNTbV3n3tS3BQQBaF7X/Fw3vXdzSKKAL+7oi89m9sHyx4abLeGo9f7cPtA8GCAIgtn55M0ZPRwKkvRqaZwR8drUrna9Tiso8sUdfTGyY0Pc3K8F9r1yLV6caLxMpum8T1HwbB0KSRRCJliajyjMlWdgeOlneKtsFtLVqr9ruCBjlm4TtoQ/gw/CvkJb4aKVPYU2R7OS7N18wT7rc3jv/XG/zfPKegvF7mbP34/iMhlnrxRgzib7pmxaztyy3oiP18fjwZ8PYuIn23AhpxhP/n6k8rmHql0sm01PUJ0v1GrPtA2zqW5e/N73/O86yIqKhPQC/GtpLFbHGhf7duTXjnbDFNhA00ZIwwdhX2FL+DO4Q7cREUJVPYx0tQ7eKpuFYaWf4XP5BuTBPzPHrH22f75voEv7blg7AhO7N3VpHwDQop79114jOjTEHw8OsWvbirHa+K6NMe/u/k61LdiEfNCgVi3jCwbTzANrTDMLTPfliuHPfYMarXsBAGp2Gobnf96OQ0fNVyB49tlnjX7u27sX0GVc5YBy5bE0s9docUeasz1rsldnMCmO6GzH649LLvpCTRTjIelv7Ih4Eq+F/YwmQnblc2WqhD8Mo3Gt/gM8VfYYzqieS532FUkUHLqAblg7Ao+N7eCRtkzuaX9HWP1jbznTwPiJ1vWrBhi3D2iJlyZ1Nn2JU2x1vpFhEgRBwE/3DcSjY4zvdlcMgKPCdZjWqxlaxpgXBzT9jj89rqNDSzqZFl+zRFXLgwz1osIQrhPx470D7Q5qam3WrmEt/HTvQHxwSy80qh1p9ncyPfcJEGxeKH11Zz88P6GT9Y0sEIXQCRpUKEIk5slTMLz0U7xadg8uqlX1h3SCgpulbdgQ/jzmhH2GTkJwF6Nyhmk2jBbjkgbWt7d3GsDZKwW4ZGFVhQqnLtleMeHA+fJMifySMvxsoX4AYPlC1lZzK+qoGBQVM7/ZY3E7rZoGzg6fLN3Eqc70nOmuorD20BsUfLohHuM/2mpxG1lRMcdKNkUFh1K8A1xHIQWfhc3BhvDncLO0DTqhaqybpsbgtbJ7MLz0U8yTp6AI9k+J9gVrp41OjWtbftIBnlw9wfTrIgrl/bmjxtuRJVm+/+C++xnyhRCjo41TgbKzsy1saS4nJ8fo59q13fMFAoCELD3Cq9XB+TM2Fy2bmn9oGzVuDKCqzXFXShFTx/hbcj6zENdcvciw1N3YM6CwxdFdmEatVx5PQ4cNjs97C7XBs6loFGC2tBazdWtQVzBemqxU1eEPeQy+NkzBBWgXVgoW+18Zh5ia4Vgbewk7zmbY3N4TVYEr9vj42PY4fSkf5zIKba40YM/FrLWPeJgk4qFR7ZCcVYTf9rp2sfTJbb1x2zd7ygeCM/tYnCvbrmEtPD+hM76oPtXIju+h6W9qqfCjO7RvVAvbXxwLWVZRJ8r+u1zOfCpM/4SCaB7oaVg7wigVeWL3Jpi3zblpYaY1FIDygE+qh9eo9welCMdP8gT8Lo/FjdJ2PCItQ6ur2VSioGKqtAdTpT1YK/fHHMMMxKrOFdQLNmcuu69QM2DfBa8nPLfwKNbGWa4hYGnQ7khrk02nBFjZj6I6nyVprdZDRkEpXllyHAfPG49Jvf22f2Yjw2P9iUv40I56BY7UpQhU3YVEPKZbhonSfrPnkpWGmCtPx2J5BPQInKwLaxf0Onuj+LaO4eJQzNoYyjTIpvX71I0KMyvi6nRb3LIX/xU6oT8L2rQxTs9OTrZ/0H3+vHG0u21bzw5OtE7MWufh7WeML5hGf7AFW05fsbg9oBHNVlSzTABbPlhn/wX/8qMXzSqkA8AnG2xHrKlcfeTiBd3v2BnxJJ4O+8soYFCshuNbwySMKP0UrxpmB33AAKia1/btPfalkTkS5IoMs+9UWfE1qhsVjl/uH4TVT5mvcezM2Mme17ijs+rfOgbrnh6JVU+MMJu3b4s9v5bpecZTWULNrk6fqBWhcyhgADi7bKZ5TQPTv9nH1eZF/ntKV6ePBWhndYmCgNend3NuhwFIjzD8Lo/FWP2HeEb/EBIU4+yeCdIBrIj4F+aH/Q99BRZhW3rkInKK9Mgu1Nt1AWfro+mri0BrAQPAsbowzjD9vVVVdfpOqbVsjbdXnsTauMvIKDCeMuurYI0lP++xnPVRnX+12r36C6fwQ9j/sCLiX2YBgwSlKZ7RP4Sx+g/xuzw2oAIGgPU+ytHsYlMVH39Xxy7WXm+aydgouvzn7+7pj1oROvRoXgf3DGmt3T5n2sJMg+DWtavxPFd7lzoEgISEqoveevXqoUkT22vlups9qWqqCjz66yHEvT7R4vYV3/1Sg4wTF/Pw7MKjSM0uxhez+tpMy8ku1OOVpcetbmPKmWq/lgRzZ6SlCTLxoG4Fbpc2GxXUAYB8tQZ+ksfjO8P1yPKjgjreZDqP3hJ7s2tWPD4c/10eh/1Jxnd8mtetgZwiPQo1lhitoHUEa0V7LH2WvZmS6kzqHmDfRYRZCRYHf63W9WuidoQO+aUG1K8ZjkyNVUq6N4+2a93y6m2q3nR3rJ6gqqrZ32x4hwb47Z+DkFdswIRujZ0+FlD+2TUNuIgCcPeQ1kZV1UOBATosVkZiqX44Jon78JhuCbpUWyFmjHQUY6Sj2CV3xRz5hpBeUrb36+sBAHcNvkbz+V/3JuOtG3ogKaMQB0zucJvyt4vXCpbOldaWTHNs/8Y/qwBEJ2+/WXsPFx/WXnXBn+7Y2wrgBDcVw8RYPK5bisHiSbNnTykt8blhBlYpg6AE4P3Zni3Ka8dY66LCXF6y0z2f5UFtYnAkJUfzuQidhB/vHYhFB1NxU9/mlePDa7s0Rux/JwAANp/SLqRbz8EbDgCCvmsJvE+ym9WtWxetWlUV4tq9e7ddr9Pr9Th4sKo4To8ePdzeNnv8ameU19qFDVBRWEvFrV/vwQ1zdyExvRB6g4J//nRAc/nA7EI9DiRlQVZUvL3qJFYdv6SxV+84mWZ7PmQwaCVcxtu6edgW8RRm69YaBQxy1Jr4qOxmDCv9FO8bbg/ZgIEj7I2Sd7ewxOCk7k0Q9/pEo8daNzAuZqR1Udi7ZV0MbVcfAHDvMONMJ0sDQhXl6fYVrteomeCJAHf1Off3D7deNNOeawjT98PRAbBOEvH7g4Px2Jj2WPDAYKPnRnVsiEP/Ho8ljwyzmTZ5X7Xf5fXpxnUwnHkbTQNQiqo9HBrargEmdm9S+T7Y8xEMkwTMn228jKfW1Jpgn0tpiwIRK5XBuF7/Dv6pfwZHFePMv6HSCSwIfwuLwv+L0eIRhF64uYq1u8PnMwtxj5Ul/yq4c2lDd85pthQ0mPr5Dly2UVvBHlpLLjp7peBMMFhRgdOX3DvVhByh4lrxIJaGv4pfw98xCxgcVdrin/pnMEn/DlYoQwIyYABUfaKt9SvuyjS4zsYyyJb0bFEH9w9vg0FtY6xuN6pjQ8yZ2QejOzWy+PzYzo0QoRNR52rBzqhwCY+OaW9xn5belgg3TdnwVyGfaQAA119/Pb766isA5dkDiYmJNqcabN++3aho4pQpUzzaRksu5jrWCVpaq1kUBOxPysZRjWjdZxvP4F+TuyC3uAz1a0WgpEzGpE+341JeCW4f0BILD2qvhuAtt3xlX6AnULUXUvGobhmmibsgCcaDjHQ1Gt8aJuMXeRwK4c7VO4KfpZoGLWNqICXLeG646aA2XCfinyPLzxFvTO+GTzeewcTuTdC5SbTJ68wJAvDzfYOQU6RH/VrGqXOWhpCqCnx/zwD8sCsJg9vGaK5e4An3DW+D0jIZpbKCx20UjXTmEsKZZbi6NauDbs20AznWsjiqe2Z8R0SFS6gVocPtA1ri30tjq560awUM45+vqW9c9DEqXMLw9g1s7seeIdf2F8aa/V5adzbdUZcmGKgQsV7pj/X6fhglHsPjuiXoL1ZNT+gvxuOH8PdwTGmDzw0zsF7pBzVAB/aeMOr9LXZt50c3vI1Ya9aH607jlcldsS7uEga1qY9W9c2LtdpifqGvOh2wdSZbQ1FV3PGt5UKN/spfPy/2EqFczWRaii6i+TTmvUpnfG6Yge1KDwTD7eamdcrHGNZ+E52zKTZXVXwkujevgxEdGphNrbZmYOsY/PlQ+SoIFdOvnSWKAr7/R3lgXlFU7DmXiZb1oirfAy2WvvMdm7ivtp0/YtAAwA033FAZNACAefPm4Z133rH6mnnz5hn9PGPGDE80zW1qRehQrJdxz/fadxBEQUBOkfZyk3sSM3HL17txODkHj4xuhzYNalZWQ/59f4rma8h13YRzeEy3FJM0iupcVGPwlWEq/pDHoBSOrTkbiqLCJRSZZNtUv8j69u7+ePL3w2jbsBZ+mD0AN8zdheSsIrNMgAqrnhiBxtHlVY/vGtIad1mYE2eJJApmAQPrVLSqH4VXrSwb6IkKxJFhEp65zr4K//ZmDYzs2BDb4tPRMqYGBraxfofAEY4su1QzQodnLfxezryPtSPD8MltvfHXoVTcOfgahEkiujevg5cmdcbuhEw8Plb7joU9F/pN6kSizKS+jE4UzQbhdUNwSTPrBGxVemGrvicGiyfxuLQEw6SqqRs9xXP4JvxjnFJa4gvDdKxUBgfsXUFf8PT0BEsZjrZYOw8dS83FAz8dwN5zWagbFYa9L1/rcODSNGiQWaB3+sy74aTj6f2KqprVOQgEgbrKlQ4GTBd34RHdMrQTzVcj2yb3wOeGGdindvFB6zwjKlyqXJHJs5kGVZ+Ju4e0dihoUP1L52o7qhNFAUPb2Q74hyoGDQCMGzcO3bt3R2xs+d2mOXPm4IEHHjArklhh9+7dWLhwYeXPkydPRocOnlm6zV3q1QzDCStp/KJg+eRwqloq3NwtCXj5evcs70ba+gmn8ZhuKcZIR82eO6c0xpfyNCyRR6CMX1+7NImOxJbnR6Pzv9cYPV69nxnXtbHRVINVT47AhexidGysPb+/+lQBaxy9A+VKES/TYz1xbQdsPX3FZoaAu1TMgbTlm7v6YXdCJnq1rOtyZ//a1K747/ITiKkZjieudc/vac/fTGsAPKNPc8zo09zosYdGtcNDo9qZbVt5LJOfOzWujYs5xcgvNVjdLrqG+Xf/P9M8VwSxRb0aGNu5EX7dm+y3c9ktE7BH6Yo9Slf0NcTjMd1SjJWOVD7bWUzBnPDP8ZTyF+YapmOZMhQGnlttcmV6QmZBKe798QAyC0oxZ2YfzW36vrHe6GcBAr7fec7mvm01qyLbMqeoDFtPp9udGj3q/c3ILzEYTW0CgDdWnsCojs4VGnam/oi9X78dZzIwrH19vynMpqrA/9ac8nUz7BaOMtwibcVD0nK0vLo6S3Xr5H743DADx1TL5/dAtOLx4YipGV5ZTNjSx6eOG4LU1T/KrnxKQ31qnjexZwQgiiLefvttTJs2DQBQWFiIqVOnYvXq1WjZsqXRtseOHcMtt9wC5epaOaIo4q233vJ6mx0VExVuMZMAKI+u2ZtpZAi4QWMgsF5U57TSAl8YZmClMggyHE/pDmVhOkGzOKK1jqZWhA6dqqeZOdknuevuvz3fuNb1jespPDO+I54Z39Etx7fkyzv64pk/j6Jjk9q400JxNVORYRLGdNaeW+io2cPaYFTHhqgXFY56dk5N8Csmn8G1T4/E8wuPmk350kkipvRsihXH0jCoTQw6Na5t9pmwVHvDXvWiwqA3KJr1b3a8OBYA8MDIthAEATfO3YnLeaVm2/m7Q2pH3Fv2ArobzJdGayem4cPwr/Ck8he+kqfhL3kEs7iscKUg30fr4yunQv5j/n6zC3FLrtjxmbM2PDG9gHYkAHY+s3wZxvfXnjZ6PCWr2KsXLfbWQbjzu734v0md8aCVoKU3xV7IxdHUXF83w6YaKMFMaTMe0K1AE8F0uUsBK5VB+MIwA6fUVhb2ENhM+xFLQSd3FOSsvoueLa33X7f0a2HUL1ZvlaWvX6fGwT1VwBcYNLhq6tSpeOSRRzB37lwAQFxcHLp06YI77rgDvXv3RllZGfbs2YNFixahrKxqPc///e9/6NWrl6+abbeWMVG478cDFp+XBMHuiLQsM2jgLgIUXCcexMO6v9FbNF+C8qjSFl8YpnPerQe4M6XNEsfHktrfLXsGijMHtsIve88jMb2wckk/T5vUoykm9TAvyuhNbZ1c7cESe/5kLetFoXF0BC7nlaJJdCSaXp2q4oljVfj09j54enxHtKwXBUEQ8PDodth39a7puC6uBWF6tqiDN6Z3R/N6NfDYb4ewJ1G79k2Leo7PAfdHsWpbPFT2NDoaUvCobhmmiLsr68W0EtPxtvgdntL9he8NE/GrPA75CI7f250cXJHZyK97q+aE5xaX2ZVJdfxCrl0X+a8ssX8lJ3dd63vzPqfiQKDjndWn/CZo4O8Bg7rIxz3SOtyjW4sYocDoOYMqYok8HF/K05CoOrYUMdmnUW3Lfeidg1vhzRk9jIMG1acnmHyRnxnfEZkFpbhvuPXadOQ4Bg2q+eyzz5Cfn4+ff/4ZQHnGwTfffKO5rSAIeOmll/Dcc895s4lOC7dR0fPbHefQs2Vdu/blzqrJoSocZZgh7cCD0grNeXJ7lc74wjAd25SeCIaiOvZ6dnxHfLjeO2uqD+/gf/PWLH217Bko1giXsPrJESgsle0uCEjm7LmQEEUBv94/CKuOX8Lknk2dLkKodYfS0l9aEgWj5TBHdWiIN6Z3Q1JmkdUpELbc2r8F3ru5KvD9+wNDcDmvBDO+2In0/FJ8ZiF9PBjEqy3xZNlj+ES4CY9Iy3CDtAM6ofxquJGQg5fCfscjumX4VR6H7w0TkY56Pm6x/3DnMrCX8+0r6GxtimWFM1cKbG7jbt6cAsBET/dqhgzcr1uF26XNiBKMM1lKVR3+lEfja3kqUlXnpqAEg4o6RNW542PoSrZC9SxO0/53Ru/mThU5JdsYNKhGkiT89NNPmDJlCt54443KGgemBg8ejLfeegtjx471cgudZ08H/84q87R4LYE3p9V/1EIRZkkbca9ujVnqGxCcRXUcERHmvWyKR0ZZXk7Hk6x9FS09NaC1fQUDI3SSUysSUBV7p5S0b1QbT1zrWvqjK9caoig4XIBTi9bnsXF0JDY/Nxp6WUF0ZPAXWDynNsXzhofwqXwjHpKW4xZpGyKE8ozCaKEYD+uW415pNf6SR+AbeQqSVN9m1/gDR+542/LbXvNq9N7hnot9b06pLjCpd0LO6Sik4EHdckwTdyNMMJ6SVahGYIE8Ft8YpuAKA4W4rX9Ls6CBO6IG9u6iQ6PyfnZw25jKLLjZw1pb3N7FRR3ICgYNNNx666249dZbERsbi2PHjuHixYuQJAnNmjXDgAEDbC7H6I/s6d/T7Fy+kTUNHNcQOZitW4M7pQ2IFoqMnlNUAauVAfjKMA3H1cD7bAWimQNboU6U5y+G3DGYbFQ7wuqqCeRe3rwA0EpQ8JdErsgwSbMWCOA/bXS3VLUR/mW4D58YbsZs3WrcVe18HSEYMEu3GbdLW3i+RmBmHJ40yVQoKZNx/4/7K1eDcpYnVq4hz+gnnMbDur8xTjps9lymWhs/GCbgJ/k65MK9094Cmb19YsWUPbvZOIWIAtClaTRuG1BeW+7j23rjs41n0Lp+TYzr0rhqNyb78cbU01DFoIEV3bt3R/fu3X3dDLdwZwe/4thFt+0r2LUW0vCAtBI3Sdsr71xVKFXDrt65mhw0d65GdGiAyDAJ6084vpSUP/NWF2T6Nd3x4hg0rB3B7AEv8maqsdaxAnVpsmCSgTp433A7vjRMw0xpE+7Tra7MDBMFFZOlfZgs7cMOuRu+kqdhh9IdoTSNDAiONPl52xMRd9H2lAdbeI3i3wQoGCMewcO6vzFANJ/+mKo2wDeGyfhTHo0SOLIUsmfcN7wNvtthe6WQcJ0IvcGF4iJ20gxua2z3zxFt8eZK+zKWLe2jQodGtbD88eEIk8TKIEDTOjXwzo09zfdjMnAyrXFA7sMkjhCx8pj5vHlnpWQVu21fwaqHkIgvwj7BpvDnMEu3yShgkKdGYa5hGoaXfoqXDfcHTcAAAH6+bxC6N3O+iru/3rFxZx/kyL6iwnUMGHiZNz+BWseaPbSqkvwIJ+pu/GtyaE5t8oQCRGGePAUjSz/BC2X/RIJifK4eLsXhl/B3sCL8lfJiijBfeSJYKYqKlKwi2xv6MXcEDADgh11JbtmPJ6yJveSWSveBKBxluEnchjXhL+H78A/MAgYnlZZ4Uv8IRpd+hJ/kCX4RMACAGmESHhtje/pkTxdXzDH11g2WbpLa1ys6GnC39bmMDJPsyhow3YuzNYbINmYaELmJCAXjxIO4T7cag0Tz9Ygvq3XxnWESfpOvRUEQV+P2tzulgTRe8rf3LhT1bOHegZg1WoOs7s2j8cltvXEiLQ/327kUXXVhNoremuInzjY9wvCnPAYL5VGaq910F5PwefgcpKoNMN8wAX/KY4J+xQVZUfF/i+1fqSCY+fOUzYd+OYif7xvo62Z4VV3k4w5pI+7RrUMjIcfs+b1KZ3xpmIYtSi/4Y4bQ3UOvQY0wCecyC63e8HPXp65nizr47PY+aN2gpubzWrEArdpmWtfq9aLCkF1UZv4ErH9voiKcvzxlpoHnMGhA5KIolOAWaStmS2vQWjRPy09QmuIreSqWycOgR/AUFXtxYmd8sy3BrEPwxUX6GzMcm0bkrT4lXBLRrmFNJKQXVj5m7f1pFWN8oVE7kqdob/hiVl+8ufIEBraJwZhOri1f6Aitj6EgCJjRpzlm9Gnu3D4d/GwHUlDN11SIWKsMwFp9fwwWT+IhaTlGS0crn28hZODfYb/iKd1i/CmPxnx5AlJV732evElRVew4m+HrZpAdnvnzqO2NgkBb4SLulVbjJmk7agh6s+fXyf3wlWEqDqkdfdA6+1UsP/jFrL5YeWylxe3clUFSLyrcYsAA0O6n7J3ybC2eVmoyteKZ8R3x0fp4CALw+rRudu0fMO/DmGngORyREjmpKTJxj24dZkobUUcwT9M8pLTHV4apWK/0gxqEM4FcvSv+2tSu+O/yE0aPOXrB8+ntvWGQVdxg5QLLl0FnQRDw470DMfx/m+3aPipch3l398fSwxdw24CWDt81JudM7tkUk3t6f5qQJ6o8e+PjHihxhvuHt8G3dswNdpyAPUpX7FG6oovhPB7ULcdkcW9lFfbaQjHu063GP6Q1WKMMwHeG6/3+QsVRORbuHpL/Ce5LKBVDxBO4T1qlWdywVA3DYnk4vpWvR4LqXCA22Nm6xtbKiDPI9tVScGRp1sfGtEfHxrXQsHYketm5BDxgPhb1RiFEf51K62kMGhA5qKeQgPt0qzFZ3FO5pncFWRWwWhmI7w2Tgm6QaK8a4cZz8JvWicTANjFYdsS4gOaNfVqgXlQ4nvrjSOVjjaMj7T7Oy9d3xvTetgcBvr6T2qKeY2nK47s2xviujW1vSAHPIwMPR+eVBkwIwHFhOs8H3U6q1+CpssfwLmbiHt06zKoWRJaqFU08rLTHt4brsUYZABmBX6fkLTuXaCbf8+ZSxt4SBgOmiLtxv24VuonnzZ7PUKPxs2E8fpHHIRPem3LmTe46c9uqRaD1rFYGgdZ21sZf9wy5xuhnURQwsbvrwXtOT/AcBg2I7KCDAePFg5itW4OB4mmz5/PVGvhdHoMf5QlIVRv6oIXeZ6kziDIJGuz+v2sBwCxoAMH8+qZL09q4vkcTrDp+yeJx5/9jAKLCJQxsE+Nwm4n8SdM69gfJ7OVvw6VWMVFI9lHBPG8OHi+hPv5nmIk5hhtwk7QN90qr0abadLU+4ll8Ef4ZUtUG+NFwHf6UR3NZN/KKyCAqptsQObhd2oQ7dBsrVzSpLl5pjm/l67FMHoZShPughd7jyA2RPq3q4q7B12hOVbF1lnTlNKqVaTCtVzPIiorHr+3g/I6rM5ue4J7dkjkGDYisqOigZuk2oamQZfZ8eeGrifhDHu13xQ1fndIVr684YXtDN4sKt++0otURCYKAL2b1xftrT2PulgTzDQC0a1gLrep7970O1VQ08qyBbWIwrH197DybaVe1bHuIfnaX5aVJnfHIr4d8cmxfTG0tQiR+lq/Dr/I4XCsewn261RgsVt2VbyFk4JWw3/CsbiGWysPws3wd4tTW3m8ohYzAzzRQ0Vc4g7t163C9uBfhgvkqJdvkHvhWvh7blJ7wv9Ap8MPsAYi7mIf315rfdPKG927qiQ6Na2sHDWxOT7DvGFoZC6ZBgxphEj6b2ce+HdrJNCzhjWCxn3WzXsOgAZGZ8g7qHt06TLLQQR1UOuBbw/VYp/T321TTWi5Un3VFi3o1NB9vXrcGLuRULdcpwLyTqXjsodHtsDMhE0kZhXhxYme8vMS9VbodPd+HagdBniUIAn6+dxCKymS3fV8d/qx6eHaCL6cH+XLihQIR65X+WK/vj27COdynW42p4u7KugeRQhlu123B7botOKh0wI+G67BaGYQyDsvIzQI10yACekyTduFuaR16iElmz5eqOiyVh+M7eRLi1ZZ27bNT49o4fTnfzS21bXSnRhjaroHNoEFMTfuzI6Jr2F9Y23q/YGt6gr1LLpo/ZjqNwRvT4bxR0yBUsXciuioSpZgm7cI90jrNOXJ6VcIqZRB+NEzAYdVNaVUe5Ku5yoPaxGBEhwbYfiYDD45qW/n4P0e0wX+qFT4UBMHsTmBFECE6MgzLHh0GAEjNdn9qc/DO4qZAI4qCWwN83ogZOBII8GXNBF/XM6kQp7bBM2WP4H+4HXfp1uN2aTMaCHmVz/cTz6Bf+Bmkqz/jd3ksfjNcizTU92GLKZhEhkkQBP/5PtjSQkjHndIG3CZtRj2hwOz5NDUGvxjG4Q95DDICqF5BuIUaK2GSgDJZRc1wCfPu7mf3/l65vgt2nc1weclPm4FmV6YneGE50v6t66F2pA75JQZ0aFTLZo0Gch6DBhTy2gkXcLu0GbdIW1FXKDR7Pk2Nwa+Ga/G7PDagOqiGtSNcev3kHk1xIacYR1JyLG6jdXIWBAE/3TsQmYV6NKhV1QadyUoAAsxTqf01QDywTQx2JWS6ZV/N6mpnYhC5Q88WdX3dBCO+zTTwr6uky4jBB4bb8JnhRlwv7sXdunXoK56tfL6hkIfHdUvxsPQ31iv98Is8DruUbkG5+g55T4QXCoK6SoKMMeIR3C5twljxCETB/Lu7W+6KH+XrsF7p57cZns5Y+9RINK1TA4qqoqYDAeROTWpj+ePD8dXWBPOaUWacH1y5MuXNdHqCJ6Z6Rugk/PHAEGw+fQXTejVz+/6pCoMGFJIioMf14l7crtuMQeIpzW0qOqgNSl8YAvCrMqpjI/RoXgfHL+Q6/FqdKOCLO/oCAH7clYTX/o5z6PWCIBgFDLS3Me+MPNGhaKX7NXfwwv2+4W2wNT4dSRmF+Pi23g634fkJnfD+2tPo06ouV0Ygj+raLBqPjWmPjaeu4GRans3t3bXWtyWOLLkVKvQIw1JlOJbqh6O7kIi7pfWYJu1CpFC+jKFOUDBJ2o9J0n6cVxrhD3k0FsmjcAX1fNxyCkQRYSIE+GeGXXOk41bdFtwmbdEsbFikRmCxPBw/ydfZPQXBGl/chH7CjoJ/pqtO2atL02iM6dTIjqCBZe5KNLBnlYX2jTxT/LVrs2h0bRbtkX1r8dTv4e8C70qIyAWdhWTcLm3CDdKOymWxqitUI7BYHoGf5OtwRm3hgxa6jyQK+Ovhocgu0mPQ2xsdeu2P9w6s/Pc9Q1tjWPsGGPfRVqNtXL3YECCYdeDu6tD/PaUr3lhxApIo4K0ZPQBUXbg3qxOJu02W+rGldmQYljwyzOn2PDqmPe4ecg2iwnWcb0ce99yETnhuQie0fmmlr5tCNsSqbfGC4UG8bZiFW6UtuFPagFZieuXz14hX8IL4J57RLcJmpQ9+l0dji9I7qO60kmdF6iS/ChjoYMC14iHMlDZjpHhMM6sgUWmCn+Xx+EseiTzU9EEr3eehatM0tbiaTm9PRpW1Q7irECIAfHp7bzz5+5HKn3u1qIOHR7fDI78eQoROwrs39bB/Z37mk9t645k/jyCmZgSen9DJ183xCQYNKOhFoQRTpd2YKW1Cb1G7Iv9JpRUWyGOwRB6BfD9bBcEV4ToRjaMdW9Ztcs+mGNa+gdFjnoiqamYauOl6+t5hrdGlaW3E1AxH5ybl0edHx7THlJ5NUb9WhE+KRNaOtL9oEZF/86dLEMsCKckhB7XxjTwV38qTMVo8gjukjRgtHoF09YJKJygYLx3EeOkgLqn18Kc8Cn/Ko5GqNvJxy8nf+cvqCW2ENNwibcUt0lY0FMwzIPWqhHXKACyQx3hsWo4vzgk1wqwH+DxxG6FR7QhcyS81e7xNg5o4l2E8DddWhqfW8y9M1L5ont67OerXjMC9P+5HhCTi3Zt6okvTaGx9fgwidCIaOTge9Scz+jTHsPYNUCNc8lmhcV8Lzd+agp4IBUPEONwobcdEcT9qCuYnz0I1An/LQ/G7PAZH1Xbwx2V6LPn4tl54+g/zpXPcoZadSyaqKnDbgJb48urSiN2cSA0zfcftmTtnT2BBEAQMbdfA7PFr6gf2HQsid/P0GNqXF+62pkj5IwUiNil9sUnpiybIxC3SVtym24IWQkblNk2EbDyhW4rHpGXYrXTFYnkE1igDUAjWSyFzxXrZZ9MTolGAqdIe3ChtRz/xjOY2iUoTLJDHYrE8ApkBVDfKXtUzCXSi4FDhwvdu7okXFh2zuo3pOXbnS2NxOa8EN87dVdWGq/+dM7MPpszZYbS9aCM2YzrmenBkW9w7rI3FDYd3aIC9/3ctRFFAnasrPLSMCY6bca7WCgt0DBpQUGkvpOImaTtmSDvRVMjS3OaI0g4L5LFYIQ8O2EHW4Lb+UVn74dHtkJxZhMzCUrx9g2NpZ4Jg3hmx6C1RcFGhYubAVliwL9nrxw70oqOXUB9z5BvxuTwDw8VY3C5twnjxYOUywKKgYpgUh2FSHN5Q52Ot0h9L5OHYofSAwuKJdNVSF+a7O0MHA0aKx3CTtA3jxEOIEAxm25SqOqxWBuJ3eSz2KF0QSDdtXBFdIwxZhXqjx6yNe27t39Jm0MBU87o1cDmvxOQY5Qfp3tw8KGM708DYY2PbI1Ije6L6dvUcWDqSAgeDBhTw6iMXU6XduFHajp7iOc1tctUoLJGH43d5LE6prbzcQvfz5Lz4Xi3r2r1tdGRYZcFER2nVNNDKNDCdXuHodAsicq++reph3YnLdm3btkEtHEt1vBirq7a/MAYn7CgEGQhUiNiu9MR2pSfqIxc3Sttxu7QZ7cS0ym2ihFLcIO3EDdJOXFbrYpk8DIvlEUHR31EgUNFNSMKN0g5Mk3aioaD93TuptMQieRT+kkcgB7W93Ebfqx2pMw8auBgw0Sr27NYRooWlsSn0MGhAASkaBZggHcAUcQ+GibHQCYrZNmWqhC1KLyyWR2CT0gelCJ7Ip+TBk/ZN/ZprPm5PmpwjBMG8s9T6rcIkEQsfGoLFhy7ghj7NLa51TESOc2b6wL+ndLU7aNCrZV0sOXzB8YM46NC/x+NAUhYKSg2Y1L0paoRLQRM0qC4TdTBPnoJ58mT0E+Jxo7QDU6TdRoV9Gws5eEC3Eg/oVuKk0grL5cFYqQzGebWJD1tOwaijkIIp0m5MFXejjah9TshQo7FMHoa/5BE4oV6DUMkq0PLgyHZ4eclxt+5zZIeG6NYsGnEX83CPhSLPVt9xW4UQ7RinAeX1Eii4MWhAAaM2ijBePIAp0h4MF49XpmiaOqa0wWJ5BJbLQ4Jyfhzg2rq51rx7Yw9E6LSL9tzct4VR0MDRaw2zqQiV/1d9G+3fa0DrGAxoHePgEYnIFmfmObeMiUL8m5Nw4HwWZs3ba3N7Ty+7+OLEzoipGY7ruhlfFAf3pYmAg2onHDR0wn8Nd2OseBg3StsxRjyCsGp9YxcxGV3EZLyAPxGrtMZKeTBWKIOQonLpV3JOGyENU8TdmCrtRkdROyBYquqwXumHxfIIbFN6BuSy1Z5wY9/mZkEDZ4ZzDWpV3QQTr66UdTmvBK2u1g5wJBvA5pKLVqaRvja1K95edRKjOjbE0Hb+MW2WPIffYvJr0SjEaPEIpkp7MFI8qjk3DgDS1BgsvZqOGehLJdpDtDE9YUI39w8IbR3TUYJgnpTHrDci72rsZGGncJ2oWWxUiyeDBi9f3xl3D2ntsf0HAj3CsEYZiDXKQNRDHqZIe3CTtN1staDuYhK6i0l4Eb/jqNIWK+VBWKUMRqra0Ectp8Cgop1wERPEA5gs7UE38bzFLQ8oHbFEHo7l8mDkITTXsrfGHTd8wiQBc+/oZ/RYZJhktdBz9cNWLEld9ZxjNQ2qj9xmD2uD2VpFESkoMWhAfqcZMjBOOojx4kEMFk8a3TWpLl2Nxmp5EFbIg7Ff7eSR5Xn8la3r9zkzjesMvHtjD7y02L0pca5eBwgw76w8lUFBRObqRoXhodHtPH4c2Xz2mNs8MNJy+0Nx7m02ovGzfB1+lq9DGyENk8U9mCztQRcxxWi7XmIieomJeBkLcFJphXVKP2yQ++G42gbBnqNBtglQ0Ec4i+ukgxgvHjCqn2HqqNIWK+TBWCkPxkXYF0gMVa7ee+nRvA7m3tHX5moE1g5z3/A2xkEDG8c0vWEUgqdVuopBA/IDKroK5zFeLF+DuruYZHHLLLUW1sgDsVwZgn1KZ8iwvv5tsLI1GDad939L/5Z2BQ28uSST1q/AvojIO1Y9MQKNoiO8siyh6qN1F0P9fHJObYrP5RvwuXwD2gupmCzuxRRpDzqYpJRXTGF4UrcEl9R62CD3xXqlP3YrXaFHmI9aT94WAT2GiHG4TjyA8dIhNBQsFzCtqJWxQhmC5ACZ6nJjn+aIu+jbOidaYzdHLsJbxUQ5tXyhtWKLto4f6udRqsKgAflENAowTIzDSPEYRkrH0FzItLhtplobG+R+WKEMxm6lK+fGwfFBuCdWW1BdDDEIgmAWdWcEm8g7ujaLDspjkbazagt8KrfAp/JN6CCkYoq0B5PFPWgvGi/H10TIxp26jbgTG1GgRmKn0h3blJ7YqvREqtrIR60nz1DRVkjDKPEoRonHMFg8gUihzOLWsUprrJP7Y6UyCAmqdsFkf/bkuA74dOMZnL6c77M2aA3FPJER5chy1o7WNKDQxasv8goRCnoKiRglHsVI6Rh6C2chCZYvOs8pjbFe6Y91cj8cUjtyzWkTnrpv5+0bgmZVedk7EQWdW/u3xJLDF3A4Ocerx/X16WR0p4bYcjrdt43QcEZtgY8NN+Nj3Iy2wkWMEw9inHQI/YV4iNX65VpCCSZIBzBBOgCgvF/epvTENqUn9ihdUYgavvoVyEk1UYyhYlxloKClaPnzaVBF7FW6YJ3SHxvkvriAwK59cU39mnh+QicsPuT51VwscXmM44Fzmu02cVxG5Rg0II8QoaCLkIxB4snK/9UVCq2+5rDSHuvlflin9MNZtTl4onKvl6/vjLdXnfJ1M4w4Eg0nosAUGSZhySPDEHshF1Pm7Kh8vEfzOjh+wXIKtKt8eT5pUCsCIzr4Z9CgukS1Gb6Rm+EbeSpikIex0mGMFw9ihHgcUUKp0bZtxMtoI67HPVgPvSrhsNoBe5Su2Kt0xiGlA0rg+aku5JiaKEZ/MR6DxRMYLJ5EDyFRc4nqCoVqBLYqvbBe7odNSh/kBlkxw6Z1auDE6xPQ9dW1vm5KJU+cpqxNR3D0+ByXUQUGDcgtJMjoKpzHIPEkBosnMEA8bbRutJYMNRrblR7YJvfEdqUnMoJ0eURPcCYj4IGR7TBr0DUY9NYGFOq1i0s6MuVgYBvXl0A07YtYCJEodPwwewD6vbnB181wu1v6tcB9I9pgx5kMXzfFIVmIxiJ5FBbJoyrnt48Sj2GEeNxsGkO4IGOQcAqDxPJAtF6VcExth31KZ+xVuuCg0gEFcHzuNbkmGgXoK569OhazHSQAgBPKNdiq9MRWpRcOKh1RFuSXBlHhnv39ujWL9nntBIfYGHY1jo40+tkT010pMAT3mYE8REUzZKK3eBa9xQT0EhPQQzhndlfCVJkq4ZDaAVvl8s7phHpNSK14oKVzk9q4d3gbvLDomGMvdHIaQa0InUtLJ/5830C8v/Y0BrSOwZC2bliT1zTTwPU9EpEF9w9vg10JmXhuQkdfNwWA56cjOXK3zZ3ev6UXAARc0KC6UoRji9IHW5Q+AIDmSMdwKRYjxaMYLsaa3RQIF2T0F+LRX4zHI/gbsiogXm2Jw0o7HFXb46jSDmfU5iFbvNgTJMjoLKSgt3gWfcSz6COcsbrKQYUctSa2Kz2wVemFbXJPXEE9L7Q2dDh6U8eR06CzZzTrNQ2s77V53Rr4x9DWWHQwFQ+ObIswKbTH7aGMQQOyQUVzZJRXVxbOo4d4Dr3FBDQScmy+0qCKiFXbYI/SBXuVLtivdOKdBxOiIGBUR8fnCdaO1EEnCjAo7itCEC6JmNKzmdVtRnRoiBEd3Dev0bSzYqYBkef8a0pXXzfBiMe/7T4+nXiqRszzEzrh/bWnPbNzCy6gIf6Qx+APeQxEKOglJGCIeAIDxVPoL55GLaHEaHtJUNFFKF+VYRY2AyhPfY9V2+CI0g5xSmucUlshUW3K4sZ2CEcZOggX0FVMQhchGd3EJLtu1gBArhqFvUoX7FG6Yo/SBafUVqwT5UGOfu0dCW564pQytJ3tG0D/mdYN/5nWzQNHp0DCMzVdpaIe8tFWSEN78SK6COevBgqSEW1jmkGFMlXCMbXt1c6pCw4qHVkoyQ7OjGtFUcCSR4Zh6uc7zJ57aJTj666/OLEzBreNQZ0a3l1eizUNiEKXI9/3J67tgM82nvFcYzxA8dFSk56mQMRhtQMOyx0wV55uND1xkHgKA8RTmjWMagqlRlMagPJpDWfVFjiptsRppSVOqa1wVmmONMSEZCaiBBkthStoK6ShnXARncVkdBXOo71wEWGC9rRCU1lqLRxUOmE3gwQ+4aslZq0xzer65b5BePXvWHRpGo1pva3fLCKqwKBBCBGgoAHy0EzIQAshA22ENLQR09BWuIQ2QprNQoWmUpSGOKK2wxGlPQ4r7RGntkYpwj3U+iDm5IVyjxbGNSA+n9UHrevXRDcby5tpHe7h0Y4HGhylFU03fYRBAyLS0rC240X2fH068b9LB8+QIeG42hbH5bb4Vp4MAQo6CBfQS0xAb6F8CmNnIVlzbn24UB5w6IrzqD5zoUQNQ5LapPJ/iWoTJClNcBENcEmtF9DZCRHQo6mQieZCBpoLGWgjXEJbIQ1thTRcI1xCuJ3BAaD8Zk2cek3lOOyw2gHJaiP4/tPvHx4c1RaHk3Pw/IRObt/369O7YX9SNpYfNa734Y/TE0wN79AAm54d7aa9UagI3LMuVdLBgHrIR30hH/WFXNRHPmKEPDQQctFUyEIzZKKpUP6/CMHg1DFS1QY4qVyDE2orHFXa4ajSDpksXOgyQXBt3u2LEzvjg3WnMax9A0zu0TTglyz01RxkomD08W298PQfRwEAb93Q3cetMefI992ZUizuOh82rROJt2/sgdnz9zv0Ok/dcPT307wKEfFqS8TLLbEQowEAkShFV+E8+ohn0UNMRGchBe2s3D2PFMrQWUhBZ6SYPaeoAtJRB2lqfVxU6yNNrY80NQZZam1koTay1OjK/xYhAt65gFYRCT3qo3zsVV/IQ30hDw1R/u/GQhZaXA0SNBScWzGkVNUhXm2BE0prnFRb4ZjSljdrrvrH0Nb4YVeS2eP/N6mL247RvlEtnL1SUPlzw1oRmDOzD05czEVCetVNN0cKSgPeWeraz08ZFCAYNPBTj+mW4hpdLUiQESbICIMBUShBLaEEUShBTZSgllB89b8ltndop1w1ColqM5xSWuKk2gonlWtwWm2JPNR02zGoikFWXRoAPjy6He4acg1qRQTmV9l0UO/vg2GiQDKjd3PoRBGyomJaLz9MQRWAkR0bYlu87WUJfVnvpEa4hDGdGjn8OkcvHuwViMHVEkTgkNoRh+SOwNU4QTjKylPwhWR0vjodspOYgsY2aiaJgorGyEFjIQe9kWB121I1DLmoiSI1AkWIRCEiUKRGohCRKEYEylQJCkQYIEGGePXf5an8YZChgwwdDAgXyv+rg4wo/H97dx4fVXX/f/w9k30PIXsChBD2Lew7IgKioIIsLriggOJSFEW/1mrVWpdWra3WrfpVW/d9xwVFrbYu1Z9VofqtIJuCqIBC2ALJ/P4AhszkTmbJvXPvzLyej0dr7sxdPgnJnHM/95zP2a1s107laKeytVNZrn3/DWeEQEsaPS594ynUSk+5vvJU6j+NHfQfTwfqP7SgIt/6qbD+f3Uev/96X3fgECP6VjADnz4OdUzSP9Uz2Zoqwz97MrXe01ZrPKX62lOmVZ5Sfd1Ypq89ZdqiHJGTjJ7/27jN8KddmJ2mH+uCFziSFLMJA0nKz/StocBvHmAel8ulo5yYLNjP5ZJuOb5Wtb9ZEnTfpAh6vaZ9nkR4E+DEmwcnqVeKvvB00BeeDlKTmQtZ2qkq10ZV7Z862dH9napc36mDa6MKXeEtZZfm2qNi/eS4xqXB49JGtdG3nkKt9RTr68Zyfe0p00pPudZ4Shg9EMOC/dm3zUrVpu31UYkFMFPs3m2gmR2eNG3y5GqTd3herr7ztNF6T6HWe9rqW0+hNngKWMGgBVNqy/Xsv9cH39FE/k/bfzullw7rXqxh1y2NyvXs1KUkR6M6F+qdr37U9AGVSmYpHyCh5GeGdnPUmqViW8tp9/4O+gi3xHZlaLmnSss9VfteaPIAP031KnVtVrlrk0q1WWWuTSp3bVKJ6ye1cW1TgbaqwLUt7BpNZvrJk6UfPXnapFz96MnVj548/ejJ07eeQn3rKdK3cVCXAYGTgsEKId558gDNuPO9g/tH4RMmFkcnwXn4xHKoJxtG6529Bdqzf8jcHk+ydihNdcrQdk+6dihddZ50bVeGtnoytUm52qXwC0XB1x+P7xf1pIERKz/g7epwBrrufbMH6fttu1WWlx7dgADEjEjyiXYv4VrZhtWDzLZbqVrjKdUaT2mL+yVrr/K1XQWurfunEByc2pnp2r3va9duJalBSWr0/s+9/78uebRXSdqjZO9/93iStFdJ2qE0bfdkqE4Z2qYM1R342pOhn5SjPXSt41KoHyfBUgBF2b599XBGJDnpoQ8SD59sDnXX3slK3dvB7jAQBUZNQCK1C8lJbpVHYT4igNgVSQLAbdLApUiXUDuyd5nOe/Tf5gTRRE46Xbdg9ipZP2rfE35JzhsuAlMZPa0Pd3BSWrJbu/c2X+EjnGtKwZMArenfdSnOjui4ROpTwjqMBQZs5v9h7lF0p1/ec8rAKF4NAHwd02Sd8JkDKw33cbtc6l0R3oo9yRFkDTJTk/Tq+aPDPs5ISpJbj8wbasq5mhpa3db0cwLx5pmzR4S1/+LzRinZhmlQwfJZN87oqyS3SzXF2Zo9oioaIQGGSFcDNms2FcHjiWrWYFyPkuhdDAD8XD65h3clmUuO6K7HP/qm2T5Jbpf+dHytxt70dsjnTYrgBuCti8aoOMd3qlRrHlIP62T+Db7b5dLTZw/Xsbf/0/RzA7HIvx9V2SZDfdvlh3WOTkXZ+0c0hTaCwBNg+YRgI5PCnX46fUCljuxdqpQkt1JCnKflPwqCgQYwA0kDwGauKI/3ofEA4CSF2Wm6bVb/Fvdxu6TqovCG5kby1NA/YeBUuUxRQJQV56Tp+22hreoUq8wYxt9owVSYzFT+3mE/picANvOfq7tvegK39gBwQCQ1DSIZaWDEaUsnupr8PxAt54/rYncIAZm1AkFLHzODOxZYEkukNVPCwscFTEDSALCZf7+2sdFD0RoAaCKSBEBykklJAwdW0bNxBUokqMLs0JZHdYL+7dtEdJx/cvLBOUOUk5asmuJsLRzvmzQJMDsh7EKI0ckZ8IGB1iNpgISy4LDOuvm4vpo7sqPl12pa3KslxiMNrGPXkj0sPwYgUpGMNLCyqFl1YZbSku3pQrlcLL2G6DMrCWeV+08bpLRktyryM3TJEd0iOof/58zIzoX6/KrD9foFh6iw2VKJka2eAMQqkgZIKG2zUjW1X6X6RZiFDtXckR31++l9NG9U8OSEf9+v0WNth9CuZn9kTaFG1hRKki6e2NWmKADYxT9xmJGSFPKx7ggSAJEkGowY3QSMqClUhY1LxTr79g3x6m+nD7Y7hIDGdC3Wp1dM0FsXjQl7GecDq0hFIxdnR76PHCPMQNIACcXqD87LJnXXr47srgsndFVacpIm9CwNekyzkQZxmqZ2uVx6YM5g/d9vJ+rsMTV2hwMgyvIzU3XN1F4a0KGN/nR8bcBK4I/MG6rSXN+ChEkRjTSIvIvTdCj24SF8jkebWQkRIByjuxTZHUKL0lOSQlph4NeTe3i/vnxyD+8qUuH8VXVom2X4erA+nH9Rw4zU0JOngJ0ox4mEZNUc1cl9ylWad7CzG8r9v1HnL167gy6XS2nJNJBAopo1pINmDenQ4j7DOrXVSwtGasBvX/e+FslMg6RWDKe+d/YgLXzs3yrKSdMvxhonOUO9b3e5zB2y7JKLJ4eIOifPiw/37+u0EVWqaJOhnPRkDe9U6H19XI8SPf3/vpW0b2Sqv19P7qEbX/s/TehRotoASzoGWz2hICtVx9SW67l/r9fRfcubTXuwgnP/5RBLSBogoVj9wdk2gkJBzQoheiiECCA2HdKlSG//9wdJ0gmD20d8Hv8pWpFMT2hNTYM+lfl648IxAd/3yGNrXQHaCCByLpfLcATRJRO76csN27RlR73uOGlAs/dPH9lRp/vVxPIfWRDKQ6k/HlerX0/uoQKDxATgVCQNAJP0a58f0rA4f/4dT4/H2ox+ZUGmNm2vt+z8ABLXdcf21qXPfK60ZLcuOty82iWRrJ7QJtPaDnmoEbnUvMJ6q65LIUTEqT6Vefrsm59tu35xbroWnzeqVecIZdSDy+VS2yiMMGh6PaC1qGkQx247sb/dITiWFWUDhnRsa8p5PJKlQyKundpLqfurft8wvY91FwKQcMrzM3T/aYN118kDW/UUzf8jMJI5/KnJbt07e2DEMQRjNDy5W2mOZddriluA0JwyrOWpMHCWO08aoAWHddZjZwwN6zgn3RM7sSqVg348iGEkDeLYpD5ldofgPBa2LJEMhTWqvt1ocSHEnuV5euOCQ/TyeaM0Y2A7S68FAJHw/6iOdKbB2G4lrQ8mgEUGIymuPbZ3s9eseMpnRiHEtGS3KctGdiw0LgjnBHNHVtsdAsJQnp+hC8Z30ZDq5g9hWvoMsLN+tP+l47SWNUDSADCL0RrGwaro+s+N23eM9VnzdgWZ6l6Wa+1FAMS9Hk0+R4Z0LLDsOpFMT7CSxyOV5Kbr9QtG+7xeFKUhx2a0EQ/OHdL6k+znpCe9TVGZ3kQ2/xt/esUEXX1MT918XF97AwlidJeDhRUzHfL759S/T8QWkgZISFYkgiNZEixQcW8+3wHEgj8dX6v2BZnqWJil300zb7qTf10Xpy4x6F/HJtIwLxjfRalh1MQx46eRmuQ2rS105r8O7JSRYt4N86nDOignPUUnD6vS1H6Vpp3XCv8zsZs6F2erbVaq/nb6YLvDAUxDIUTAJJEs72U0bLWx0d6q3AAQqs4lOfr7xYeafl7/CuTRSBqEc4kDtQv8B5MZfXYHOm3Xkhz938ZtKsxO0/xDOumovuW65qX/6PUvvjctzmjwePa3WQ4cl23V8sqJqLYyP6T9xnUv0brNO/S76X005bZ/WBuUA5XkpmvJBYfYHYYPJy+XidhB0gAJ5cDHZrBpA5GIpKaBUefPI57aAEhsDX6LnVsxPSE1ya36hkbvdrDExE0z+up/nvpMPSvyAtaDMTpDoNPeNqu/Vnxfp9p2+UpNdqtjYZb6d2gTNGlgKpOaQse2WXGQMyjMTtWPdfaveNQmxMKm95xqXfHRQOLgnxlwPJIGgEmS3BEst2jwmtWFEAHA6fxyBopgNdsQruF7kWA3vtMGVGpqv4oWlzwMZxRARmqSJvbyXSveqdMwgtkXt/PaLudFFL73fnmYbn3jK732n4368rttdoeDWBSbHytwGGoaICJWFryykpX9sZQIpicYBRSNQogA4GT+o8FaM2Xrb6cPVnZasrqUZPu87r8kZCiXcLtdPrH435SGMwzYaMRbKEebOX3NjOH7Hu2rbeFE8ZCDT3a7dMGErnrszGF2hwID8fA7BoSCpAEi8tiZw5STzkCVpoyGzwZrS4y6fvumJ5A1AJC4inLS1K5g35K0ZXnp6tg28mX9Rncp0rKrDtdrCw/R76YdXBLx5uNqffaL5HO3eXIjnGObv9bafECy26X8zJTWnSQC/iMmnCIeahpQ4wjhal5rxZ44EF9IGsSAX4ytsTsEQ3wG+YqkpkGfyrxmr+0rKhX4mHAqbANALHK5XHp47lBdNqm7Hj1jqNwm1TQ4blB7PTx3iJ45e7hG1BT6vhnBJUK5JQ0nGRHKvi3tcdPMvkpLjn4b4dQb27h6ChyD38svj+hmdwiWa1+QaXcIQTnzrxOxhruPGNCujfM/kGKFlU/wQ61pcOdJ/dWlJFvzRnVUH4NqxC11cnLTk/XAHJbwARD/2hVkau6oanVoxSgDI8NrCtWvfZtmr5vROhieI4wTm3HvHWo755G5N9V2JCuCKc5JszuEhFaWn2F3CJa78ugeykzdt7zk701cdhZwGsaXI2IxmPS2lFFNg+y05n9iE3uVaWKvsoDnCTSc8oLxXbTgsM6RBwgACCjaRQhDvWHPy0jRzzv3hHzeaD/0P/B9DKoq0LsrfozuxYNIZmSeraxYqcppaopztPTCMdq2a486l+TYHY4hp44EQmzh0xQJJTmSYoUh6lGW2+y1nuXNXwumkUKIABB1kcyAaHZPFE5NA4MEsVHioneF7zQ2l0vKMkhIhxuCM9c7MF+3UmfeyCF+lOalOzZhAJiFpEEsiPMbyLwM46JNhdmhrQkcjkm9Az/hj1RV20wtOKyzYYPhcrm8w9ZC5fFQCBEAoi2yp3H+yzY2P0egs4ZaCLGqsPkUxay0ZF04vothLZ1Qv49ESBjEk4ww+xLAAfQoYQaSBjEgnD/22nb5SnK7Qp5XldPC04pgzPoQMlp1oLooS/976iCTrrDPawtHe5/OmDli7uXzRuuC8V0Cvp+REmbSQC0XQgSARDWx58Eq/YOrWr/0b9PRYNMHVLb6fEbC+Tz333VwxwJN7Fnmt8++vX5xWGd9fPl4n/fCXdUoEYaPx4vUZHer+mzBDKtua9m5rcavMWA9ahrEgHCefjxz9nA1NHpCnseXk56sbbv3trjPqM6Fys1I0UufbQg5jnAYDQm9cUZfdTFxqNebi8aoY6G5xbRCFW5btm+kAQDA35VH99Sm7btVv7dRv5/e+qJjt5zQTxc/+ZnyMlJ0/rjwa8a05mbF6NDUZN8k82NnDNV7X28K+SSVNhROjodlDWPFu5eMVd+rXrPk3KkWFLLkZt4ZeBAFMzDSIAaE87fucrnCKvwTSiNx0eFdlZvefAqBWW1BNAq0lOWlhxCH5WGEhCc/AGCsNC9dT8wfrufOHakqExLBnYqy9dRZw3Xv7EHKzwx/Slyzkgbh1DQw+Kw/urbcOzrtkC5FQdvHvMwU1bbLlyT1bZevzsXZoQcgc9tfkgfWCzSdM5YcN7Cd3SEAiAAjDWJAfqZ1jYTR1AB/Vs+vDxSCmTfx/ucy6txcfUwvU87dWh4PlW4BIBa19pM7Oy1Zz587Qh+t2aJJfYxr8Pg3D4/MG6r3V23SoKoCuVyuVicuALMY9bXo3gCxiZEGDjWxV4mkfU8OBnZo/bzNQJLdkf8KmPW574Sif/8zsZuOGxQ4+53sdum8KC13WFOc7YCfCAAgmFDuuQO1cYEO7VySoxMGtzcc4WckIzVJh3Yt9i7xG85NWaMJOQPyDgjEqt8N/9EKjHJpGX+jMAMjDRzqgvFd9evSjirLT9fuvY2WXSeUJQj3dUCs+8Qx6uCYfdPs32nz/wA9a0wnw+PGdS/WvFHVapOVqjWbdpgc1UG/m9Zblz6zTL0r8jS1fwWZeACIQUajxAJ9nlvVkfdv7w7vWaJXl2+05mJy/g0JI/fsY/S7Ycbvy+VH9dBjH61r/YkAhIykgUO5XC7vfE1LkwaRLExtMqN1qT1yyhA2l4bsryhsZdLguEHtNX1AO7ld+/7tGTIKAM7XuieckR0brGn0j8mM0QShoNlCKMwYFZBt4SoSAIwxPSEGWHnvHEpNg73R6nFYyBkJiJYluV3eJyI8GQEA56suzPYWFM5NT1Z+GIXqCrLSLIkp2Mi6g69Ht20vybXm+w1X+4LorzABALGOpEEMsPIGMpSaBvUWjnSQAt/QW1nroKW+0sAObbxfnzysQ9BzcX8PAIkpNdmtJ84cpjNHV+uxM4fJbZCIz0n3fSpalJOmBWNrVJAV/moNkoI+SWhW+NcBQwCKctJ0wfgudochSRpRUxjW/lNqyy2KxFms+C0xOqcVv45OqI0FxDvG9yS4UEYa7GlotHTYodH0BMnk1RPC2PeWE/rp1qUr1Lk4W6PC7Fy09toAgNjSt12++u5f9tDIH2bWatY9H0iSfj25h04f2TFKke3TGKABj+aItjcXjdFHqzdH7XotOXdsjR75cG3I+1s1IiQRRCthRSFEwHokDWKAlc16KIUQrR5p4ICyCj7K8zN03bG97Q4DABAHRtQU6tEzhmrbrr0a173Y8uv5N6mBZhh6PB7dML2PLnryM8tjyk5Ldsy0u4LM8EZ4NDRa2weSpE5FWXK7XBrfo0S3v7XS8usZseIG33CkgelXgT//vr1D/vQQ40gaJLhQCiFaWYhRamGkgYXXNLPRCjYsLtJrleWla8PPuyI8GgDgFEP3F9Q1Q7A2x//mPNBIA0maPqBSJbnpOuXeDyOOZ8bASknBh5075b7FqMvRt12+Pl33k+H+DRY/Lf/0ignK218LY9m3P0eUNJjcp0zH9q/Q6fd/ZHZ4pnPAbJm41700V+0LMrV28w71rcxTZiq3e2g9ahrEACszhKF8kKQmu6z9kI9CT8IpTzjC8eDcIXaHAACIcS213y6XS6O7FKlPZV7E5587qjqk/ZzcDF87tVfA9/Y2WHuXm54SXld89vCqZq/lpCdrbLcSkyIyEQkCW7jdLj111nDdckI//W0OfUmYg6RBDLCqwIvLJS30K0yUn9m88vOozkWWXN8bR6DXLexhJJn4m29VmJ2Ksq05MQAgZgVrc5pPT7D2zi3U5e+iXayusk3G/uv6xWEQRmoLnQKrV5BqOtoylH+qtDCTDE5jRf0BRi80V5STpqP7lntHsQCtFdufPAhb15IcSdKImrZ6cv5w1RT73pj2KMv12X7sjKFKMfMO20A0pif4n2tCj1JlpiZJkgZ3LDDxSgAA2MivwRvQZEWgEA+xRLRHGvzvqYOM4zD4btOSkwz3zUhJUpcSaxP4gfpAcYsbfCAmMcklBpjVnqQlu7X4vFHa09Co9BTjBtJf2+x9VYOtrExrR3uZlZasp84arvdWbtKUfhXRDwAAAAv4N6m17fJ15iHV+ueKTfr825+9r3fe/xDBLMH6CdFu6ruWGn9/Rn2OQFMEHj1jqD5as8XMsJppWlqqQ2GmpdeKNlY1AOIHSYMEk+R2KckdWsIgGLOmDwQasmjqkosG5+pelqvufiMrIjp3q88AAEBogrU5/m2zyyX98ojukqR/rd6sRz5cq6P6lIc8rcA0DmksjcIwGlF5ZO9S9W2Xr39ZvFRk03+v3PQU9Wufr0/W/mTpNaPFaNoAaQQgNpE0gI9w5oVFa/1dAADQeoOqCjSoqvmUPDNa86CrOjgka2D0wKOlhxTR7upM7lMeP0kDuwMAYBpqGsQAs564h3Ie/6Fk0Zg6EOgaZhZCtLKoYiyuzAAAiE3htjnRulkPNBT9skn7Rjk4pakMN4xoD7F3yI/JFGV56c1eM+uB05Am9aimD6g05ZwAAmOkQQwwq8Fvzed0tDPtDGIAACB8kfQYrLpRHdO1yLsko103w/7JCqPkRUv9LIsXTwhbLBVOHG2w+pZZP85bT+inhz5Yq0FVBSrJbZ6cAGAuRhqgRdGpqBwbDSDTMQAATueklqpofzFlyTltfaA4Thra3vB1pzX9pw6rsuS8wzq1Nf2cbrdL47oXm35eSSrOTdfC8V00snOhJecH4IukQQyI6vSEMBpH/4b3/tOMlzeKhEP6FiEJFur1x/b2fn32mE7WBgMAiGsx1Dz6cHS77pJ+c3Qvw7ectgJAqcGQfzMU51hz3iS3k//hAYSK6QkxwKyP21ASAoF2MXrd/8n7mK6RZZNjpTmJ9CnJ+B4lunFGX23ZXq+Th3UwOSoAAOxn1Mdo2mzW722MXjBhystICfie00YaxBr/qR/8PIHYxEgDtOjAjfL4HiXe1wKtZxwpt8HpImlUOhdntz6YFgSanhAsl+ByuTR9QKXmja5Weoo5y10CABJT2PlrGzPzTW8Y63bvDbjf5ZN7aMHYmmiE1Mwfj6uN+jUn9ylTapJblx7Zrdl7sXRPnRFCn8b/9zWWvj8ABzHSIAaE+oR79vCq1l8swKf5uO4lmjOyo5av/1mX7F/v2SypBusjBzOma5G+/mG71m7e4X3t4XlDNeia180MDQCAmFZdmGXbtZt2X7a3kDSYM7KjJOmWpSusDqmZnPSWu8KNFlRC/POJ/U0/px3yMlK0p6FRe1v4GQUr3Fiel671P+/S6SM6mh0eABORNIgDBVmpumB8F1OWnGm25OL+/ya5Xbp8cg/f90JIZvz19ME69d4PW9wn3KfvNcXZum/2II258S2f19MCjIBoOkoCAIBE0qGtfUmDprLSgnc5F03oohtf+28Uojko2MjGaD8Zj5UpmyHzH2ng9wN/+fzRWrd5h3qW50YxKADhImkQA4I1IG8uGtPifLxw9CzP079Wbwlp31BWEzikS/PldpoaHqBab0v5iLRkd0gJi/89daDyMlLUt11+0H1bwykVoQEA8c+sZZijoWnzOK578AT+uWM7a2KvMo37w9sWRiX1LM/V8vVblZWaFLT6fmOCTMKPZIUolyuEKZr+1/HbzstIUV5FXtjXBhBd1DSIAcE+kFubMLj1hH5KS3arX/t8nTjEd8khq++HQ2lwQj6X33ZWWrIGVhUoJYLpD07U0cYhpgAAtCTYLWeoVfRrTK5PZNTHuPuUgbro8K567MxhQUc7JkjOICIeT/CfT7DpCQBiAyMNoKP6luuovuWSpHVNagREg8dj3KDQSO9z9TE9dcXzyzWwqkBH9Cq1OxwAgN2C3INF8sQ40uz9gVoEgU/rzBvG8vwMnXNoaIUX6Y60TrNfAX6gQEyKj0ewcc7lcunBOUM0vkeJ/nR8rXKDFO2JFjM6A70jGJJ24LL+V3dq56Q1Th5WpRXXHKnHzhiq5DgZMQEAiH0nD+2g88Z1bnEf/1b5+EHtIr7egVGVFfkZ6l4WxfnvMfEUI3r9n6HVBd6vTx9ZFfb0BACxibuQGDGyc6HuPmWgjqmtiPmb4+uO7a2UJJc6FWXprDGdLJ8CEevcblfM/5sDAOLL1VN6KTc9vOmR/zOxm3dkY7ieO2eEVl8/Sf+4ZKy6leZEdI5ImJUy6FWxL9Hxa7+i0rHmppm1mtS7TKcM66BThlUF3d+//+JfcBtAbHDGI2uEJaKhhyEK59400jiO7FWmaf0rleR2hTzHsanJfYw7HNxWAwDinWNzyAZdAv9Y22Sl6tYT+mnXngYt+c/GsE5v19x4swohPnv2CO3e2xjSKhJOVpGfodtmhb5kZLPZCeQMgJgU259csJxVVZpTkyMb5HJ033KdGkJmGwAAOFMEzwvktmlsrFk3uclJ7sScZujUJBeAsCTgp1fsi+ZQ9ZaGkZkVR6jnuWF6H91yQj9lpCYZHmf1j6U8P8PaCwAAEIQVTd0F47t4vz46wPSBiT2DFOM1CCzQg4dfjD1YCyHQ9fxFOtKgtQ8/GsNMGhTnpCknxkcThCPYz7d7aevrT4zq3PLy3QCsR9IgBlk7PcH6hES05rOZ/Z30qsjTkb1ZwQAA4FyRtLCjOxfqd9N669xDa3T1Mb1Mu3CgLkWvijzdeVJ/LRzXJeTrRTKd0QwZQZZk9JfkdumRM4ZaFI3zBOvTzRraXt3LcpXkdumG6X1CfsDz+JnD1L99vmYPr9LYbsUmRAqgNRInFQrHaPBL28fSyLXbTuyvhz5Yq8ueXWZ3KAAAmMLlcum4Qe1NP++w6rYB35vYq0wTw8hP2FXT4ORhHXTH2yu0a09jSPs3NHrUqyJPozoX6p2vfrQ4OufLTE3Wi78Yqb2NjUpLTlKfynwt/vw7SdL0AZUBjxvcsUBPnz0iWmECCIKRBnFuSu3BYX8XTujSwp7R4z/Uz6x+gFX1F3yu4XLZ1nEBACBWVtOZPqBSE4JNaQhDSwMNTh3WwbTr+CvIStWLvxilP5/YL6T9W1s4saY4u1XHRyrSqEPpeyW5XUpL3jdio2tpjv56+mBdNqm7rjy6Z4RXBRBtjDSIc78+qqcy05KVm54S0tI40RBKgxrN5ZTCFSP9NQAAbHPjjL6mnq/p9AT/ZvjKo3tqyX82av3Pu0y95gE1xdmqKc7WuQ9/EnTfveEWQfAzqnOhJvYs1bsrftSvJnVv1bmc6pAuRTqkC3UKgFhC0iAGhfOUoSArVddO7W1hNMFlpiZpR32Dd7swO83nff/v5qG5QwyXJArWDEfrZp6cAQDALk5tg6yuV9RS38flcqlHea5h0iDaif6s1NZ1rV0ul+48eYBJ0Vhv9ogq/eXvX0tqeToKgNhG0iAGWVkI0QpJfi22fzEj/47AiJpCy2NqDUYaAAAcK7a6CCFLjZHlCn83rY/dIUTVuWNrtHHrLm3duUe/ibSIJgDHI2kAH1bcD8db/yUatRMAAMBBKUnObnur2mbq2mN7a3gnZz/4CGRox8hGCeSmp+hPx4dW7wFA7IqNtC18xEoRpFDF3HcTcwEDAOJFnHUBQpbs8JEGh/cq9UkYxFJf7bpje6t920y7wwDgYM7+BIahWJueEK14qWkAAADsEMujEE8YbP5ymwDiC0kD2C6GkvGSYuvpAQAA0WD38wy7r0/XAEA8I2kQg2LtpjV4Ox5b309sRQsAiCfBnmjPH9PJ+/WhXc1b1i7Guh5e0Qo7Rn88ABASkgYxKJrTE8K91JG9S71fnzikfUTnCKRLSU6L70draGCsdpwAAPFvar8KLRzXRScMbpdQlfztbpuP7V/ps+3ErsKZo6vtDgFAjGL1BJjqyqN7qrFRSk5y6aIJXUM6pqWG/qYZffWHJf/VmK5Fqm2Xb06QrWR3xwQAkLiCtUEpSW6dN65zdIKBV01xtt0htOjUYR30yyO765ThVbrv3VW6591VdocEIIaQNICpinPSdefJA3xe8wSZoFCRnxHwvWkDKjVtQGXA95uKXiFEsgYAADQV1ZICDmuGx3YrbvaaHQ8Yrjiqh6564T+SpLyMFP28c4/3vcLsNEn7+lxpKQw0BhAekgaw3TmH1uj5T9dr8/Z6/fKIbnaHExQjDQAAiJ4rj+rhs53ibn7Ta3chRCeYPbxKZXkZyklP1iMfrtWLn23wvkffBUBrkDTws3nzZn3++ef673//q82bN0uS8vPzVV1drcGDBysvL8/mCGNPsIa8KCdNr19wiDbV7VbnIHULWkJ7CABAfDm6b7lmj+jo81pykrNafKcshe1yuTSx177aUo98uNbnPYeECCBGJXzSwOPx6L333tNTTz2lJUuWaNmyZQE//N1utyZOnKhFixbp0EMPjXKkzhNq1jqUdqogK1UFWamtiidaYm31CgAAYlVOevOuakpS85EGdjbNTrwfp68CwEwJnzQ4+eST9dBDD4W0b2NjoxYvXqzFixdr3rx5uu2225SSkmJxhM7ltKx1tBpImmEAgF2cei+Ya3Bzb5Vkd/Mfgp19EqNrl+SkRz+QFjj19wZAbEj4pEFdXZ3Pdm5uroYPH67BgwerpKREqampWrt2rRYvXqyPP/7Yu9/dd9+tLVu26PHHH496NtfK61lyapsacqt+TjS8AAD4+uWR3fX3r35UQ6NHC8bWWHqtZIORBgHZ1GifN66zXvp8g+p279VFh4e2mhQAOFXCJw0OmDhxoubOnaujjjpKqanNh8n/5je/0VNPPaXTTjtN27ZtkyQ9+eSTuvfeezVnzpyoxuqUuXN2s+vefWCHApuuDACAM3UpydEL547U+p92Gq4mYKYUh9U0MFKen6ElF4zWxq271bcy+vWw6CsCMFPCr7kyZswYffjhh3r55Zc1bdo0w4TBAdOmTdOTTz7p89o111xjdYiOFXpNg/hquErz0vWHmX11ZO9SPTF/mN3hAAASiJOX/e1RnqtxPUrkNpg+YCajmgaBHNWnzPt1WZ41UwYC9XLK8jJU2y7fEfUFUpMTvssPoBUS/hPk/PPP16BBg0Lef8KECZowYYJ3e9WqVfrPf/5jRWgBOaHxCUe0kt3+PxWrOgeSdGz/St0+a4AGVTHqAACAaApn9YSThnbQsf0rNLiqQPfODr2/F+t6VfiObjhuYHubIgEQDxI+aRCJcePG+WyvXLkyqtd3ypAzu8PwX23B7XbpskndVZidqnmjOqpdQaZNkQEAYA27nhs46XlFijv07mt6SpL+MLNWj88fpu5luZbE45R+WVMnD+2gTkVZkqTzDuusvMzELdwNoPWoaRCB7Oxsn+3t27fbFIn1nNcMHnTVMT119J//oYZGj351ZHdJ0txR1Zo7qtrmyAAAgFWGdWprdwiOl5WWrCULD5FHUpLF00UAxD+SBhFYtWqVz3ZpaalNkdjL7qcOPcvz9NKCkdpcV08HAgAAC/Usz9Piz7+zOwxJ+4beX3R4V73z1Q9aMLaz3eHYPvIyEKtrSwBIHCQNIvDMM894v05NTVX//v1tjMb5rGxLu5VaM9QQAAAnsus28NThVXrxsw1a8f023TSz1qYoDjrn0Bqdc6i1SzsmuoKsVP20o15/Or6f3aEAsBlJgzA9/fTTWrFihXd74sSJys01/8a16TX8NTQ2+mwvX77cZ7uoqEjFxdYudxQOJ871AwAAoctOS9ZLvxipRo9HyWGsXhAtdvY04m2VqAPeumiMdu1pUHGOdYWlAcQGkgZh2LRpk84991zvttvt1uWXX27JtaZMmRLwvcrzHlVS+sG6Cr169fJ5/4orrtCVV15pSVxNkQsAACC67FxBye12yR2FsQ5Dqwv0/tebJUknD+tg+fVCdeqwDvrre2uavR6v/aHc9BTlplNAEQBJg5A1NDTohBNO0IYNG7yvLViwQAMHDrQxqtgQp20pAACwwC3H99P/vrtKvSryQp6GGI1UyqLDuyo9JUkZqUn64+tfeV+P16QBABzgmKTBN998Y9m58/LylJOT06pznHPOOVqyZIl3e8CAAbr++utbG1pMs7sQIgAAiD/Fuen65f5VkUIVjfv2nPQUb1xNkwYAEO8ckzRo166dZee+7rrrdMkll0R8/K9+9Svddddd3u2qqio9//zzSktLMyM8Q88++6xqaowL/Mx8bK221x+sa7Bs2TKf94uKiiK+rsuCXD0ZeAAAzEG+3nnitaYBABzgmKSBU1133XW69tprvdsVFRV64403VF5ebul1a2pq1LNnT8P3ktzfSDqYNAi0HwAAAAAAreG88rcOcvPNN+vSSy/1bpeUlOiNN95QdXW1jVEBAIBExdRAAEC0OWakgdOW5fvzn/+sCy64wLtdWFioN954Q127drUxKuulJPn2RlKTySsBAABnszOXYncXdvvuvfYGACDucUdo4K677tKCBQu82wUFBXr99dcTYhpA2+w0DatuK0kaVNVGFfkZNkcEAADQMjvv29tmp9p4dWnz9npbrw8g/jlmpIFT3HfffTrrrLO8Ix/y8vL02muvqW/fvjZHFj33nz5Iy9dvVY+y0JY5AgAA0eFifoIjXHR4V93w6v8pLdmtiw/vZmssPcvprwGwFkmDJh588EHNnTvXmzDIzc3Vq6++qgEDBtgcWXSlJSepf/s2docBAEDCs2JVI7Te2WM6aXDHAhXnpKlD2yybYzFebQsAzELSYL/HH39cs2fPVmPjvlUJsrOz9fLLL2vIkCE2RwYAABLVgA5tlJeRop937lHXkhy7w8F+LpdLg6oK7A5Dxw9qp7zMFLvDABDnSBpIeu655zRr1iw1NDRIkrKysrR48WINHz7c5sgAAEAiS01264n5w/Tml9/r6Fprl3tG7HG7GYkCwHoJnzR4+eWXNXPmTO3du6/ybGZmpl566SWNGjXK5sgAAACkLiU56sIoAwCATRI+aXDuueeqvv5g1Vm32605c+aEdY4FCxb4rLYAAAAQL66e0svuEAAANkr4pMGBKQkH1NXVqa6uLqxzbN682cyQYgYD4gAAiH+zBre3OwSY6JjaCt325kpJUsdCe4s4AogNCZ80QOTsXBMZAABYL9ntYt58nOlSkqObZvTVR2u26IzR1XaHAyAGJHzSYPXq1XaHAAAAAETNtAGVmjag0u4wAMQIt90BIP6N617s/bpTEcPgAAAAACBWkDRAxEIdrHjl0T3VrTRHHdpm6rZZ/S2NCQAAtM7gqgLv1ycN7WBjJAAAJ0j46QmwXmWbTL1y/mi7wwAAACG4cUZfXfrM58pOS9b54zrbHU5IPB4qLQGAVUgaIGI0zwAAxJ/2bTP14NwhdocBAHAIpicAAAAgprlcrPAAAFYhaQAAAICYxvQEALAOSQNEjJw+AACIF01Xe5o3qtrGSADAWahpAAAAgIT3++l9de+7q9S5JFu17fLtDickDLAAEA0kDRAx2ikAABAvCrJStejwrnaHAQCOw/QEAAAAIAaZWf9xbLeD0zNqirPNOzGAmMdIA0SMmgYAAADx4TfH9NT6n3Zq554G/fnEfnaHA8BBSBoAAAAACa6yTaZeOX+03WEAcCCmJwAAAAAAAEMkDQAAAAAAgCGSBgAAAAAAwBBJAwAAAAAAYIikAQAAAAAAMETSAAAAAIhBHo/dEQBIBCQNAAAAAACAIZIGAAAAiGmJ+sDd5bI7AgCJgKQBAAAAEIOYngAgGkgaAAAAIKbxwB0ArEPSABFzMSYOAAA4QKI+cKcrBiAaSBogYh7GxAEAANiGrhiAaCBpAAAAAAAADJE0AAAAAAAAhkgaAAAAAAAAQyQNEDEKIQIAAABAfCNpgIhRCBEAAAAA4htJAwAAAAAAYIikAQAAAAAAMETSABGjpgEAAAAAxDeSBgAAAAAAwBBJA0SMQogAAAAAEN9IGgAAAAAAAEMkDWJQVlqy3SFIoqYBAAAAAMQ7kgYx6KYZfb1f/+rI7jZGAgAAAACIZ854ZI2wDK8p1MNzh+innXs0sWep3eEAAAAAAOIUSYMYNbym0O4QAAAAYKN2BRl2hwAgATA9AQAAADEtkRZ0+vXkHpKkDm0zdcqwKnuDAZAQGGkAAAAAxIjTR3bU5L5lyk1PUXpKkt3hAEgAJA0AAAAQ0xJtQafinHS7QwCQQJieAAAAgJiWSNMTACDaSBoAAAAAAABDJA0AAAAAAIAhkgYAAAAAAMAQSQMAAAAAAGCIpAEAAAAAADBE0gAAAAAAABgiaQAAAAAAAAyRNAAAAAAAAIZIGgAAAAAAAEMkDRAxl90BAAAASJo3qtr79ajOhTZGAgDxJ9nuABC7PHYHAAAAIGlETVtdM7WXVnxfp7PGdLI7HACIKyQNAAAAENNcLpdmDelgdxgAEJeYngAAAAAAAAyRNEDEqGkAAAAAAPGNpAEAAAAAADBE0gARoxAiAAAAAMQ3kgYAAAAAAMAQSQNEjJoGAAAAABDfSBoAAAAAAABDJA0AAAAAAIAhkgYAAAAAAMAQSQMAAAAAAGCIpAEAAAAAADBE0gAAAAAAABgiaQAAAAAAAAyRNAAAAAAAAIZIGgAAAAAAAEMkDQAAAAAAgCGSBgAAAAAAwBBJAwAAAAAAYIikAQAAAAAAMETSAAAAAAAAGCJpAAAAAAAADJE0AAAAAAAAhkgaIGIul90RAAAAAACsRNIAEfN47I4AAAAAAGAlkgYAAAAAAMAQSQMAAAAAAGCIpAEiRk0DAAAAAIhvJA0AAAAAAIAhkgaIGIUQAQAAACC+kTQAAAAAAACGSBogYtQ0AAAAAID4RtIAAAAAAAAYImkAAAAAAAAMkTRAxCiECAAAAADxjaQBAAAAAAAwRNIAEaMQIgAAAADEN5IGAAAAAADAEEkDAAAAAABgiKQBAAAAAAAwRNIAAAAAAAAYImkAAAAAAAAMkTQAAAAAAACGSBoAAAAAAABDJA0AAAAAAIAhkgYAAAAAAMAQSQMAAAAAAGCIpAEAAAAAADBE0gCt4LI7AAAAAACAhUgaoBU8dgcAAAAAALAQSQMAAAAAAGCIpAEAAAAAADBE0gCtQE0DAAAAAIhnJA0AAAAAAIAhkgZoBQohAgAAAEA8I2kQgsbGRg0dOlQul8vnf6tXr7Y7NAAAAAAALEPSIAS33nqrPvjgA7vDAAAAAAAgqkgaBLFmzRr96le/sjsMh6IQIgAAAADEM5IGQcyfP1/bt2+XJHXv3t3maAAAAAAAiB6SBi144IEH9Morr0iSDjvsMM2cOdPmiJyGQogAAAAAEM9IGgTwww8/aOHChZKk9PR03XnnnTZHBAAAAABAdJE0COC8887Tpk2bJEmXXXaZampqbI7IiahpAAAAAADxjKSBgcWLF+uRRx6RJPXo0UMXX3yxzREBAAAAABB9JA38bNu2TfPnz5ckuVwu/eUvf1FKSorNUQEAAAAAEH0kDfz88pe/1Lp16yRJc+fO1YgRI2yOCAAAAAAAe5A0aOKf//yn7rjjDklSSUmJfve739kcEQAAAAAA9km2OwCnqK+v19y5c9XY2ChJuvnmm9WmTRvb4lmxYkXExxYVFam4uNjEaAAAAAAAiYikwX6//e1v9cUXX0iSDj/8cJ1wwgm2xjNlypSIj73iiit05ZVXmhYLAAAAACAxOSZp8M0331h27ry8POXk5AR8f9myZbr++uslSRkZGbr99tstiwUAAAAAgFjhmKRBu3btLDv3ddddp0suucTwvcbGRs2dO1d79uyRtO8pfXV1tWWxAAAAAAAQKxyTNLDLLbfcog8++ECS1Lt3b1144YU2R7TPs88+q5qamoiOLSoqMjkaAAAAAEAiSuikwZo1a3TZZZdJklwul+666y4lJzvjR1JTU6OePXvaHQYAAAAAIIE54w5Zksfjifo1Fy5cqO3bt0uS5s+fr2HDhkU9BgAAAAAAnMoxSQM7fP31196vn3/+eb322mst7r9582af7TFjxviMTPjkk09aLLgYb1wuuyMAAAAAAFgpoZMGTX377bdhH7NmzRqf7YaGBrPCiQk2DA4BAAAAAESR2+4AAAAAAACAMyV00uDf//63PB5PyP+74oorfI5ftWqVz/v5+fn2fCMAAAAAAFiA6QkOsWnTpha3AZjr+++/1+233+7dPvvss1VcXGxjREB8428OiB7+3oDoivd7OZIGDrFly5YWt52IQoiIZT/88IOuuuoq7/aMGTPoUAEW4m8OiB7+3oDoisV7uXAk9PQEtA6FEAEAAAAgvpE0AAAAAAAAhkgaAAAAAAAAQyQNwnDllVf6rJZQVVVld0i2oqYBAAAAAMQ3kgYAAAAAAMAQSQNEjEKIAAAAABDfSBoAAAAAAABDJA0QMWoaAAAAAEB8I2kAAAAAAAAMkTQAAAAAAACGSBoAAAAAAABDJA0AAAAAAIAhkgYAAAAAAMBQst0BYJ/6+nqf7bVr12r58uU2RROanRtXq377wbidHi/Q1IoVK1rcBmAu/uaA6OHvDYiutWvX+mz739vFOpfH4/HYHQSkW2+9VQsWLLA7DAAAAABAK9xyyy36xS9+YXcYpmF6gkPk5ubaHQIAAAAAoJXi7d6OpIFD5Ofn2x0CAAAAAKCV4u3ejukJDvHTTz/p7bff9m63a9dOaWlpNkYEAAAAAAhm9+7dWrdunXf7kEMOiavEAUkDAAAAAABgiOkJAAAAAADAEEkDAAAAAABgiKQBAAAAAAAwRNIAAAAAAAAYImkAAAAAAAAMkTQAAAAAAACGSBoAAAAAAABDJA0AAAAAAIAhkgYAAAAAAMAQSQMAAAAAAGCIpAEAAAAAADCUbHcAkJYvX67PPvtM69evV1JSkioqKjRw4EB17NjR7tAAAIiqjz76SF9++aXWr1+vjIwMVVRUaPjw4SotLbU7NABAHPN4PFq5cqWWLVumdevWaevWrcrMzFRBQYH69u2r3r17KykpqdXXicV2jqSBjZ588kldffXV+uyzzwzfHz58uK655hqNGTMmuoEBANBEY2OjvvjiC3300Ufe/3366afauXOnd58333yzVe3VnXfeqRtvvFErV65s9l5SUpIOO+ww3XDDDerTp0/E1wAAoKlt27bphRde0PPPP6+lS5fqhx9+CLhvmzZtdNppp2nRokUqKysL+1qx3M65PB6Px+4gEk1DQ4Pmzp2r+++/P+i+brdbl156qa6++mrrAwPilMvliui4G264QYsWLTI5GiC2TJs2Ta+++qq2b9/e4n6RJg127NihadOm6ZVXXgm6b2pqqm655RadeeaZYV8HiCVWJOpWr14d8SjWJ554QtOnT4/oWMCptm3bpuLiYu3atSus4woKCnTPPfdo6tSpIe0fD+0cIw1ssHDhQp+EQWZmpmbNmqXa2lrV19frgw8+0FNPPaU9e/aosbFRv/3tb1VQUKCFCxfaFzQAICF9/PHHQRMGkWpsbNSsWbN8OlJt2rTRySefrB49emjbtm16++239dJLL8nj8ai+vl5nnXWWCgsLNW3aNEtiAuwWaqIOQOs0NDQ0SxhUV1frkEMOUdeuXVVYWKhdu3bp888/11NPPaUff/xRkrR582bNmDFDTzzxRNDEQby0cyQNouyll17Srbfe6t3u0aOHXnnlFbVr185nv08//VRHHnmk1q9fL0latGiRxo0bp969e0c1XiDeFBcXKycnJ6R927RpY3E0QGxJS0tTnz59NGDAANXV1enBBx9s1fnuuOMOPfvss97tUaNG6bnnnvP521u0aJGWLl2qqVOnauvWrfJ4PJo9e7ZGjRql4uLiVl0fcCIrE3VNlZeXKyMjI6R9s7OzLY4GsE9ubq5OO+00nX766QGnBvzhD3/Q+eefr7vvvlvSvoTDnDlzNGrUKBUWFgY8d9y0cx5ETUNDg6dPnz4eSR5JnszMTM/KlSsD7v+Pf/zD43a7vftPnjw5itEC8ePA35Akz3333Wd3OEBMufzyyz1/+ctfPB9//LGnvr7e+/p9993n87f15ptvhnXeuro6T0lJiff4srIyz5YtWwLu/8gjj/hc79xzz43wOwKcrUOHDt7f87S0NM+gQYM88+fP95x00kmt+ptbtWpVq44H4s22bds8l1xyiWfTpk0hH3PiiSf6/B1dddVVAfeNp3aOJRej6I033vAperhgwQJVV1cH3H/48OGaMWOGd/vFF1/UihUrLI0RAICmfvOb32jevHnq37+/UlJSTDvvww8/rI0bN3q3r7jiCuXn5wfc//jjj9eQIUO82/fcc4/q6upMiwdwilNOOUV/+ctf9PHHH2vbtm368MMPdccdd+iwww6zOzQgrmRnZ+u6665TQUFByMfccMMNPrWyXnzxxYD7xlM7R9Igip555hmf7blz5wY9Zt68eT7bTYe3AAAQq5q2iZmZmTrxxBODHtO0Tdy1a1dIRaWAWGNVog5A65WXl6t79+7ebaOVEA6Ip3aOpEEUvfTSS96vO3XqpE6dOgU9ZtSoUUpPT/dut5TNAgAgFuzatUtLly71bg8bNiykWiPjx4/32aZNBABEW9MaH4Hqj8RbO0fSIEp++uknrV271rs9dOjQkI5LTU3VgAEDvNtNpzcAABCLvvzyS+3evdu7HWqb2L59e1VUVHi3aRMBANG2evVq79elpaWG+8RbO0fSIEq++OILn+2ampqQj206ImHLli367rvvTIsLAIBoM6tN/PLLL9XY2GhaXAAAtOTdd9/V999/790eNmyY4X7x1s6RNIiSr7/+2me7ffv2IR/rv6//uQCE7qGHHtLo0aNVXFys1NRUFRQUqEuXLjruuON05513auvWrXaHCMQ9s9rEnTt3kkgHIvTHP/5RQ4YMUWFhoVJSUlRYWKju3bvr1FNP1QMPPODzlBTAPr///e99tmfOnGm4X7y1cyQNosT/RiScKp3+a8Vv27bNlJiARPT666/rnXfe0Q8//KA9e/Zoy5Yt+uqrr/T444/rrLPOUvv27XXdddc5IqsLxCvaRMB+zz33nD788ENt2rRJe/fu1aZNm/Tll1/qb3/7m0455RR16NBB99xzj91hAo7xyCOP6IUXXvBu19bW6phjjjHcN97aOZIGUeK/XEbT4obBZGRktHguAOHJyspSu3btVFpa2qwy9c8//6xLL71UEydO1M6dO22KEIhvtImAM+Tm5qp9+/YqLi5WUlKSz3sbN27UvHnzdMopp5BIR8Jbvny5zjjjDO92cnKy7r77brndxrfT8dbOkTSIkl27dvlsp6amhnxsWlqazzY3MkB4UlNTNXPmTD3yyCNau3at6urqtHbtWm3YsEF1dXV65513dNJJJ/msu7tkyRLNmjVLHo/HxsiB+ESbCNgjOztbp59+up599ll99913+vnnn7VmzRpt3LhRW7du1auvvqpJkyb5HPPAAw/owgsvtCliwH4bNmzQpEmTfG7er7/+eg0cODDgMfHWziXbHUCi8M8u1dfXh3ys/5wy/+wTgJZ98803KioqMnwvNTVVI0eO1MiRIzVr1ixNmzZNO3bskLRvfd0nnngi4Hw1AJGhTQSir6ysTN9++61yc3MN38/MzNSECRM0YcIE3X///ZozZ453hMEf//hHnXDCCRo8eHA0QwZst3nzZh1++OFas2aN97UzzjgjaCIt3to5RhpESdP1PKXm2aeW+GeX/M8FoGWBEgb+Jk6cqHvvvdfntauvvtqKkICERpsIRF9aWlrAhIG/2bNn69prr/V5jfYQiWbr1q2aOHGiPv/8c+9rs2bN0h133BH02Hhr50gaRIn/h/SWLVtCPvann37y2c7JyTEjJAAGjjvuOJ8nKcuWLfNZjxdA69EmAs63cOFCVVZWerdff/11RwyTBqKhrq5ORxxxhP71r395X5s+fbr++te/Bqxj0FS8tXMkDaKkY8eOPttr164N+dimw2Ekqbq62pSYABg79thjfbbfe+89myIB4pNZbWJGRoZKS0tNiwvAQampqZo8ebJ3e9euXfr3v/9tX0BAlOzYsUOTJk3SP//5T+9rRx99tB5++OFmBUMDibd2jqRBlPTo0cNne8WKFSEfu3LlSu/Xbdq0ccQvDhDPunbt6rP9/fff2xQJEJ/MahO7desW0hMfAJGhPUSi2blzp4466ij9/e9/9752xBFH6Iknnmi24lZL4q2dsz+CBJGfn6/27dt7t0N9cllfX6+PP/7Yu927d2/TYwPgy7/gzIHCiADM0a1bN59K0qG2ievWrdO3337r3aZNBKxFe4hEsnv3bk2ZMkVLly71vjZu3Dg9/fTTYa1+IMVfO0fSIIqOPPJI79crV67U119/HfSYd955x6dwRtNhYgCssXHjRp/twsJCmyIB4lN6errGjh3r3X7vvfdCWof6tdde89mmTQSsRXuIRFFfX69p06b5tDOHHnqonn/++WYrIYQi3to5kgZRNHXqVJ/tu+++O+gx/vtMmTLFzJAAGHjnnXd8tv3npQFovaZt4o4dO/TQQw8FPaZpm5iWlqYjjjjCktgA7EN7iESwd+9eHX/88XrppZe8r40aNUovvPBCq5Y7jKd2jqRBFI0bN069evXybt96661atWpVwP3fe+89PfHEE97tSZMmqXPnzpbGCCS6H374QY8++qh3OyMjQyNHjrQxIiA+nXjiiSouLvZuX3XVVc0qRjf16KOP6oMPPvBuz5071xHLUAHxavny5T7DtKuqqlRTU2NjRID5GhoadNJJJ+mZZ57xvjZ8+HAtXrxYWVlZrTp3PLVzJA2iyO12+6x5u337dh111FFat25ds30/++wzzZgxQ42Njd5jr7nmmqjFCsSDPXv2aO/evSHvv3fvXp188sk+w8eOO+64iIalAWhZdna2LrvsMu/2hg0bdMwxxxh2qJYuXaozzzzTu52VleVzLICW7dq1Sx6PJ+T96+rqdNJJJ3n7oZI0e/ZsCyID7OPxeDRnzhw99thj3teGDh2qV155xZSb9Xhq51yecD5BYIpzzjlHt99+u3c7KytLs2bNUm1trfbs2aP3339fTz75pPbs2ePd54YbbtCiRYvsCBeIWatXr9a4ceN00UUXaebMmWrTpk3Afb/66ivNnTvXp1puZmamvvjiC58ipkCiefrpp3XxxRc3e33btm0+ldTLy8sNh3H+/ve/b7aM6QGNjY2aMmWKXnjhBe9rBQUFOuWUU9S9e3fV1dXprbfe0osvvui94XG5XHr00Uc1c+bM1n5rQEy5//77ddppp3m333zzTY0ZMyakY9966y2df/75uvjii3XMMce0+AT1448/1uzZs7Vs2TLva2VlZfrvf//rmKeegBneeecdjR492ue1QG1ZS95++21VVFQYvhcv7RxJAxs0NDTotNNO0wMPPBB0X5fLpUsuucRnhAKA0Kxevdo7/zIlJUXDhg1TbW2tOnbsqNzcXO3du1cbNmzQu+++q6VLl/o8UUlKStJzzz2nSZMm2RU+4Aj+Nyrhuu+++1p8Qrl9+3ZNnTpVS5YsCXqu1NRU3XzzzTr77LMjjgdwOisSdW+99ZYOPfRQSfsS4iNGjFDfvn1VWVmp3Nxc7d69W+vWrdNbb73lsza9tO9p6ZtvvqmBAwea8e0BjtH076I1Vq1apaqqqoDvx0M7l2x3AIkoKSlJf/vb3zR58mRdffXVPpncpoYOHaprrrnGp/ImgMjs2bNHf//7331GEgRSXl6u+++/X+PHj49CZEBiy8rK0quvvqo77rhDN910k+HKQm63W2PHjtUNN9yg2tra6AcJRNHWrVt91mkPZP369QGPb8mOHTu0ZMmSkG5gunXrpoceekj9+/cPui8AY/HQzjHSwAGWLVumzz77TOvXr1dSUpLKy8s1aNAgVVdX2x0aENO2bt2qX//613r//ff1ySefqL6+vsX9O3XqpDPOOENnnHGG8vPzoxMkAB//+te/9MUXX2jDhg3KyMhQRUWFhg8frrKyMrtDA6LCitE933zzja655hq9//77+vzzz9XQ0NDiOfr06aP58+dr9uzZraoeD6C5WGznSBoASAi7d+/Wp59+qq+//lrfffedtm/frqSkJOXl5am0tFSDBg1SZWWl3WECAGCp7du365NPPtGaNWv0/fffa8eOHUpOTlZ+fr4qKys1ePBgFRUV2R0mAAchaQAAAAAAAAyx5CIAAAAAADBE0gAAAAAAABgiaQAAAAAAAAyRNAAAAAAAAIZIGgAAAAAAAEMkDQAAAAAAgCGSBgAAAAAAwBBJAwAAAAAAYIikAQAAAAAAMETSAAAAAAAAGCJpAAAAAAAADJE0AAAAAAAAhkgaAAAAAAAAQyQNAAAAAACAIZIGAAAAAADAEEkDAAAAAABgiKQBAAAAAAAwRNIAAAAAAAAYImkAAAAAAAAMkTQAAAAAAACGSBoAAAAAAABDJA0AAAAAAIAhkgYAAAAAAMAQSQMAAAAAAGCIpAEAAAAAADBE0gAAAAAAABgiaQAAAAAAAAyRNAAAAAAAAIZIGgAAAAAAAEMkDQAAAAAAgCGSBgAAAAAAwBBJAwAAAAAAYIikAQAAAAAAMETSAAAAAAAAGCJpAAAAAAAADP1/DOoPI61Ab+YAAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "plt.plot(sdata[0],sdata[1])\n", + "plt.plot(sdata[0],true_s)" + ] + }, + { + "cell_type": "code", + "execution_count": 61, + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + " 0%| | 0/2000000 [00:00" + ] + }, + "execution_count": 67, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAA30AAALTCAYAAACi62uTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8vihELAAAACXBIWXMAAC4jAAAuIwF4pT92AAEAAElEQVR4nOzdd3hUZfr/8fekkIRQQui9S++9SQcBpYioq6593dVdd3V1Lbvf/bl9dd11i2sDC5a10nvvoaQSAgFCAgQCpJDe28zvj4GYhARmkplM+7yui0unnHPuwGTOuc/zPPdtMJlMJkRERERERMQteTk6ABEREREREbEfJX0iIiIiIiJuTEmfiIiIiIiIG1PSJyIiIiIi4saU9ImIiIiIiLgxJX0iIiIiIiJuTEmfiIiIiIiIG1PSJyIiIiIi4saU9ImIiIiIiLgxJX0iIiIiIiJuTEmfiIiIiIiIG1PSJyIiIiIi4saU9ImIiIiIiLgxJX0iIiIiIiJuTEmfiIiIiIiIG1PSJyIiIiIi4saU9ImIiIiIiLgxJX0iIiIiIiJuTEmfiIiIiIiIG1PSJyIiIiIi4saU9ImIiIiIiLgxJX0iIiIiIiJuTEmfiIiIiIiIG1PSJyIiIiIi4saU9ImIiIiIiLgxJX0iIiIiIiJuTEmfiIiIiIiIG/NxdADiWrKysti7d2/F486dO+Pn5+fAiERERERE6q+4uJiLFy9WPJ48eTJBQUGOC8iGlPSJVfbu3cvChQsdHYaIiIiIiF2tWbOGBQsWODoMm9D0ThERERERETempE9ERERERMSNaXqnWKVz585VHq9Zs4ZevXo5KBoRcbSEhAQiIyOrPLdkyRIHRSMiIlJ38fHxVZYxVb/udWVK+sQq1Yu29OrViwEDBjgoGhFxNC8vL5KTk6s8p+8EERFxB+5UrFDTO0VEpM5MJpOjQxAREZFbUNInIiIiIiLixpT0iYhInRkMBkeHICIiIregpE9ERERERMSNKekTERERERFxY0r6RESkzlTIRURExPkp6RMREREREXFjSvpERERERETcmJI+ERGpM1XvFBERcX5K+kRERERERNyYkj4REakzFXIRERFxfkr6RERERERE3JiSPhERERERETempE9EROpMhVxEREScn5I+ERERERERN6akT0RE6kyFXERERJyfkj4RERERERE3pqRPRERERETEjSnpExERERERcWNK+kREpM5UvVNERMT5KekTEZE6UyEXERER56ekT0RERERExI0p6RMREREREXFjSvpERERERETcmJI+ERERERERN6akT0RERERExI0p6RMREREREXFjSvpERERERETcmJI+ERERERERN6akT0RERERExI0p6RMREREREXFjSvpERERERETcmJI+ERERERERN6akT0RERERExI0p6RMREREREXFjSvpERERERETcmJI+ERERERERN6akT0RERERExI0p6RMREREREXFjSvpERERERETcmJI+ERERERERN6akT0RERERExI0p6RMREREREXFjSvpERERERETcmJI+ERFxa8XFxRw/fpyEhARHhyIiIuIQPo4OQERExF5MJhOrV68mJycHgIyMDEaNGuXgqERERBqWRvpERMRtnT9/viLhA4iKinJgNCIiIo6hpE9ERNxWenq6o0MQERFxOCV9IiIiIiIibkxJn4iIiIiIiBtT0iciIiIiIuLGlPSJiIiIiIi4MSV9IiJiUyaTydEhiIiISCVK+kRERERERNyYkj4RERERERE3pqRPRERERETEjSnpExERERERcWNK+kRERERERNyYkj4RERERERE3pqRPRMRNGI1GtUsQERGRG/g4OgAREam/iIgIIiIi8Pf3Z8aMGXTo0MHRIYmIiIiT0EifiIiLy8/PJyIiAoCioiIOHz7s4IhERETEmSjpExFxcadOnary+OrVqw6KRERERJyRpneKiNiJyWQiJCSE06dP06JFC2bMmEGzZs0cHZbdmUwmDAaDo8MQERGRazTSJyJiJ8nJycTGxlJeXs7Vq1eJjo52dEgiIiLigZT0iYjYyaFDh6o8PnnypIMiEREREU+m6Z0uymQykZCQwPHjx7l48SI5OTk0btyY4OBghgwZwqBBg/D29nZ0mCIerS7tE3JycvD19SUgIMAOEYmIiIgnUtLnQnJzc1m/fj3r1q1j165dpKWl1freFi1a8Nhjj/Hiiy/Svn37BoxSROpqz549xMXF4e3tzdSpU+nRo4ejQxIRERE3oKTPReTm5tKmTRuKioosen9mZiZvvfUWy5cv58MPP2TRokV2jlBEqrOmmElGRgZxcXEAlJeXs3v3biV9IiIiYhNK+lxEeXn5DQlfjx49mDx5Mn369KFVq1YUFRURExPDypUrK0q2Z2RksGTJEr777jslfiJO7Ny5c1Uel5eXOygSERERcTdK+lxMs2bNeOyxx3j88ccZPHhwje956623eO6551i2bBlgvnh84oknmDRpEq1atWrIcEVERERExMFUvdNF+Pj48Morr3Du3Dn+9a9/1ZrwATRu3JilS5fywAMPVDyXmZnJu+++2xChisg1juxVV5ciMiIiIuKelPS5iCZNmvDXv/6V4OBgi7d58803q1x0btiwwR6hiYgTCgkJqfH5tLQ0rly50sDRiIiIiCMp6XNjHTp0oF+/fhWPExISHBiNiOdx5EhfbGzsDc9FRkayevVq1q9fz65duxwQlYiIiDiCkj4316RJk4r/z8/Pd2AkIuJo4eHhFf8fHx9PTk6OA6MRERGRhqKkz82dP3++4v/btWvnuEBExOlcr/IrIiIi7k1Jnxs7cOAAqampFY/HjRvnwGhERERERMQRlPS5sb/97W9VHt97770OikTEMzlyTV91quYpIiLiudSnz0199dVXrF+/vuLx0KFDWbBggc2PEx8fX+dtW7duTZs2bWwYjYiIZbKysti1axd5eXkMHjyYoUOHOjokERERu1HS54ZOnDjBU089VfHYx8eHZcuW4eVl+4HdhQsX1nnb1157jd/97nc2i0XE2dQ00pefn8+JEyfw8/Nj0KBBNvm9dKYRRVcRHh5esaYxNDSUHj160KxZMwdHJSIiYh9K+tzMlStXmDdvHnl5eRXPvf7664wcOdKBUYnIdWvWrKmopJuVlcXkyZPrvU9nm7rpbPHU5OzZs1UeR0VF2eTfQkRExBlpTZ8bycjIYPbs2SQmJlY899RTT/HCCy84MCoRqaxy65TTp087MBKpzGg0OjoEERGxsTNnznD48OEqhQ09lUb63EROTg533HEHMTExFc89+OCDvPfee3Y97po1a+jVq1edtm3durWNoxFxXa4wOiYiIuIqTp06xb59+wCIiYlhyZIlBAUFAVBQUEBSUhJBQUEeU19CSZ8byMvLY86cOYSFhVU8d8899/Dpp5/aZR1fZb169WLAgAF2PYaIq9Jau4Z39epV0tLS6Nixo9boiYh4sOsJH5hvrIaGhjJr1iwKCwtZsWIFRUVFGAwGZs6cSbdu3RwXaAPR9E4XV1BQwLx58zh48GDFc/Pnz+fLL7/E29vbgZGJSEMlfdXXp9XEE0YSL126xOrVq9m/fz8rV64kJyfH4m094e9HRMSTJScnAxAdHU1RURFg/u7fuXOnI8NqMEr6XFhhYSF33XVXlTsZc+bM4bvvvsPX19eBkYmINdLS0oiMjKzztpmZmTaOyDXt2bOnInkrLS0lNDTUwRGJiIizOXfuXJXH5eXlDoqkYSnpc1HFxcUsXLiQXbt2VTw3Y8YMVq1aRaNGjRwYmYhYw2g0snnz5jpvHxISYsNoXFvlIjlg2QioiIh4Bk+f0aGkzwWVlJSwePFitm3bVvHc1KlTWbduHf7+/g6MTESsdenSpYppJjXJy8vj6NGjtSYwWVlZdopMRETEfVxP+jw1+VMhFxdTVlbG/fffz8aNGyuemzRpEuvXrycgIMCBkYlIdZas6SstLa31tZKSElasWEFJSQkA48aNY9CgQTaLT0RERDyDRvpcSHl5OQ899BCrV6+ueG78+PFs2rSJwMBAB0YmIvYQExNTkfABHDp0yIHRuDdPvfMrIiKeQUmfizCZTDzxxBN88803Fc+NHTuWLVu20KRJEwdGJiK1qW/1zpSUFBtFIiIi4n6suWHn6Tf3NL3TRRw4cIBPP/20ynMXLlxg2LBhVu1n7969dOzY0ZahiYhU4eknVhERsa+srCy2bt1KdnY2ffv2ZdKkSbe80ao1feISaione/nyZav3c7P1QyIiIiIizi4yMpLs7GwATp06Re/evWnfvr2Do3Jumt4pImInDdWcXerPU+/8ioi4ovj4+CqPLenL6unf8xrpcxFTpkzx+A+riNSdvj9ERMSTaXqniIi4rbKyMo04ioiIeDglfSIiduLoZOvo0aOEhYXh4+PD7bff7tBYRERExHGU9ImIuKnraxxKS0vZv3+/g6Nxbp463UdExFN4+ve8CrmIiNiJo0f6Kqvc5F1ERMSdWJLQKekTERGpQUZGBtHR0XVqDyMiIuKMPDX50/ROERG5QXZ2NqtXr67oETplyhQuXrxISkoK3bp1Y+zYsXh56b6hiIiIK1DSJyJiJ/Wd3unI6aGhoaEVCR/Anj17Kv7/+PHjtG/fnu7duzsgMhEREbGWbtOKiLiYuLg49u/fz4ULF+x2jMTExJu+vnPnTrsd2xE8dbqPiIin8dTve430iYi4kPj4+IpRt5MnTzosDqPR6LBji4iIiHU00ici4kJ27drl6BBERETExSjpExGRGzhTuwkRERGpH03vFBGxk/Pnzzs6BIfLysriyJEjGI1GRo8eTcuWLR0dkoiIeDCt6RMREZvJzs52dAhOYefOnaSnpwOQmZnJAw884OCIauapFwEiIq4kLy8PX19fR4fhkpT0iYjYQWxsrKNDqJf6TO+8nkAVFRVVJHxgPlmnpaXRunXrescnIiKeZc+ePcTFxeHjU7/0xVNv8inpExGROikuLr7p6zVV+Kzc+8/V5eXlERISQlFREcOHD6dz586ODklExC1dvXqVuLg4AMrKym543VMTOWuokIuIiNTJp59+yoEDBxwdhsMcOHCAxMREUlJS2LZtG6WlpY4OSUTELSUkJDg6BJenpE9EPEpJSQlHjhxh//795OTkODocp+Vp1Tvrcpf4woULFf9fXl5ecRdaRETE2Wh6p4h4lD179lRU1UxMTOTBBx/0uARH7EMjfSIi9mHL6ZueOhVUI30i4lEqt1EoKCggMTHxhvcYjcYa1wyIiIiIuCKN9ImIRysoKKjyODMzk61bt5KTk0OvXr2YMmUKXl72uz/mrIVNNPp5c9U/N+C5d49FRMT5KekTEY938uRJIiIiCAgIoLy8vGKtX3x8PLfddhudOnWy27F3795tt32L5axN2I4fP26nSERExGQycfToUeLj42nZsmW92zRU37cnUtInIh6tqKiIiIgITCZTjaM3YWFhdk363Jk7nVgzMjKIiIjAx8eHMWPGOO0IrYiIO0hOTiYsLAwwz8CR+lPSJyIeLTY29qbJiSMTF0dOsXSm6Z3FxcWEh4dTXFzM0KFDCQ4ObtDjm0wmNm3aVHFTIC8vj1atWt3wPmf6OxMRcWX79++36v3udJPRXlTIRUQ8Wk0NxMW57N27lxMnThAfH8/69esb/N/s0qVLVUaBr1y5UuMFhi46RESsV1ZWdsPsieLiYgdF47400iciHk0X6s6vcsXV4uJizp07R8+ePRvs+CUlJQ12LBERTxIaGsrRo0fx8/Nj5syZdOjQwSb7zc/Pr/W1ms77586do2vXrjY5trPSSJ+IiA0VFRURHR3t8o266zNV0d6JdGFhoc336azJf1FRkZJOEXFLOTk5HD16FDDf0AsJCbHJftPT0/nuu++s2mb79u1s2bLFJsd3VhrpExGxEZPJxJo1ayqqfzq7HTt2MGjQIEaPHo23t7ejw5Fqjhw5QnR0ND4+PkydOpXu3bs7OiQRcXNGo5FDhw6RkJBAq1atmDp1KgEBAYB5GmZkZCS5ubkMGDCAdu3a1etY1W+O2qpgy+HDh+t0sywpKYmgoCCbxOCMNNInImIj58+fd5mE77qYmBirF8zXR3JyMrGxseTl5TXYMS2VkpLCpUuXnGLULy8vj+joaMB8obV3714HRyQinuDSpUucOHGCoqIikpKSqrSnuT4VMyEhgQ0bNlBUVGS3OOoz2+TSpUt13vbw4cN13tbZKekTEaeUnp5Odna23Y9jywv8jIwMm+0L4MKFCzbdX23i4uIabNF8aGgoBw4cYOXKlTW2yHCUpKQk1q5dy8aNG9m1a5ejw6myjhG0rlBEGkb1G0xRUVEV/185ATQajRU3ptyJq924tYaSPhFxOvv372flypV88803xMTEODQWZxj1aQjV/57t3X6guLi4Yi2Hs0lISHDrE7+ISG3Kysosfq8zztiQ2inpExGnkpeXx8mTJyseHzp0yIHReA5HjLo1xEhmXZNXW4/aiohIVY66qeqpPVWV9ImIU0lNTb3hOU8ZbXMkd/07dtefS0RExBpK+kTEo9kyKXCnBMNT74SKiHgyffe7LyV9IuJUajrhuFMy5az0dywiIuK+lPSJiIhd1DeRLCsrw2g01msf9rprrSRZRDxdfb9fNarYsNScXUTqzGQycenSJby9vWnfvr2jw6mTW128e8rFfX5+fpXHjj4ZHz58mGPHjuHv7++Q4zv65xcRcXb1PT86YnmFJ7e/UdInInW2e/du4uPjARgyZAhjxoyp9z41vdMx6tPMtrrIyEiGDBlS5+2zs7M5duwYQL2b/zbkZyciIoKwsDAaN27MzJkzadu2bYMdW0TEXs6dO0f37t0dHYZNrFy50qq2FO5E0ztFpE5yc3MrEj6A6Ojoek/FE/dw7Ngx1qxZU+eE69SpUzaOqGFc//wXFBRw5MgRB0cjImIbu3btqvF5e8yIuH7esNdsi9zcXLvs1xUo6ROROsnKyrrhufLycrscSyN9Da++J9zc3FzOnz9vm2BsrCFuTiQnJ9v9GCIitlbTd39t5/b6npuvXLlyw3MpKSn12qfUTkmfiNSJEjG5lezs7AY5TklJCenp6TW+VtMFzLlz5+p9TH3+RUTqLiwsrMabYwcOHHBANJ5Ba/pExKk0dAENXby7tuzsbDZs2HBDIZqbyczMtGNEIiKeoT7n66ioqBqf99T1dg1BI30i4vSUmDU8R1avtKa6Wnh4+E0TPn12RERENNInIk5GF+ly+vRpi9+bkJBg9f5t8Rmryz7S09OJj48nODiY3r171zsGERFXZI/zvK4dbk1Jn4jYjC1Gh2qqeuiMX+b5+fnk5OTQqlUrfH19HR2OW7FloRVbfCZtsY+8vDxWr15d8bOVlJQwYMCAWt/vjJ95EZGGol6ptqekT0ScSkMV/7iuLs3ZU1NT2bRpEyUlJTRr1oyFCxc6rIm4K3Plk7q1SVl4eHiVZDYkJOSmSZ+ISEMoKyvj0KFDpKSk0K1bN91wcmNK+kRErBQSElKx7iwnJ4cTJ04wYsQItzpZ2iIhc6e/j/pKTU11dAgiIjc4efIkJ0+eBCAjI8PB0ei8YU8q5CIiddKQX8zOdhJIS0ur8jgmJsZBkYiIiNTdoUOHGvyYznZO9xRK+kREbiIzM5OIiAiLTlKufiKLjIx0dAguw9X/rUVEnJErT/t3dkr6RMTpOfoCOyIigkuXLt3yfWfPnm2AaOwnPDyc8vJyR4fhEhz9mRQREbGGkj4R8WiWXrzv2bPnlu/JycmpZzSOV1hY6OgQRERExMZUyEVExAJFRUWODqFBOGIEKywsjGPHjtG0aVNmzJhh9+NZ8jNqipGIiLgTJX0iUieeXMjFndmyR54lMjMziYqKAiArK4uIiIgGPX5dWfuZ1GdYREQcSUmfiLikrKws9u3bR2FhIcOHD6d379512o8uxqtq6KTvesJ33blz5xr0+CIiUjfx8fH4+/vTv39/goKCLN7uZuddnZPtR2v6RMTp1XQSOHjwIMnJyWRnZ7N3716Ki4sdEJn7sWXSd6uTd3Z2tsue4PV5ExGB48ePs3r1asrKymy6X2un2DtDj0Fnp6RPRFxSUlJSxf8bjcaK5rL24ilrvBp6pC8/P79Bj2crFy5cqPc+duzYQUlJiQ2iERFnV1hYaPPEyFmUlpba/RxsidzcXEeH4NSU9ImIQ8THx3Pw4EEuX75sk/2p1YBtnD17tkEreCYnJzfYsZzN2bNniY2NdXQYImJH5eXlbN68mc8//5xvvvmG9PR0R4dkF9nZ2Ra/114zPE6fPm2X/boLJX0iYjOWfpHHx8eza9cujh8/zoYNG7h69Wq999vQI1TuKjo6mhUrVrjsCJyrCQ0NrfF5V532KiJVnT9/nosXLwLmmQ1hYWEOjsi51WdWjb43b06FXESkwe3atavK41WrVhEcHEzbtm3rvM+oqCj69etHkyZNan1Pfabkecr0TnD+Xn31/bdoqAuDFStW0K1bN4YPH94gxxMR51O9IrEtpoaL1IWSPhGpE1tfOGdkZNS6ENvSY0VHRzNhwoRaX9+9e3edYhPn4ip3c69/plu3bu3oUERExMNpeqeIuI0TJ07c9PX6VFwsKysjNTXVY5q024KrJGf2ppsNIiINQ0sTaqeRPhERC61Zs4aAgABHhyEupqSkBH9/f0eHISLi1kwmE0ePHnV0GE5LI30i4vScacTI2de7ya050+dJRMTTWNKcva5rt28148eTKekTERGX4klFdUREXIFupjk/Te8UEZux15e+TiZSmTWfh+PHj9sxEhGRm9P5q6qLFy+qgqmDKOkTkTrRiUxuxRka5daneI+IiNjOxYsX2bx5s6PD8Fia3ikiDUpN1KW+3G16p34nRMQTWFLJ2N2+352JRvpEpMFkZGSwdetWq7dzhVHFpKQkR4fgcWJjYxvkOPa+CHGFz7eISH3Zu+VRQUGBXffv6pT0uSCj0cjJkycJDw+v+BMdHV2lquDu3buZMmWK44IUl5GYmMihQ4fw9vZm0qRJtGvXrs77KigooFGjRrW+HhERQW5ubp3378zOnz/v6BA8SklJCQcPHqzTtkqyRETsq7i4mPz8fIKCgvDyapiJhXFxcQ1yHFelpM/FLF68mK1bt6r5pNiE0Whk9+7dlJSUALBv3z7uvffeOu8vMjKSadOm1fr6uXPn6rTfqKgoMjIyaNOmDWPHjsXHx/m+upRINByTyURCQoKmRYqIOInK58C0tDQ2b95MUVERrVu35s4778TX19eq/Wiap+1pTZ+LiYiIUMInNnP58uWKhA8gKyuL0tLSOu8vMzPTFmHdIC4ujqtXrxIbG8vJkyftcoz6UtLnXhrygkOfHRFxJ4cPH66YypmWlqYROCfhfLfLxWJ+fn4MHjyYESNGkJeXxxdffOHokMTFuOJIyaFDhxg0aJCjwxAHcsU7wLZI7Ewmk0v+7CJiG+fOnePAgQMYDAZuv/12unTp4uiQanTlypUqj48ePcqAAQMcFI1cp5E+F/Pwww+zdOnSirVRoaGhvPfee0yfPt3RoYncVHp6eoMcx1H9fzRa03Dq+3ftiH8rd13LKiINw2g0sn//fgoLCykoKGD//v0674hVNNLnYv7whz84OgQRoOYL59pOQHFxcezZs8fOEZmFhIQ45O6nTr4Nqz4jXmrYLiKu5urVq1WqX+bn55Ofn0+TJk2s3teVK1eIiYmp07biupT0iYjdNVTCB+YRlaKiIvz9/RvsmKCkryFpiqOISN0UFRWxceNGp13ekZubS3l5uaPDcEua3ikiYgNK+qSu9NkRkYYSExPjtAnfdZs2bXJ0CG5JI30iUoVGUUQcT4mgiHtwtt9lV6gAX70QjNiGRvpEpE6sWdPnCTz5Z29o7vZ3benP424/t4i4D30/OT8lfSIeTF/StlFSUqK/SxEREXFamt4p9RIfH1/nbVu3bk2bNm1sGI2I45SVlTk6BI9hMBg0DVlExIXoxqjjKemTelm4cGGdt33ttdf43e9+Z7NYxPE8+UvdUf0BxfV58u+NiJidOnWKw4cP4+vry5QpU+jYsaOjQ7Kpy5cvOzoEj6fpnSIi4lJycnK00F9E3EZpaSkhISGUlJSQn5/PoUOHHB2Sze3bt8/RIXg8jfSJSBUadRBnFxMT4+gQbEq/cyKeLTExsUpvuoyMDAdGYx+uUDXU3Snpk3pZs2YNvXr1qtO2rVu3tnE0Yi1dbIrUTGsGzU2cfXx88PHRpYKIiKvTN7nUS69evRgwYICjwxARERvavXs3Z86cISAggFmzZtG2bVtHhyTitlzhBmx2dvZNX3eFn8HTKekTkTpRnz4R95OWlsbq1asrHhcWFnLkyBHmz5/vwKhE5FbKysowGAx4e3vf8NrZs2c5d+4cbdq0qfN5+ptvvqlXfJo94XhK+kSkCiVuIg2r+u/c6dOnOXLkiENiqem4ycnJDohERCwVHR1NaGgoPj4+TJ06lW7dulW8lpKSwo4dOwBISEhwUITiDFS9U0RExEnk5+ezd+/eGl9riBsyKqsu4jrKysrYtm0bR44cwWQyUVpayv79+6u858CBAw6KriqN9Dmekj4RsRmNEopYr/LvTXR0tAMjERFXkpCQwPnz56s8V1hYWOVxenp6A0ZUO10fOJ6SPhFxW3l5eU5zwhOxRFlZmaNDEBEXERER4egQLGIymaq0pBDH0Jo+ERd3valramoq3bt3Z8SIEXh5efb9nJKSEj777LOKx0FBQQQHBzswIhER8USOHuEyGAwOj6GgoMChxxczJX0iLi42Npa4uDgAoqKiaNu2LV26dLH7cR19ErmZM2fOVHmclZVFVlaWY4IRuQVn+V26VUl2ERFxXUr6XMyqVat46aWXbng+Nze3yuMHH3yQgICAG973t7/9jbvvvttu8UnDq15tb/fu3TzyyCMWbWvri82Guni91XFcZcqLiDPZtGmTo0MQERtryJE+Z7mBJTVT0udicnJyLCq5W1sFtpycHFuHJE6muLjY0SGIiBUsvVCy5wVVamrqDTcPRUQsFRcXx5kzZ/Dz83N0KFILJX0iUoXu1Il4ntLSUkeHICI2YjKZMBqNZGdnYzQaG/S4RUVFDXY8sY6SPhfz6KOP8uijjzo6DJEaaQqJSP04qpeVfqdErGc0Gjl16hRlZWX069cPX19fR4cEmIuZbdiwQdWrpQolfSIiIiIiVtqzZw/x8fEAnD17loULF9ZpP7a+6XLq1CklfHIDz67rLuLhXPXu/vWTrIg7cNXfQxFPZjQaq5yLUlNTuXr1qs32X5/vhcjISJvFIe5DSZ+IuJw9e/Y4OgQRt6LEU8Q6Nf3O5OXlOSASEcso6RORKupTSVAXjuIu9u7dS0ZGRoMcS783ImJL+k6RmijpE5E6SUtLc3QIInaTn5/PunXrKC8vJysry9Hh2J0uEkVE3JsKuYiI1a5evUpsbKyjw5DrTCZ8i4ponJ2NX0EBPsXF+JaU4FNcjE9JifktBgMmLy9MBgNGb29KAwIoDgig5NqfoiZNMDpJ5TlnUVJSwuHDhzlx4oSjQwHg2LFjtGnThk6dOjk6FBGxkG6oiLNQ0iciVZhMJuLi4iguLqZPnz40atTohvccPHiw1m3FPrxLSghKSaH59T+pqTRLS6NxdjaNs7PxsUGftYKmTclv0cL8JyiI7LZtyWzfnqx27chv0QIc1E7AkRoi4bP09yY8PByAqVOn0rt3b3uGJCK3YO/2KsXFxWRkZBAUFETjxo3teizxDEr6RKSKgwcPkpCQAJjLPi9ZsuSG9yQnJzd0WB7Fq7SUVhcu0DoxkdaJibS6cIGgK1fwsnNS3Tg3l8a5ubS+cOGG10r9/Mhs356rXbqQ2q0bad26kdW+PSYvrRKoL2tvluzevVtJn4ibW7FiBQUFBTRq1Ig777zTqm11A1ZqoqRPRKq4nvABZGZmkpSUpOlkdmYoL6fN+fN0OH2a9qdP0y4hwSYjd7bkW1xMm/PnaXP+PP337QPMiWBqt25c7tOHy336kNatG0YfnVaslZiYSFBQEKDm7CKuLjExkWPHjhEYGMj48ePrvJ+CggLAPM380KFDjBkzxlYhiofS2VnEjZWWluLl5YW3t3eNr1tyoZeVlaWkzw58CwvpfPw43aKj6Xz8OH6FhY4OyWq+xcV0PH2ajqdPA+YkMLlnT5L69ydx8GBy2rZ1cISu4ciRIwwZMsSqbQoLCwkICLBTRCJSF0VFRezfv7/i3Oplo5kQV65cscl+xLMp6RNxU0eOHCE6Oho/Pz9mzpxJhw4dHB2Sx/MtKqJbVBS9QkPpcPo03uXl9d6n0QDJTeBsC/OfK00gNdD8Jy0QrjaGfF8o8oFCXyj0gTIv8DGa//he+29gCQQXQosiaFFo/v+OudAl2/ynaxa0zzO/t9afr7iYzrGxdI6NZdyKFWS2b0/i4MEkDhlCavfumgpqQ9HR0YwdO9Zm+9NIn0j9HTt2rMrvUlxcHE2aNGnwOPT7LDVR0ifihnJycoiOjgbMi8EPHz7M3Xffbffj6kRzI0N5OZ1OnqT34cN0O3q0ztM2TcCF5hDdDqLbmv97spU50StqoKKbvuVwWzoMSIUBaeb/Dk2GHplQ06TEFleu0OLKFYZu3Up+8+YkjBrFmTFjSO/c2SOLwthSZmamo0MQ8Wg1ne+KioocEMmNjMab3J2TG5lMtLhyhfZxcXQ+dszR0diNkj4RN3T62nS7665eveqgSDxXQE4Offfvp9/+/TSpwwV6oQ+EdYQDXcx/DneCTAfP5iv1hhNtzH8qa5UPY5NgzCXzf8ddhMBquW1gdjaDd+xg8I4dZLZrR/zo0cSPGUNuq1YN9wOIiIgAjQoK6HjyJJ1PnKDziRMEXuvH6hwNeuxDSZ+IG9JdPsdpc/YsA3bvpkdEhFXTN40GCO8Am3vBtp7mhK+05qWYTudqIGzoY/4D5hHB8RdhxlmYmQAjrlSdFtoiOZlR69Yxat06Lvbvz8nbbydx8GBMtaw9FRERqa+A7Gy6R0bSIyKCdgkJeFW7VjIBp1oC6Q4Jz+6U9Im4IUunWdp6OqbHTu80megUG8uwTZtoHx9v8Wa5jWDjbbCxN2zpZU6e3EGpN+ztZv7z22kQVAhz4mHRSfN/m5R8/97rawDzmzfn9IQJnJw0ifzgYEeF7rE89ndXRNyaX14ePSIi6BkeTvszZzBU+64r9YJd3WFVP/P5+FIR8K5jYrU3JX0ibqisrMzRIXgGo5HuR48ydPPmGnvb1SS3EazvA98OMCd6xR7wLZwVAF8NMv/xKzOP/t190vynebH5PYHZ2QzftImhW7ZwbvhwomfO5Gq3bg6NuyFlZWURGhrK+fPnHR1KjUwmk8PaSYiIWMVopOOpU/Q9cIBuR4/eMOum2Bu294QV/WFdn2pLJ5xjWaZdeMDlhojniY2NdXQIFSIjIx0dgu2ZTHSJiWH06tUEX758y7eXeZkTvE+Gmu8kekKiV5tin++ngj4zDxachoejYVaCeQqol9FIz/BweoaHc7l3b47NnMmFQYPAzSt/bt26lezsbIcd/1YjfQcPHmTs2LG1tn8REXG0xllZ9AkJoW9ICE3Tq87RNAGhHWH5UPh6oPlmpKfx4EsPEbGHpKQkLl++TKdOnWjevDnh4eGODsmm2iYkMHrVKoumcca1hI+HwadDILlpAwTnYop84ZuB5j9t8uCBGHgqAvpdqzvU4cwZOpw5Q1bbtkTNnUv8qFFuu+7P2oSvoadjnjhxgrS0NBYsWKARPxFxKi0vXGDwjh30DAu7YZ3e5abw+WBzsneqtWPicxZK+kTEZoqKiti0aRMAR48edWwwNtY8OZkxq1bR7VorjNqUecGavvD2aNjXrWFiqyyoPIAWNKEZgTT1akoT76YEGAJohA+NTN7mP+XgVVIEpcUYSouhuIDS0lwKyvPJNxWQaygizb+cC80ho3HDxJ3aBP41zvxn6jl4JgwWnDL3EQxKSWHqJ58wbONGoubNc+vkr67S09M5evQofn5+jBo1Cj8/P5sfIzU1laSkJDp37mzzfYs4s7KyMsLDw8nIyKBv37706NHD4hsveXl5N329coslsZzBaKTLsWMM2rmTDnFxVV4zYa56/fYY81q9cveeKGIxJX0iIjfhU1TE8I0bGbRz502rcaYHwLIR8O4ouNjczjHhTQefDnTy7UwHnw609mlNa+/WtPJuhZ+XbS72/fLzaZ6cjN+5i5SknyM7N5HLxhROtTRyojXEtoaCRjY51A12dzf/6ZBjHvl7Ohza5ENQaipTP/mE4Rs3Ejl3LvGjRyv5A8rLy1m/fj0lJeYKOQUFBcyaNcsux7p8+bLLJn3l5eUYjUZ8fRuosaW4jcjISI5d69+WlJTEvffea5Om6/n5+axcuZLSOvZv9USG8nJ6hoUxfNMmglJSqrxW4AtfDoL/jjb3spWqlPSJiNTEZKJneDhjV6yo6N9TkzPB8OYE8/QRezVJb+Pdht6NetOzUU+6+XajnU87vA32TXaKAwNJ7dkTevYEpgDQsrycO69c4fFz52iz4zS5abFEt8jncCdzH8Hq/fvq63Iz+N1UeH0iPHYUXjgIPTOheWoqU5cvZ+jWrRxZtIgLgwd7dLP3s2fPViR8QJ2Kwbh79c7U1FS2bdtGQUEBffv25fbbb3d0SOJCqs9cOXToEDNnzrzhfdY2Z4+IiFDCZyFDeTm9QkMZtmkTQampVV5LDzCP6r09uuFmp7giJX0iclPufjFYk6ArV5j45Zc3TBmpLKYN/GWSuQqn0cZTR4K8ghjoN5D+fv3p3ag3zbyb2fYAdWTy9iajUycyOnXi1KRJYDIRlJzMY6dO8f/2Hcf3wkn2dS5ne0/Y3gMuBNnmuEW+8N4o+GAE3BMLL4WYe/+1uHKFO959l8u9e3Nk8WLSune3zQFdTGFhoaNDcHqHDx+moKAAgFOnTtG3b1/atLHxXQrxGCnVRpjq6uLFizbZjzszGI30OnKE4Zs20bxasnepKfxjPCwdAfl2mnniTpT0iYhcYygvZ+jWrQzfuBHvWtpehHaEP0+CdX1te+yevj0Z4j+EgX4D6eDTwTWKZRgMZLVvT1b79pyYOhWfoiI6nTzJr6KjeXtnNBf8C1jb17ym4kin+h/O6AXfDjT/mXMGfr8bRl02F3xZ9PrrJIwYQdjCheToYt5q7n5zJzk5ucrjmJgYpk+f7qBoxNWV32SqvzVc4nveUUwmOh8/zphVq26okn22Bfx1Inw61NwX1lb6XIXJ4bDUdrt0Kkr6RDyYu1/oWaPlhQtM/uwzWtVy5/VoO/j1dNjc23bH7OnbkxEBIxjuP5wW3i1st2MHKfP35/ywYZwfNgxDeTmdYmO5+8gRfvnpUVL8S1nb11wqe3/X+h9rc2/zn/mn4Pd7YGgy9IyIoFt0NMdmzCBq7lzK7FDMxBnpwlFE3Emr8+cZs2oVHU+frvL8pabwp9vhw+FQZqNkb2AKLImFxbHQPw1iUdInIm7ogoUNxd2Zd2kpwzdsYMi2bTeUegaID4bfToWvB9nmeK29WjK+8UTGNh5LsHewbXbqhEze3lwcNIiLgwbhU1REt6NHWXDwIM98cppzQfC/wfDZEDjTsn7HWdfX/GdxrHnkb0BaGcO2bKH3kSMcvucezo4Y4dHr/WxNN4pEHGPNmjWODsHumqSnM3r1anqFhVV5/mpj89rud0bZZu18q3x4MAYePWq+YQhwtVMnomcPIKRtW/jss/ofxAkp6RPxUEePHiUhIcGqbcrKyggJCbFTRA2v5cWLTP3oI4KvXLnhtctN4Q+T4aNh9b+j2Mjkw/CAkUxoPIFejXrhZfCs+tFl/v7Ejx1L/NixNE9Opt/+/bx46BC/2ZfPkU7mtXpfD6zfyXxlf1jdF56Igj/shnaZmcxYtoxL+/Zx8P77yezQwXY/kJPRSJ/19Hcm4jy8S0sZvG0bwzZvxqdSYZu8RvCPceZ1e7n1nLhhMMG8OPM5Yu4ZaFQOV3r1IuT+kZwbOpSCFubZNmnVppK6EyV9Ih4qNDTU6m1OnTrF6WrTLVyS0cjg7dsZtXbtDW0YCnzh7+PhjQn1b0nQ2tSc25vNYELjCQR6BdZvZ24iu107Di9ZQtjChfSIiGDQjh18svYif99mbp773ihIqOMAqNHL3Dbjq4Hwcgj88hB0PH2axX/8IzEzZhB+112UN3KP1f62HnHTCJ6IOEKXY8cY/803NLt6teI5owG+GAyvTjdXca6PFoXwRKS592v3LLjauTPhd4/l7IgRFYmep1DSJ+JB4uPjKSgo4LbbbrN62+LiYg4ePGiHqBpWYEYGUz/5pMZmrt8OgJdm1r/qZH+6cnuLOQzxG+Jxo3qWKvf15czYsZwZM4YOp08zePt2Xjh0nOcPw5Ze8OZ42FPHYpx5fvDbafD+SPjzTvjhMSNDtm2je2Qk+x56iMv9+tn2hxERhygrK+PYsWMUFRUxcOBAmjVzjkrHligpKbll43Z31iw1lXHffkvXmJgqz4d0hufugPCO9dv/wBT4xRF4IAa8fQKIHz2alRMnkt6lS/127MKU9Il4iLCwMKKiogA4fvy4VdteuHCBnTt32iOsBtUzLIyJ//sfftVK3Ee0N59kDtSzwMjY8tuY1vYeuvraoFKJpzAYuNy3L5f79iXo8mWGbNvGHUeOMPeMkdCO8LcJ5uqfpjrMxrvUDB5dZB49fGcjjLhylTv/9S9Ojx/P4XvuoTjQfUdfS0tLLW5CXlZWxsmTJ+0ckYjtHThwgLhrN/ASEhJ48MEH8fJqmBtt9Rkdz8vLY926dTaMxnV4lZUxZNs2hm3ciE+lKtmJzc03Xb8dWL/9j7sIr+6HeWcgs2MnQn8wjYRRo9xmlkd9KOkT8RDXEz7A6ruL+/btc+kGst4lJUz4+mv6VluPmBFgnj6ybETdkgoAbyNMLu3DpI730cG3nrcmPVxWhw7sffRRIufNY9jmzYw8dIgV3xo5EwxvTDRP/yyvw/XckU4w6il4Ogz+tAv6HDxI55gYDt5/v1sUeqlpfdqXX37JzJkz6WDBWsa1a9eSnp5uj9BE7Cqu0oyNwsJCzp49S69evRwYkWViY2M9cpSv9blz3P7557S8dKniuRJveGuceQ19YT3Wdc+Kh1/vh9sT4eLAgWz6xQwu9+3r8t/vtqSkT8SBysrKCA0NJTMzkz59+jjlySo2NraiqbErap6SwoylS2mZlFTxnAlz9chfzoa0Og72eBthblY3xvZ+nFaN2tomWAEgt3Vr9j38MFFz5jBs82ZuO3SID9cZeXU//HEyfD7YvH7PGiYDvDvaPIX3b9vhkehcZixbxtmICPY/+CDFTZrY54exE2MNlWYrKy4uJiQkhCVLltz0fZcuXVLCJ27DVRKpo0ePOjqEBuVTXMzItWsZuGsXXpVGSPd1hafnQWw9WqvOioc/7oaRV7w4M2YM3z02m6z27W0QtftR0idiB/Hx8WRkZNCrVy+Cg2uvSnH06NGKqZaXLl2iZcuWtHCyhcXZ2dmODqHOeoSFcfvnn9OouLjiubiW8Mw82Nmj7vu940owU7s/TlBHGzbtkxtcT/6O3nEHo9asoWdEBMvXmO/m/n4yfDXI+hHaq4Hw+EJzn6dl66F/ZCTt4uPZ98MfcmHwYHv8GHZxpVLF2doqUWZmZpKVlUVgYGCtUz0TExPtEp+IKyoqKiIjI4MWLVoQEBBgt+MYDAaPKZ7UMTaWSV98QbNKN5euNjZP5fxkWN33O/4C/HkX3H7Bi7hx4/jm6Tnktm5tg4jdl5I+EQsUFBQQEREBwIgRI2jcuHGt742NjeXAgQMAxMTEcN9999GkllGEyMjIKo+PHDnCHXfcYaOoPZd3aSljv/uOAXv3VjxX7G2eIviXSVBcx2++6RcaMbflvTQZPslGkYolctq0YedTTxFz9ixjVq7ktvh4/rcKXj0Av5oJW+qQex/sAsN+DP+3D14OyeGOd97h1IQJHFqyhFI7Xuw1tG+//ZYmTZowd+5cgoKCbnjd2vW9Iu4qJyeHtWvXUlhYiL+/P/Pnz6/xd8YWfH19KSkpscu+nYVvURFjv/uOfteuh8A8y+bTofDCLMio/TLqpoYkw192wuwEA2fGjeebH80lt1Urm8Ts7pT0iVhgy5YtXL1WTjg1NZXFixfX+t4Dlb7gysvLiYiIYPLkyRYdJy8vjytXrnDgwAGMRiPjxo2jiwdXmqqLJunpzHz/fVpXajwf2hEeW1D3KSRDkuGZ9JF43/6IFoM7UGqPHqx/8UW6HjvGmJUrGZiSwub/wbae8OIsiLFylm2JD/y/afDdAPhoLYwKCaHjqVPseeQRrvTpY58fwgHy8vKIiIhg+vTpjg5FxGmFh4dTeK3IV1FREWFhYcycOdMux/L2rmfzVyfX7swZpixfXqUNw8Vm8KP5sLWOq1ja5cJfd8LD0ZA4ZCgrXltEdrt2NorYMyjpE7mFvLy8ioQPID09ndzcXJo2bWrR9ikpKVYdb+/eveTk5ACwZ88eHnrooQarRubq2p8+zYylSwm4tq6jyMc8DfBvE6xfAwbQKh9ejQyi85ifkDmsO+W33kTszWAgccgQLg4YwMBduxi+YQOzEoqJet98B/n/psEVy341K8S0hbFPwvOH4Q+707nzn/8ketYswhYswOQmF2cJCQlMnz694kbU9XXE1jKZTBQUFFBSUmK3UZCGoObsUl18fHyVx+fOnXNQJK7Lu7SUkevWMXj7dgzXpq+aME+nf2F23Rqs+5XBiwfhlQOQ16kH619cTIoT1j9wBUr6RG6hpqqVZZXKDNtSQUEBRUVFFY+LiopITU2lne5m3ZzJxIDduxn33Xd4XStwUZ/RPZ9yeDYU7vKfTfziBWS6yYW/OzH6+HBs1iziR49mzKpV9D5yhMej4N4T8Kfb4R/joMyKfzajF/xjPKzpC5+uNjFh61Y6nD7NziefdNp1IkuXLqVFixb07dvX4m0iIiIqikjUZT3f+fPniY2Npby8nO7du9d7JMRoNJKSkkJgYKBL9VgT59SQybynrMmzVMuLF5n68ccEX75c8dz5IPjRXbCjZ932ed9xeGM7tPBtxaHHFnNu2DBV46wHJX0idmbNiUEnEet5l5Yy8X//o8+hQ0D9R/dmJsBfDrcg6e6nONOjHtVepEEUBAWx+/HHOTlpEhO+/pqWSUm8vgMeOQo/mwu7rPwnTAiG2x+Dl0Lgd3vOs/hPf2L/Qw+RMGqUXeKvr8zMTA5d++zfSnJycr2rBubm5lb8/7lz50hJSaFt27pVrzUajaxdu5a0tDS8vLyYMWMG3bp1q1d8InXhygXLHM5oZMi2bYxctw7vcvN8GBPwwUjzmuu8Oozu9U2D9zbCxEu+RM2Zw45Zsyi3sO+o1E5zxkTEZQVmZnLX3/9ekfAdbQcjnoLXJ1mf8LXNg69WwL/PjufYz35HqhI+l5Lcuzerfv1rjixaRJmvL/2uwo7P4OvvoEOOdfsyepk/Q6N/BKeaFzH9ww+Z/Omn+FSqAuuK7NEM+uzZs/XaNi0tDTAngHv27LFRVCKWy8nJYeXKlY4OwyUFZGcz99//Zszq1RUJX3ITmPcgPH2n9Qmffyn8eSdEvw9dg4by7e9+R9S8eUr4bEQjfSLiktomJDDzvfdonJuL0WBu7vrr6VBah5mYPwmD1w415ti9D7N/WD1qSItDmby9ib7jDs4NH86kL76g4+nT3HcC5p6B306D/4yxrsXDsXYw6kfmHlAvHDxI24QEdv7oR6R37my/H8KDVF9D5e7VDMU5hYWF2W3JhjvrdPw4U5cvJ6DS6P+6PvDEfHNrHGvNOQP/3QTBvm3Y8dP7SRowwIbRCijpE7mlhpxyqemdlul15AiTP/sM77IyLjWFRxbVre/eoBT4YD108+/FjpeepMDJeiRK3eS0acPG55+nz8GDjF2xgqYFBfxrC9x/HJ6cDyesWOdZ4gMvzzRfzHy+KoUFr79OyA9+wOkJE7S2hJrXPFtKxVTE1urymapLwZb6fnZd+VzvVVbGqDVrGLJ9e8Vz+b7wy9mwdKT1+2uXC29vhkWnDBybNZvdd96pkT07UdInYme1fblfr9ApVjCZGLFhAyM2bABgZT946i7r+/34lsNv95qrgR2fdQcb5s93myqNco3BwOkJE7gwcCCT/vc/ukVHMzYJIj+Av06EP99u3ahwSBcY+hNYtr6Mez//nHbx8Rx44AGPb+Fx6tQpRo0aZddG1vaghFPEes1SU5n24Ye0qVQEKrQjPHQ3nGlp/f4ePgr/3Arlrbuw+tcPk6FZFHalpE/EQao3Zpeb8y4tZfKnn9IrLIy8RvDcHfDRcOv3M+wKLF8Dt+UFsuOZx7g4aJDNYxXnUdi8OduefprbDh1i/Dff0KioiNf2wj2x8MQCONLJ8n3l+MN9S2BHD/jXlkMsvHiR7T/+MTlt6tgA0k3ExMQwevRoR4ch4jJccaSvZ1gYkz7/nEbX1jYbDfD6RPh/U6HcyjX0HXJg6XqYfd6XsAULOD5tmm68NgAlfSIOEhcX5+gQXIZ/Tg6z3nuPdmfPcqwtLFkCca2s20fl0b2Mrt1Z+dxT5AcH2ydgcS4GA3Hjx3O5Tx8mf/opHU+fZkAahHxkXgv6f9PM0zgttWwEHOgC33yXxN1//jN7Hn2U8x68FvTo0aMWJ31lZWUcOnSIlJQUMjIy7ByZSFUmk4no6GguXrxIu3btGDFihEPiKHaholBeZWWM/e47BlYqtJQSCD+8G7bXoRXD45Hwj21Q0Lk33732iNO2xHFHSvpEnIgKGdyoxeXLzP7vf2mans6y4fDzOVBk5XT/66N7g1Pg+JQpHF6yBKOPvv48TV7Llmx87jkG7t7N6NWr8Skt5VcH4Y548wVMtBXtME+2hlFPwT+3FPGT99/n2MyZhC5apLvVtxAbG8vJkycdHYZ4qMTEREJDQwG4cuUKTZs2dXBEzi0wI4MZS5fSttK6x13d4cG7IdnKv7qOOfDRWpie6EPYwoXETJ8OXmoi0JB01SPi5EJDQ7nrrrs8cg1Kx9hYZn7wAcXGIh66G74cbN32Xkb49X74f3vBy8uHPQ8/QNyECfYJVlyDlxfHp08nqX9/pn34Ia2SkhiUCkeWwe+nwBtW9Hcs9oFn7jTf7f5o7XZanz/PzqeeotADm4wXFRXh7+9f42tJSUkcPnwYHx8fUlNTGzgyke/t3LmzyuN9+/bhfYsbNZcuXbrhOU+o9tkxNpZpH31EQF4eAOUG+ONk+MNk66ogAyw5Ae9vMK/dW/Wbx8jq0MEOEcutKMUWcXLJycmsW7eOoqIiR4fSoHofOsSct9/mVPMiRj5lfcLXNQv2LjeX2y9uFsS6F19UwicVstq3Z+0rrxAzbRoAfuXwl52w7xPoYeWsw9X9YMSPISX3DIv+8hdaVSpy4Cm2bt1a4/NGo5GdO3eSkZGhhE/s7lY3R8uv9ZKzRkhISI3P16dyrVMzGhm2cSNz//OfioTvShOY+bD5xpg1CV/TYvh0NXy10sC5afNY88orSvgcSEmfiJ3ZYsF2SkoKp06dskE0LsBkYuimTUxZvpyPhxoZ86T16/ceOAbR78HEC5Dcsyerf/1r0rp3t0+84rLKfX05dN99bHnmGYoCzY2lJlw0NwZ+MsK6fZ1rAeOehK+7Z3LXm3+j1+HDdojYeaWkpBAZGUl0dHSV9UqXLl1yqfVLIpUVFxeTlZVV42tXr15t2GAagF9+Pne88w6j1q3DcO3aZUcPc+Xi3VaeQidcMJ+H519pw7qXXiZCVbIdTkmfiIu4vg7BnRmMRiZ++SUDNq3lh3fDj+Zbt36vWRF8sRL+twqaF0Ps7bez4Ze/pLB5c/sFLS7vwpAhrPjtb7nUpw8ATUpg2Xr4+jvzZ8pSxT7mz+xTc8sY+8UnjP3uOwx1GFlwVeHh4Rw5coS1a9dWPGc0Gh0Ykcit3Wx0cOXKlbW+5m6zb1pevMiiP/+ZLsePA+bqnH+eBLN+CKlNLN+PTzn8eSfs/QRK+45l9W9+o5uuTkJr+kTEKXiXlDD9ww8puxjN2CfheFvrtp9wAb5YBd2ywOjlRcj993Ny8mS7xCrup6BFCzY99xxDtmxh5Pr1eBmN3HcCRl+CH9xjXWuH5cMgsj2s+HYHcy5dYueTT1LcxIqrJheXlZVFUlISnTp18si1yNIwGqLtQd616Y01cafpnT3Cwpjy6af4XPuZsv3g4UWwrq91++mWCV+vgGFX/dj76APEjx1rh2ilrjTSJ2JnrtiPp6H55eVx51tvcbwwmpFPWZ/wvbof9iw3J3wl/v5sfvZZJXxiNZOXF0fnzmXD889TcK0YS/cs2P8xvLIfDFb8Kh9rByOfglBOsuivfyU4Kck+QTup2qbEOQslo1Jf7nBuNxiNjFq9mhkffliR8B1vY/7usjbhW3QSoj6AHt5dWPWb3yjhc0JK+kTEoZpevcpdf3uD97qe464HILvmAoA1alkAm78wF+DwMUJOy5asffllLvXvb7+Axe0l33YbK//v/7jcuzcAvkb4607Y9jm0y7V8Pzn+sPg++NOwq9z5t9fpHhlpp4hFPE9NSZeSecs1Kihg9jvvMGzLlornvh4IY56E+JZW7KcM3t4EK7+BCxOms/all8hpa+WdW2kQmt4pUo3RaCQmJobs7Gz69u2LTw393HRisY2WFy4wbul/eHhmLhtvs27biYnw1UrolGN+nNyjB9uefpoiDyyXL7ZX2Lw5G59/nlFr1jB02zYAZpw1F3l58G7YYUVT4jcnwNF2pXz92QcEJS8gas4c8JDvEH1Xirty5ZG+oCtXmPXeewSlpABQ6gUvzYR/jbNuPz0z4JvvYEBOIFt+9hgXBw2yQ7RiK0r6RKqJiooiIsJcui8uLo477rjjhve48pe9s+gYG0v7le9y+w9KSQi2bttX9ptbMfhcqxERP2oUex95hHJfK7u2i9yEydub0MWLSenZkynLl+NXWEibfNjyhbl0+R+tmEG8vSeM+hGs+XotU69cYd/DD7v151XfkeIqPKHnXmVdoqOZ9vHHNLpWiCa5Cdy7BPZ3tW4/9x6HpeuhuF1XVv3mx+S1tGJ4UBxC0ztFqrme8IF51C9SU7JsrntEBNm7/8Okh61L+FoWwKYvzFPtrid8EXfeya4nnnDrC2hxrMShQ1n1m99wtZO5mou3Cf6w2/xZDC6wfD9ng81tHaLzQpn31lsE5OTYKWLnYe1I3/Vefrm5uezatYudO3eSY4e/J41Auj5H31hw9PGtZjIxbNMmZr/3XkXCF9oRRjxlXcLnWw7vbDQXbEkaO5l1v/qVEj4XoaRP5BZqKkhgzQVDXl6e650c7Oi2/fvYcXYpD95toqCR5duNSYKo92FOvPmx0cuL3Y8+SsRdd3nMVDlxnNzWrVn78sucGTOm4rk58RD5AYy8ZPl+8hvBknvhP93Pctfrf/G4Ai+3smvXLsDc7D0+Pp6EhATWrVvHwYMH2bVrFxkZGTY5jr6Tpb5c6TPkXVLC9GXLGLV2bUX/vc8Hw+2PwWUrVkR0zIF9n8BTR33Z89hjhDzwAEbdcHUZSvpEGkBcXJxN9rN06VK2bt3qmqWiTSZu27aBf5f+j79NtG7TH4ebe/50vnbDv8TPj83PPsuZcVYuQBCph/JGjdj92GMcuucejNduNHTNhgMfw9Nh1u3rr5PggTsyuf3fb9AlOtoO0ToHa0fUcnJy2L59e5XkrqCggOPHjxMfH8+6deso96Deh1I7V0q6HMk/J4c733qLntdmMZUbzOv3Hr7b3FvUUlPOmW9y9S1pw+pXX+WMqnO6HCV9Ig1g7969NttXYmIi586ds9n+GoTJRLf1/+OFlutZ08/yzRqVwYdr4f0N4HftOq+gWTPWv/iiKnSKYxgMxMycyeZf/IKiwEDA/Nl8dyN8sRIal1i+q829YeIjJXT+7l0Gbd8ObnQRe/2CvC7TKG/2/VZSUkJ8fHyd47quPtM7c3JynL4lhQhA8+RkFr7xBm2v/U5l+cNdD5iLS1njxRDY/jnk3zaM1b/+NZkdO9ohWrE3FXIRcUF79uyhW7dulJRYcYXpIIbycoLXfcBj/aOtmkbSOdtcAnrU5e+fy2rblk0//zl5rVrZPlARK1zq14/Vr77KrPfeo+Ul8/zOB2NgUCosvB/OtbBsP2damtf5fbViBbdfucKBBx7AWEPFYPleYWGhVe8/e/aszY599OhRQkNDARg6dCijR4+22b7l1nJzc0lPTycwMJDdu3fX+r6CggLOnj1L8+bN6dy5s11icfaRxvZxccx67z38CswLj+NawvwfwGkrTp+BJfDJGrjnpIHQRYuInjVLyylcmM4sIi7q66+/pujaYmxn5V1aStnGv/Pw8PNWrd+bdta8SLx1pSIZyT17svWZZyhu0sT2gbqhgIAAqy+OxTq5rVuz9qWXmPLpp/S4VvBpcAqELYX777G8rUOu37W779tCuP/fqWz/ydOUXBtFlPrJyspix44dNtlXeXl5RcIH5gRw8ODB+Ptb0VxU6iwtLY3169fftNpmZGQkZ86cIS0treK5CRMmMGDAAJvH48xJX+/Dh7n9s8/wvjYVemtPuG+JdX1w+1yFVd9Az7wANv/sSZIGDrRTtNJQNL1T5Bactcqbsyd8PoWFnNv+e54ebV3C92IIbP2iasJ3buhQNj73nBI+K/hqcX2DKPP3Z8dTTxG6YAGma98VLQth8//Mn2VLmQzw4mz4bb8zzPn7GzS9etVOETcsR39/HjlyxGb7Ki4uvuE5TfNsOIcOHbple4WioqIqCR9ASIgVv4iuzmRi+Pr1TP3kE7zLyzEBb42DuQ9al/AtPAmhy6C9T3tWv/qqEj43oaRPRGzOOzeLHaG/4c/D0jBZeM0XUGpu8vrm9u/bMQCcmDyZHT/+MeWNrMgchYkTrayWI3VnMHB07ly2PvMMJX5+gPkz/OZ2+N9K82fbUp8MgyWzUxj/77/Q2tXW7tbAHkmfNfvMzc212XGdeWTHEyQnJzs6hCqc7fPgVVbGlOXLGblhAwBFPvDoQnhhNhituNp/bQ+s/BYy+wxmzcsvk9O2rV3ilYanpE9EbMqUnsTy07/lq9vyLd6mQw7s/xjuPVH1+dCFCwn5wQ8weemrylKBgYEMHTqU9u3bOzoUj3Nh8GDWvfQSucHfN598IAZCPoIuWZbvZ39XmPKDfLp/9ne6RUXZPtAGYI/eenVhy6Szpot8R49kNoTz589z4sQJp59d0tBsuVa0vhrl5zP33//mtsOHAUgNhGmPwGdDLd9H4xJY8Q38bg9EzZ3H1qefpjQgwC7ximPoSkpEbCb/ynHeTPkzBzpaXmBm2BXzNJIRV75/zmgwsPeHP+TonDlaNA40btzYovf16dOHBx98kNGjR3vExagzyujUiTWvvkpyjx4Vzw1LhvClMNWKgbvzLeD2R8oo2fU+A3fscLnKnrGxsVx1gimqjhqNuXr1KrGxsS4//TMqKopt27YREhLCqlWrMBqNt97ISd1qaqi1MjMzbbq/umqalsbCN96gw7XWULGtYcyTcMiK+jVdsuDgRzD/rB/bf/xjIubPB91sdTv6FxW7Sk5O5vDhw3a9I5adnc2WLVvYuHHjDXP5bUE9oSyTfGEffyx8m4QWll8ULDhlbvTasdIMrHIfH3Y+9RSnNT2xwkMPPUSHDh1u+T4les6hsFkzNv7yl5ypVNmxdQFs+xyetWKJWa6fudre4aTvGPfN1xhc7IL70KFDDp3eWVxcbFEz98zMzDpfwNcUy5UrV1izZg0HDhxg1apVNmso7whhYd83oMzLy7NJuwxHceXYa9Pm7FkWvvEGQSkpAGzrCeOeMN80stSkRAhbBt3LW7Hm5Zc5N3y4naIVR1PSJ3aTkZHB+vXrOXbsGDt27LDbF+6uXbu4cOECly5dYuvWrTa/s+sKbREc7fjZlfzR639kWjET5Fch5spgTSr99Zb6+bHlZz/TSacBtWzZ0tEhuKVyX192P/44YQsWVDznY4T/bIb314OPhfeSTAbzmpx/Nd3DlPffwaeGYiLO6sqVK6xbt85hxz99+nStr11P1sLCwvjuu+/47rvvqiQ4NbH03LJv376KEbGysjIOX5ty5w5SU1Ptst/i4mJ27NjB119/TXh4uF1GaPft22fzfTpS98hI7nzrLQKurVt9b6S5YEuOFQVbngqHHZ+BsV1PVr/6qsv23+vRowetW7d2dBhOT0mf2M2hQ4eqfHHv2rXL5scoKyurMrpXUFDAlStXbrKF2JLRZGRH/Hu8HbCNMm/LtvEpNzdc/9t28Kp0Xi8KDGTD889zqZ8V3ds9iLUXQZa+X6ODdmQwEDV3LtufeoqyStVUfxxhHvVrYUVHjY+Hw5PDjjPh7TcIyM62Q7D24chiF7dKtkpLS4mqtGYyKiqK0lIrqu5Q8+9PdrV/n6SkJKv26YliYmI4e/YsOTk5REZG6jx+MyYTg7dtY8bSpfiUllJugOdnwzN3QrmFV/XeRnhnI7y/AS4OG8nG55936erYM2bMYNGiRTz00EOODsWpqU+fGzhx4gTHjh3j8uXLeHt707FjR0aOHEn37t0dGldNX9opKSm0tWElqJouKDQds2EUG4v55uzfCQm8YPE2LQrNDdennq/6fF5QEJt+8QuyLJjC6KmsvXj29vamSZMm5OXl2SkisdS5ESPIbdmS2e+9R+C1NV5Tz8ORZeb+fJY2S97XDe5qeolv3vsz8Q8/R6Z+X+qlpt+NvLw8WrSoeW6cs1VrdGUmk4mYmBguXrxI+/btibzW5/K6/fv3c99999nseIcOHbLZvhzJUF7OhK+/pv+1UcvcRvDAYtjQx/J9tCyA7741fwdF3XGHeTaC1u95BCV9LmzFihX88Y9/5NixYzW+Pn78eP785z8zZcqUhg3sJtauXcuYMWMYMmSIo0OResgsz+STxNc5HZhl8Ta90mHjl3BbetXns9q0YdNzz5GnaYY2N2HCBLZu3eroMAS42q0bq195hdnvvkvrC+YbJb0z4PCHcN89sK2XZfs50xJmLMnm2y//SsC8Z7jsgSPjthqdVhLnOBcuXKgYib106dINr9fUE7E+YmJibLo/R/AtKmL6smV0OX4cgIvNzDeNottZvo/+qbD+K+iW7cXeHz7odmvnNXPl5pTau6Dy8nIee+wxlixZUmvCB3Dw4EGmT5/Ob3/72waM7tZs2Sy3LkpKSsjMzNSIYB1dKEnkH0mvcTogy+JtJp83X9xWT/iudu7Mul/9SgnfTYyuVAzEWl27dqWJE03ZaeThvRYLWrRg/QsvkDhoUMVzQUXmmyHWFHjJaAxz7i8hffe/ue3gQTtE6rmMRiNxcXHExcVZVKmyPheZJpOJU6dOER4e7hEj8jk5OZw8eZJ9+/bpZpSVAjMzmf/mmxUJX3gHGP0j6xK+WfHmCp2dCv3Z/OyzbpPwTZ061dEhuAyN9Lmg559/nuXLl1c8bty4MQ8++CBDhw6lpKSEI0eOsHLlSkpLSzEajfzpT38iODiY559/vkHjbIg7Lje7U1tWVobRaKxyoZmRkcHGjRspLDQvphk2bBjdu3enVSsL51d5uKMFkSzPWEZhI8urCD4WZV430Khajn25d2+2/vSn6gN0C0OHDgXcY1Ri1KhRhISEODoMhyrz92fbM88w7ptvGLhnD/B9gZcBqfCzuVi0PrbUGx5dZOL/7fmUu66mEXnXfI9pb1L93JKbm4vBYLDqBkdt56ddu3ZVVPI8d+4cs2fP5uLFi1y4cMHi1imWioiIqJjWGBsbywMPPICPj3tell26dImNGzfWefsoF+1XaQstL17kjv/+t2Jq+Kp+8NDdUOh78+0qezrM/B1T1LwFa5991mULttSkd+/eFf+vkb6bc89vFze2ceNG3n777YrH/fv3Z8uWLXTuXLUhS3R0NHPnzuXy5csAvPjii8yYMYNBle4w20JOTg7Hjx+nTZs2tGnTpt77O3v2LNnZ2fTq1YumTZvWeT/nz59n9+7dlJaW0qFDBwICAmjevDnJyckVCR+YTyTR0dHMnz/fJvG7K5PJxI7cLazMW4PJwoItBhO8vsNcpbP613Di4MHs+NGPKPeQkR+DwVDvpM1eSV9DniR79erFkSNHbN4vy9WYvLw4eP/95LRuzbgVKzBc+7f9cYR5NHzxfVhcCfcPUyD+2CZe+ewqRx58BKObJg21CQsLIyoqCoPBwLhx4+jQoQNpaWm0b9++Tvur3LohMTGR+Pj4mxYhs/b3p6ysjIiICHJzc6u0MioqKuLUqVMMHDjQ+qBdwN69e+u8bUFBwS0rq7qrzjExzFi2DN/iYkzA3ybAKzMt397LCG9thZ8fgatdurDlZz+jsHlzu8Xb0JxpJosr8Kyzg4szGo38+te/rnjcuHFj1q9ff0PCBzBkyBC+++47Jk2ahNForNh2/fr1No1p69atdOjQAYPBwJw5c+jUqZNF25WWluLr61tRratXr16cO3euYrF1dHQ0DzzwQJ2ng+3fv7+iCtv1xLc2RqORkJAQFi1aVKdjubsyUxlfZX7OgeLDN2ZvtQgohf+thEWnbnwtbuxY9j78MCZvC7NHcRrt27evV1U9X19fZs+eTXh4OCnX+kp5LIOB4zNmkNeyJdM++gifa99XdSnw8uVgSAwK5d0P0ol87GeU2HhEylkVFRVVjACZTCYOVprq6utrxTDITdi66nRYWFit68tcuZ/frdRn+qo9+/w6s/579jD+66/xMpko8Yan55mr+FqqSTF8vQLmnTHfaN355JOU+fnZL2AH8HOzn8fetKbPhezcubPKGr6f//zn9OjRo9b3jx8/niVLllQ83rBhg9165ZlMJvZcm6p03c3ugF4/8e3YsYPQ0FBWrlxZpbpWSUkJy5cv54svvmDr1q0UFRVZFU/l0TxL2KOpuzvIN+bzdtpb5oTPQh1yYP/HNSd8MdOmseeRR5TwNSBbjhDOmDGjXtsbDAY6duzIggULGDFihI2icm3nhw1j/QsvUFhpZkPvDDj0IUw5Z/l+QrrAoikJ9Fv6V5qkp996AzeQfpOf09rWC3Vl7UifqxcUaaiZAe4wnb3OjEbGrFjBxK++wstkIiMAZj9kXcLXKRsOfGxO+GKmTWPb00+7XcIn1lPS50JWr15d5fGTTz55y21+9KMfVXm8Zs0aW4ZURUFBgcXvPX78eJUkr7ZKXQUFBSQmJhIbG1vv+GwpLCyM8PBwt27cnlKWwhupf+FUeYLF2wy7AqHLYEQNg0Fh8+dz6N57VRq6jup6ETRmzBibxVDfCz6tt6hZWvfurHn5ZTLbfV+VoUURbP0CHrViKdPZYJgzP5XgL/5EywuWt1JxNdc/R/X5POXl5bF9+3ZbheSxsrOz2bdvH4cPH644HxqNxgZLut2Nd0kJM5cuZci1z+aZYBj7JOyxogPXyEvm8/DgVAMh993Hofvuw+Qh512dY27OMz4FbqLyIuiePXvSs2fPW24zadIk/P39Kx5v2LDBLrFdd6tmuHUVHh5ul/1WVlBQQEREhEXvPXfuHJGRkW570XC6+DRvpP2VFNNVi7dZcAr2fQIdc6s+bzIYOPCDHxA1b57HFJqorIONeqndbFT/Zrp161Yx7bqmdbI6STqH3NatWfvSS1y+7baK5xqVw8dr4S87LN9PZgDMX1xA1tY36Ozio0r2dOHChRuaqNeFJ//+mEwm1q1bx6lTpzh27Bh79uwhNTWVL7/8kk8++YR913rJ1Zen/B0H5ORw1z/+QfdrU5b3dTUnfGesKG69OBb2LodWJY3Y9vTTnJg2zT7BiktS0ucisrKyuFDpzu3YsWMt2q5Ro0ZVplHdrMWDLRw7dsxlizSsWbPG4qTvukuXLlFUVER6ejoJCQlWT0N1RiEFIfw7/V/kY/kU2ZcOwKpvoEm1gU+jlxe7Hn+cWCfqFVkfkyZN4qGHHrJqm3Hjxtnk2P369atT9UAfHx/mzJnDww8/zL333lvn4zdr1szjWy7YW0lgIJt+/nPOVBqdNQCvHoCvvwM/C79aS73hyTvL2H/yv/TZu8cusYokJiZWWUpx/vx5jhw5UjHr59SpU6SmptZp357WUinoyhUWvP46bc6fB+CLwTDjYXN7Fku9sh++/Q4IaMb6F18k0QP6IVefAeMpNwjqSkmfizh58mSVx716WdjJF6qMCGZmZpKcnGyzuGri6CmPdf2lr+tC89jYWFatWsXOnTtZuXJlnfbhDIwmIytzVvJZ9meUGyxryeBTDh+uhTd2gFe12Ydlvr5s/elPSahHnzlnZM3nq1mzZrS0sAfhraqQNWrUiMWLF1t87MoMBgP+/v5412Mt5fjx4+u8rVjO6OvL7sceI2LevCrP33cCdi+H1vmW7+uvk+C9kq8YsvpbsKDnnKtwpgs7R8WSk5PDunXr+PLLLzlx4oRDYqhp7Xz1Qk8xMTEkJSVZve+ysjKPKeDS/vRpFvztbzRLT8cE/G4K/PBu880bS/iWw8dr4K87Iat9B9a88gpXu3a1Y8TiqpT0uYjqX35dunSxeNvq722oL1JHnQwbegF4eHh4xTHz8624InMixcZiPsj8gG352yzepkUhbPscnqhhzVFxQAAbn3uOi25Wftzaz/T1kTlLtnvggQeYMGHCTd/jqEpl06ZNs+o7R+rJYCBi/nx2P/ooxkprccYlmSt79rOi7tQ3A+H5jjsZ+tl7eGudld3dqlq0rYSGhpKcnExeXh4hISF1ummZkJBAZGQkubm5t35zHSUkJLBp06Y6bbtv3z63L+jS+9Ah5v3rX/gVFFDsbU72fj/F8u1bFML2z+Cxo5DUrx9rX3qJPAtvNIrnUcsGF5GTk1PlcXBwsMXbtmjRospjW37B1zR1IzY2loCAAC5dunTTqZ5NmjShWbNmFh9r2bJlDB06lFGjRtUpVqlZZnkm72a8y4Uyyws/9EqHjV+ae4pVV9CsGZt+8QsyLGzf4c6uX7BMnTqVnTt33vL9jrhRUtMx/fz8KoorNWvWrGI9oTONsHiCM+PGkR8UxKz336fRtanj3bPg4Edwz72w08Jlnoc6w/1NjvHJx29w/sHnKHbx3lZ5eXls27aN89emwjmLvLw8u6+bv676zdvo6Ohb3jSq7NixYxVr8I8dO1avFkn2UlJSQllZmXsmfiYTI9avZ8S1Wg1XG8Oi++CAFQN0vdNhw7Xz8KkJE9j/4IMeXxm7pnPUkCFDiI6OdkA0zscpk77s7GxWrVpFWFgYCQkJlJaW4uPjQ5cuXejWrRtjxoxhwoQJdVrf4qqq38WrXJzlVgICqnb5rU+/nOree++9G577/e9/b9G2d955J3fddZfFxzKZTERFRdGnT5+KZNEtTwYN6ELpBd7JeIcsY5bF20w+Dyu/gZY1LPnLadWKjc89R27r1jaL0dlY85m7/t6uXbvSvXt3zp07R+vWrfH39+fixYv2CtFqvXr1qmjn4u3tzQMPPMDly5fJz8+nV69eeHlI5TdndPna3fs5b79Nk2uNw4OKYPMX8PSd8JGFZdzPtYAFsy6y/H9/pPDuF136d/To0aOODqFC5YvMyMhIh8Vh7Rq4ykXXSkpKOH78OMOHW9EToIEYDIYq/RfdgVdpKZM/+4zeoaEAxLWEuQ9CguX38pl83ryOPrgQQhcu5Ogdd3hkoTRLtGplYcNTD+BUSV9ZWRm/+c1vePfdd29Z/t/Hx4epU6fy5JNPsnDhQnx8nOpHsbnqBUKsuSNXfUqYtT3snM2xY8eYOHFira8rEbTM0aKjfJT1ESUmy9dgPhYF728wVxWsLqNDBzb94hcUBAXZLkgXd/3mhI+PDzNnzqx43lZV7WwhODiYMWPG0KhRIwoKChgyZAi+vr50rWFNiEb6HCOzY0fWvPIKd/z3v7S6drPA1wjL1pnv8r888xY7uCbbH+65M4t/bfojnSY9R2odK8JKzarPyKnOmZuvV561YzKZuHLlilOM/LlDcbTK/PLzmfnee3Q4cwaAvV1h0f3mqruWejQKPtgAXgYfdj75KAma/XRTOm99z2kypcLCQqZNm0ZoaGjFRfv1f6jKF/EGgwGTyURpaSnbt29n+/btdOnShTfeeKNelemcXfWRPWuKpVTvgVd95E88i8lkYlv+NlbnrsaEZQmywQSv74BfhZirCVaX0r07W559luLAQNsG6+JGjhzp6BBuMGrUKMLCwgDw8vJi+PDhNGrU6KY3UuzBmtkKAgVBQax78UVmLFtGl+PHAfPv4ksh0DMDHrobinxvvZ9yL3h2VjHPH36TmVlPcHG4831GXdXNbjjGxsZy4MCBBoulrKyMoqIiAgMDrb7o3bFjB+fOnbNTZNaprYevK2qalsact98mKCUFgM+GwJPzLS/YAub2La8cgOLAQDY/8wwpVhT18wQ1fdaV9H3PaZK+Z599liNHjgDfJ3YAHTt2pFOnThiNRlJTU7l48WLFNAaTyYTBYCAxMZEf/OAHfPHFF3zxxRdWrRNzFdUr+1lz96v6yN6tqgRa4+mnn6ZNmzZVnrvrrrvw9/dnzZo1N23Qaos4ajrJOvNIX05ODjt27CArK8shxy8zlfFl9peEFIZYvE3jEvhiFSw6VfPrSf36se0nP6HMAy7iLTl5DBs2jMzMTPr27euU30VDhw7Fx8eHrKws+vTpQ6CNEnUvLy+MVlSI7NOnD0eOHHHZFi8Avr6+DdqEuszfn63PPMOEr7+mf6XR4sUnofNymP8DSLHwa/WfY42cPbWMn++8Svy02ZoaZmcNmfBlZmayefNm8vLyaN++PXPmzLF4NlRWVpbTJHzgPhfsbRISmP3uuwTk5WECXpsKf5xs+fZ+ZfDpanMV36w2bdjy7LPkVLv2kpq5y2fIFpwi6UtLS+Ozzz6rSPZ8fHx48cUXefrppyuaCl9XVlZGZGQke/fu5ZtvvqmYQ28ymdi4cSNjxoxh165dtG/f3hE/it1Uv3jMvLa2wxLVE4yaGjTXVZs2bW5oPj1gwAD8/f0JDw+32126lJQU9u7da9eqY/YQHR3N1auWNzy3pXxjPu9nvk9cSZzF23TIgfVfwfArNb9+dvhwdj3+OEZfC4YYPISzFxoyGAwMGjTI5vsdPnw4p0+ftvh30sfHh3nz5hEVFUVAQABBQUEVN/5cQefOnZk1axYfffRRgx7X5O3NgQceILdVK8asWlXx/OhL5sqe8x6EExZeC67tCxeurObN1SmcXfhDTFq76RbCwsIq1u5fuXKF+Ph4+vbte9Ntrt8sTUuzojRsA3CHC/buERFM/fhjfMrKKPKBxxfAV1Z8BbfOh7Vfmav3XunVi21PP+3yxZgakjt8hmzFKb7hd+3aVVGhydvbm9WrV/PnP//5hoQPzBcKo0eP5le/+hXh4eGEhoYyY8aMitdPnz7NnDlzbjm33tV07969yuPKjdpvJTExscrjHm6wjiMkJISsrKwaF68760hfbm7uDf0WG0pKWQqvX33dqoRv2BUIXVZ7wndy4kR2/uhHHpXw2fKGibtp3749CxcutGqbtm3bcscddzB58mRN97SGwUD07NnsePJJyiuN4HTNhpCPYFa85buKag8PDzhIh6/ewseNptK5opycHC5evFjvXrfVq5qGXisYYglnK9rkbPFYxWRiyJYtzFy6FJ+yMtIamxuuW5Pw9U2Dwx+aE774UaPY9JzrV99taLdK+ho3buwxhSGd4rfpehU7g8HAnXfeydy5cy3eduTIkWzbto133nkHb29vDAYDMTExvPDCC/YK1yH69+9f5fH1SnuWSEhIqPj/Fi1a0K5dO5vFVZONGzfy0Ucf2XUuvqNGy+rjq6++cshxTxef5vWrr5NafmN7jdosPAn7P4aOtQzaRN1xB/sfesijRgaCgoJuGNVuaM56xzIoKIj27dvfNL7bbrutASOqXXBwsNsU/jo7ahQbnn+eokpTdJsXm9up/CTM8v1cbgb3TjyDz3d/IsDNbpi6ksuXL7N582ZWrlxp9fnz1KlTtU6VLi0tJTY2tuJa4GZJoDVJVkN8Hznrd96tGMrLmfTFF4xZvRqA0y1h7JMQYkW702ln4dBH0CMTIufMYdfjj1PuQTdZbeVW3/f33HOPUxQtaghOccVWeU3ElClT6rSPp59+ms8//xyTyYTJZOKTTz7h2LFjNorQ8YKCgqo0Rz506JBF25WUlBAREVHx2B7TuqpLT0+3uny0LTnrSJ8jhBSE8K+Mf1Fgunk13MpeOgArv4XAWpYqHb77bsIWLXKqNUDV15Xaw/z58222L183O3Hf7O8mICCAgQMHMn78+AaMqHY+Pj5W3Vi8GWe4IE3p1Yu1L71ETqWy5D5GeHcj/HOLuQiTJQoawaPTUrmw9TWaX2mYBuNSs9zcXE6cOGH1docOHSI8PPyG58vLyzlw4AA7d+5kx44dN2154Wwja654PvctLOSO//6XftfWce7pBuOehLNWtGR4PBI2/w+alXix9+GHCV+4EJzs36YhWfpd6+PjQ+tK7WgaN258y+VenjTLxCk+QZWHVetT3OO+++7jkUceAcxfFJ9++mm9Y3MmlS9UEhISbmjOWpP9+/dXKfpy55132iU2cS5Gk5EVOSv4LPszjFhWXMOnHD5cC2/sAK8azrNGg4G9P/whx2bPtnG0ruH6iaF6C5S6GDJkSJXHvVy4AtvIkSMr/m5qukCbPn0648ePv+Wd1Ia8uGvXrl2VZQGuLrtdO9a8/DIplZYBGIDnDpvXAgVaOFvQZID/m1jA9qN/pnWcY6aii9mpU7VUzrqJkydP3rJXYG3XDdd//26V9KWnp1sdlycJzMhg/ptv0jk2FoBPh8CsH1rXkuGvO+DDdYCvP5t//nNOT5hgn2Dd1LRp0+jatSudOnVi9uzZTnFzzlk4RdJXOQu3JJG5mV/+8pcV/799+/Z67cvZLFq0qMrjZcuW3XKb6u+xds2NK6rcb8gTFRmLeC/zPbbnW/75b1EI2z6HJ6Jqfr3cx4edTz3F6QYu62+phvxS9/b2ZsSIEfXaR+PGjZk6dSrBwcF06dKF0aNH2yi6hlc5WaspcXPXE66z/VxFzZqx4Ze/5NzQoVWevyvu2lRtK2ZtfjS0jHfS/k3bsP22DVIsVtvny2g02rXX7q2SvuTkZLsd29W1Skxk4euv0/LSJYwG+PV0eHSR5S0Z/Evh22/NLRnygoNZ+/LLXOrXz75Bu6HmzZsze/Zs5s6dW2XUT5wk6Rs2bFjF/6+qVI2sLgYNGkSzZs0wmUwVawXdxYwZMxg4cGDF47fffvumpZUPHTrEd999V/F43rx59O7d264xOoPo6GhHh+Aw6WXpvJn+JseKLZ/a3DvdvFB86vmaXy/x82PLz37GueHDbROkHTT0BfiIESNqnK7o7W15w6XevXtzzz33cMcdd1TMcHC2REJcS3mjRuz48Y+JmT69yvPDks2VPYfVUpSpJjt7mHjV7wta7/gOXHCKXUOx1wh1Td8Fubm5rFixgs8//9wuxwRN76yrrkePctff/05gdjZ5jWDxvfDXSZZv3yYPdn8KS2IhtWtX1rzyCpkOXkPuClzl8+EsnOK3u3fv3kyYMAGTyURcXBzvv/9+vfZ3vb2BNT2jXIGXlxd/+ctfKh7n5+dz11131ZjcHjt2jCVLllT8HXh5efHnP/+5wWKVhpdQksBf0/9KUlmSxdtMPm9O+G6rZcZOQbNmrH/xRd1trEHLli1veG7yZCsaL9WgepVed6gWamkiq5O3bZi8vDh0772E3Hcfpkp/9x1zzSN+C6yYNXiyNTzVbQdN1r+LwYHrtD1R9d+bpKQkvvrqK7v3eNWNJyuZTAzavp1Z77+Pb0kJF5rDxMdhjRWnzH7XKnSOTYLzQ4aw4YUXKGze3H4xO7GGvulQU5cAd+YUSR/Af/7zn4q75M8//zxbt26t036KiopITk7GYDC45T/mXXfdxTPPPFPx+MSJE/Tr148f//jHvPfee/znP//hgQceYOTIkVy6dKnifW+88cYN64hcVey1ufLyvSOFR3gr/S1yjZb3LXw80jylM7iWmULZbdqw9qWXSO9iRbkxD9K2bdsbFoDXd22ev78/o0ePxmAw0KhRIyZUW8vh7Bdktk7cWrRoYdP9wfd/h87+d1lfJ6ZNY9tPfkJZpaJBgaWw8ht4McTy/VwNhMeHHaN47Z/xrbQ+XOyr8uezrKyMTZs2OTAax4mLs7zNUEMzlJcz8csvGbdiBQaTicOdYPSPINqKAunTz8LBj6B7FsRMn872n/yEMhusG3cW1t64vFU/SVvq168f06ZNA8xTQj2B09StHjZsGK+++ip/+tOfKC4u5q677uK1117j5Zdftqq89vLlyykrK8NgMDBpkhVj6y7kP//5D7m5uRVTPPLz81m6dGmN7zUYDLzyyiu8+OKLDRmiNBCjyci6vHVsztts8TYGE7y+A34VYi72UJPUrl3Z8rOfUXRt1NxROnfu7LTTtL28vJg6dSqHDh3Cy8uLiTZa7zh06FAGDRqEwWBwuqlWt2LrNX2zZs0iKioKo9FIUlJSlaJUzsDZE8fEoUNZ/8ILzH7nHRrnmm8IeZvgze3QOwOemQflFnzEin3g2XGX+NXO/2PguFcpCr5xlFtse9Oj8mfLmhZNdWVN7BkZGYSEhHDlihXzhevoZpVGHcm3sJAZS5dWFGz5cpC56XqxFVfVT0aYq+x6mwyE3H8fJ6ZOtVO0jrN48WJSU1Mtumkxfvz4m45kt2rVyqbtuirnCGPGjLmhp7U7cqorit/97nfMmTMHMN/Z+n//7//Rq1cv3n77bdLS0m65/ZYtW3jxxRcrLpZ++tOf2jtkh/D29uazzz7jm2++qbLGr7qxY8eyY8eOKlNCxX0UG4tZlrXMqoSvcYn5Tv9LN0n4Lvbvz4Zf/tLhCR9Anz59LHqfvS++W1Uqh19Z586duffee7nnnnts2v/S29u71oTPXctL13TRGRgYyJQpU5g2bVrFtH1rOHtS1hDSundn7csvk9W2bZXnn4qALV9Acyvy6DeH57Lq+GsEXky49ZulXip/diu3tbKns2fPsm7dulu+b9++fQ2S8DmryhU6jQb4v2nw4GLrEr43tsPS9YBPI7Y984xbJnwAjRo1olOnTtxzzz3cdtttDBo0iJEjR97wvpEjR97Qj7qyvn371qvtT/URxKHVCl4FBQUxe/ZsunXrRj83Xs7iNCN9YL5zvmLFCpYsWVJxV+DChQs899xzvPDCCwwdOpTx48fTv39/unXrRkBAAIWFhcTFxbFmzRp2795dceHwzjvvNEhPOke69957uffeezl+/DjHjh3j8uXLeHt706FDB0aNGkWPHj0cHaLYSWZ5Ju9mvMuFsgsWb9MpG9Z9ZS7qUJszY8aw9+GHMbpY82pbX9z37duXvLw8kpKS8PPzc5oec2C+O7lnz54GuxC0Rk2FbOrTk7A+/67BwcHMmDGDb7/9ts77cBe5rVuz9uWXmfnee3Q4c6bi+Rln4dCHMO9BOGfhTNq1vUs5l/ImL2b8gMIh9VvDKrWrfNOnIW5eFBUVsXPnTove68kVslufP28eOc/JId8XHl4Eq2rPVW4QUAqfrYZ7YiG/eXO2/OxnHrGEIjg4uKIP9/Hjx294ffi1QnE1fdb9/f0ZPnw4gYGBdT7+sGHDuHz5Mjk5OQQHB9c4YNK1a1e6du1apx6ZrsLpruwCAgJYv349f/vb33jttdcoKTE3GCorKyMiIqJKo/HqTCYTgwYN4r///a/bTu2sycCBA2864ifu5XzJed7LfI8sY5bF24xOgjVfQ/u82t8TPWsWRxYtcqoGsA09UnPnnXfSqlUrGjVqhMlkIicnB39/f5v05rOV7t2706VLFz766CNHhwJUHaELCAioMgWnefPmBAdb0ZHYhtq3b09QUJBDju2MigMD2fSLXzDl00/pFRZW8Xy/q+bKngvvh4MWXnsea2vihfwv+dPeC3D7Q6ARVZtr6O8+9d+7tW6RkUz7+GN8Sku52AwW/ACibt73u4oOOeYbryOuQHrHjmz52c/Id9D3oyu55557qvTzroumTZtyzz33UFBQQGBgoFWVtt2J81zdVWIwGHj55ZeJi4vjiSeeqNL49/oFxvX/r/zHYDBw/PhxHn30UZYsWcLrr7/Otm3b9GUmbuNwwWHeTH/TqoTvvuOwZ/nNE75DS5ZwZPFip0r4rFGfC6QJEybQt29fZs+eTYcOHSqaiBsMBpo3b+5UCd91znzCmjVrFr1796ZXr14V0/XrytmnZzp7fNUZfX3Z9fjjRN1xR5XnWxfAzs/gAcs7vZAWCD/reYC0ba/jXWJh93exWOXPlqt9ztyOycTgbduYuXQpPqWlHOloLthiTcI38hKELTMnfBf792fdr37lsQnfzdaP1vRZr2/Cd52Pjw/NmjVz6vOnvTndSF9lXbp0YdmyZfzzn/9kzZo1bN++nf3793P+/Pkq76v+ITl37hznz5+v0vOvU6dOjBgxguHDh1f8t221NQ4izqrcVM7K3JXszLds+s11v9sN/29v7ev3ynx82PPYY5ytYY69p+jTp49VxaLk5po0acLUOqxPqU8RjBkzZrBjx44qz93qQtljL6S9vAhbtIjcli2Z+NVXeF1r6+NfBl+sMrdv+Z2F/3yl3vB/g8/z+IFfM2nYq5S08LwCL4cPH8ZoNHLbbbfZdL8Gg4G0tDTCw8OdtpiVJ/AqLWXiV1/RN8Rc8vbjYfD0PCix4pRx73H4ZC00LoWTEydy4IEHMHlw4iGO4xJXOk2aNOGhhx7ioYceAiAzM5OoqKiKP0ePHuX06dOUV+ojdH3k7/qFxMWLF0lKSmLt2rWA+Qu1rKys4X8YESvlG/NZlrmMkyUnLd7GvxSWr4H7bjI1vbBJE7Y98wwpPXvWP0gHq88FvKte/E+ZMoU9e/Y4OgyHW7BggW7g1cGp228nPziY6UuX0qi4GDDfHHptr7my52MLLL+w/bhfLglx/4/H2v6U4m5WLHByAxcumNdVJyUlVcwSsAWTycSmTZsovvZvIw3PPyeHmR98QPv4eEq94Pk74J3R1u3j+o1XDAYOL76bYzNnajq0Dam/q3VcIumrrkWLFkybNq2ivwaYFyHHxMRUJIFRUVHExMRQUFBQ8Z7qiaCIs7tUeol3M9/larnlZYrb5cLar2H0pdrfk9W2LZuffZbc1q1tEKU4Qo8ePW5I+po0aeKYYOzkVgn5gAEDKhK+6t/t3bp1s2dobuHiwIGs/9WvuOO//yWwUqn0B2KgRyYsug+SLWyztbdLGUkZ/+aVo4sxDp1ln4CdXIkNp7l6crEUZxCclMTsd9+laXo6qYGwZAns62b59pVvvJZdm1Z9/lqxEqmdq96EdRUumfTVxN/fn1GjRjFq1KiK50wmE6dPn65IAo8ePcrRo0ctav8g4miRhZEsz15OscnyO71Dr8D6r6BTTu3vudKrF9uefppiN0oQLDlRNG7cuMpNIFfn4+ND//79ib3WJ8rLy8ulCzrdqsdfTf/Go0d/f9t92rRp7N69G6PRSKdOnejQoYN9AnUz6Z07s+bll5nz9tsEX75c8fzYJAhfai7wEt7Rsn0lBMMvi1fy2r7zNJ34pMuuERbP1vXoUaZ9/DG+xcVEtIdF98NFK3p3t8+FtV/BqMtQ0KwZW3/6U9J0E0qcgNskfTUxGAz07duXvn37cv/991c8f/nyZaKiohwYmUjtjCYjG/I2sDFvo1XbLToJn6+CwJtU8j8zerS5JUM9yuiL8xg7diy+vr7k5+czcOBAm04vcwWV20H07NmTNm3aUFhYSOsGGMF2xgI/dZUfHMzal15i5gcf0Onk99PIO+bCvk/gyfnw5WDL9pXrBy/2juCZfRcZPvoVyhvXvcy6SIMymRi6eTOjry0D+mIw/OguKLLidDn8srlCZ8dcyOjQgc3PPuuxBVvqQiN99uXWSV9tOnTooLvA4pQKjYV8kvUJ0cXRVm33273wuz3gdZOZy5Fz5xI+f77WE7gRHx8fxowZ4+gwnEbTpk1p2vTm8xFtdVExYsQIm+zHWZQGBLD52We5/Ysv6HPwYMXzAdcKvAxOgVdngMnCv753+6Qy9fgrPND5Fxjb97JT1CK24V1Swu2ff07v0FDKvODlGfCWle1ZF8fCp6vNN14v9u/PjqeeojQgwD4BuzAtsXIczb0QcRJJpUn85epfrEr4Aktg5Tfwh921J3zlPj7seeQRwhcscNuET3cHXd+tLgSqJ1ldLGxo3KdPnyqPx44dC5jXhtdFy5YtmTx5Ms2aNavT9s7M5O3N3ocf5siiRZgqT60FXg4xj2A0taKuyO7OJfwp601KY7bZPlgRG2mclcVd//gHvUNDSQ2E2Q9Zn/D9YRd8+5054Yu9/Xa2/OxnSvjE6SjpE3EChwoO8frV10ktt3zxfo8MOPQh3H2Top4FzZqx4Ze/JG68lWcwEQs11DTHjh070qNHD8BcsKby+u2bGTZsGC1btsTb25uBAwdWTP1s3rw5Xbt2tTqOxYsX35BIuhWDgeg77mDb009TUu3f9s44OPwh9MywfHeJQfBC0EouH/gvhmvtIUScRZuzZ1n017/S5vx5QjrDsB/Drh6Wb9+02Lx+77f7wICBQ/fco5YM4rQ8cnqniLMoNZXybc637CvYZ9V2MxLgmxUQXFj7e6527szWZ57xiPUEntiywVF69OjB2bNnAXOT+L59+zbIcQ0GAzNmzKCkpARvb2+LG+w2a9aMxYsX1/jarFmzSExMZNs2jURVlzhkCGtffpnZ77xDs/T0iuf7p0HoMrh3Cey08OK42Ad+3zOGhw7+mtuHvoqpiRVVMUTspO++fUz4+mu8ysv551h4aSaUWZGr3XbVXCm771UobdSIXU88QeLQoXaL1xPofGxfSvpEHCS9LJ0Psj4gsTTRqu1+eRDe2AE+N7lpnjBiBHsfeYQyFy820RAnAC9VGLTKxIkT8fHxoaCggKFDh1YpplIflq7zsGWxGoPBoNYON5HZsSNrXn2Vme+/T/v4+Irngwthyxfwwiz4z1jL9/dFz0xOnfk1j7d+Bu9OA+wQsciteZWWMuHrr+l34AA5fvDE3bDCyo/jvDj430poXgz5zZuz9ZlnuKrvkgbXqVMnR4fgUpT0iTjAieITfJT5EfmmfIu38SuDZevgh8du/r6w+fOJmjvXLdbvacG38/H392fKlCmODsOm2rVrR3Jyst3278r9YYuaNmXj888z8csv6RsSUvG8jxH+vQVGXoanrKhwGN6ujLMF/+HFqGm0HHafnaIWqVlgZiYzPviAtufOcbwNLL4X4lpZt4//2wu/32NeR5/arRvbnn6agqAge4TrcW51o3fq1Kns3r0bMN8AHKqRVaso6RNpQOWmcjbmbWRT3iZMWH4R2DEHVn9t7vtTm1I/P3Y/+qhHNoAtLy93dAjiwsaPH8+aNWsw2mnNmSsnfQBGHx/2/fCHZHbowJgVK/Cq9LP88BgMSoW774NzFtbGyWgMv268i8cPnmTM8JfAv7GdIhf5Xru4OGYsXUrj3Fz+N8h8s6LAiokDgSXm6pyLr62jjx81ir0PP0y5C7fK6dSpE0lJSQ16zMDAurdx6d27NwEBAWRmZtKtWzcaN9Z3hzU0r0mkgWSWZ/JWxltszNtoVcI39RxEfnDzhC+zXTtWv/KKRyZ8oKRP6qdVq1bMnz/f4oqgHslgIGbGDLb+7GeU+PtXeWlosrmR+x1nrNvlx92vsOzUS5RejrVhoCLVmEwM2LWLO//5T0xFuTy+AB5abF3C1zPDXMToesIXumABu554wqUTPoBx48bV+lr37t1vuX3QTUY4rxfeqmm//pW+Q3r27HnL41TWqVMnBg0adMv2PHIjJX0iDSC6KJo/pv2R+JL4W7+5klf2w7bPoc1NZoGeHT6cNa++SpYH954sKytzdAhST44eCWvTpg3D7XTTxJ2KE1wcOJA1L79Mdps2VZ4PLoQNX5p7hlojvG0pvy36N6nR39owShEzn6Iipn78MRO++YZjbYyM+DF8Msy6fSw4Zb6pMTDVPKNm209+wlE3WULRokWLGgtdde3alRkzZtxy+44dO9b4vLe3N6NHj67xNS8vLxYuXEi/fv0YNmwYkydPti5oqTNN7xSxo1JTKatyVrGrYJdV2zUrgs9Ww4LTtb/H6OXFkbvvJmbGDLc4+dTE0kTA0pG+IUOGEB39fR/ERx55pE5xiVjDnZI+gKwOHVj96qtM++gjuhw/XvG8t8ncM3TUJfjh3ZDtf5OdVJIZAL8N2Mkjh08ybtivMPhpypbUX4tLl5ixdClBycn8d7S58FCJFVe9Xkb46074VYi5V2VucDBbn3mGjM6d7RazI9TUs7R9+/YYDAYmTpxISEiIVTflxo4dS5cuXW7ay7RZs2ZMmjTphufd7bvS2SjpE7GTlLIUPsxcxoWyi1ZtNzgZVn4LvW7SC6ugWTN2/OhHJN92Wz2jdA+WJn2jRo3C39+f3Nxc+vfv32A95kTcTUnjxmz56U8ZsWEDIzZurPLaXXEQttS8zu94W8v3+WnXyxw9/RKPBT9JQKehtg1YPMptBw8y8csvyfYpZdH9sNbKzjJt8+DrFTDlvPlxcs+ebPvJTyi6SSLjjvr370/Xrl353//+Z/E2gwcPtmNEUh9K+kRszGQycbDwIN9mf00RJVZt+/BReG8jNC6t/T1XevVix1NPUdhcva6us2R6p8FgwMvLiyFDhjRARGItR0/vtCe3vXvt5UXE/Plc7dKFqZ98QqOiooqXel9bA/XMPPhsqOW7jG5dyqul7/HTyOH0GvIkBjW5Fit4l5Qw8auv6HPwIPu6woN3Q5KVp8pJifDNd9A+z/z49Lhx7H/wQYw2ak/jam5WeMXW39tu+13pJLSmT8SGcstzeT/jPT7L/syqhK9RGby/HpavqT3hMxoMRNx5Jxt++UunS/gcXUFLhVxEHCdx6FBWv/oqme3aVXk+sBQ+XQOfrIGAm9zIqq7QF/7ePpLvjr5EadYlm8Yq7qt5cjKL/vpXuh05yEszYcqj1id8L4bAzk/NCZ/Ry4uQ++9n7yOPeGzCJ+5FI30iNhJTFMPnGR+TbSiwarve6ea7isNu0iYsPyiIXY8/zpU+feoZpX04+u6ckj5xZo7+/WgI2e3asebVV5myfDndo6KqvPboUfM6v3uXQGybmrevyc4OecRc/SM/TZ5Lu77zbRuwuA+Tid6HDzPhq684GVTMD5+CGCumFQMEFcLHa2HRKfPjgmbN2PHUUyT37m37eEUcRCN9IvVUZCzi67RP+G/mf61O+H4YDREf3DzhSxw0iBW//a3TJnxgv4taS6eO9OvXzy7Hl4Zzs9Lf4hpK/f3Z/uMfE7pwIcZq3wkD0iB0GTwWVcvGtUgNNPFa843sCv89ZUU5NoxW3EGjggKmffQRt3+6nH+OLGZUHRK+8Rfg6PvfJ3wp3buz6te/VsInbkdJn0g9JBSd4c2Lv2F32WGrtmtcAstXmyt0Nq1lFmi5tzcH772XrT/9KcVNmtggWvd122233bRSmDi/rl27Vvk3HDhwoAOjsZ3x48c3yHGGDbOyDr29GAwcnTOHTc89R0G138nAUvNoyvLV5u9Aa3zT8TJ/O/8yqWd32jBYcWVt4+NZ/Kc/4RUfxpRH4ZWZUGrFElCDCX6zD/Yuh67Z5udOTprE+hdeoKCGipbuqj43bbWmz7Uo6ROpgyJjEesuLuXNjL+T1CjPqm0HJ0PEUngkuvb3ZHTowJpXXuH49Oku0Y7By6v+XyXt27ev8tiahq1+fn4sXrwYX627cFkGg4FFixYxduxYpkyZctOmwa6koZJXZ/vsX+7bl5X/939cqmGGwiPRELYMBqVYt8/E5kZ+G/AtOyP+QGmxRv08laG8nBHr1jH3H2/ySa90Bj8NB7pat492ubDjM/jTLvAxQrmPD3t/+EP2P/SQ1u85UPVZO23bWjlsKzelpE/ESufTjvDmuV+x0ScCk5X52DOhcORD6Hu15tdNBgPRM2ey+te/Jr1Ll/oH60LGjBlT0ULB39+fUaNGWXwX0WAw4OvrS6dOnewZotiZn58fgwcP5rbbbtMdXys5499XYfPmbHruOSLmzcNULb7+16Z7Pn/I+v1+2+ESb5x/mWSN+nmcplevctff/07jIxuZ/Bj8Yg7kN7JuH3POQPT7MO2c+XFeUBDrXnyR0xMn2j5gsUrjxo0ZNWoUBoOBgIAAxowZ4+iQ3IoKuYhYqLQgg51x/2V120tgZbHKNnnw0Tq4M6729+S0bMmeRx91yd57trjgDA4OZsmSJaSnp9OqVSsCAgJITU21ah/9+/fn3Llz9Y5FxBEWLVrE6tWr67StMyZ9AKZrbR2Se/Vi2scfE5CbW/Gafxm8tdV8Ef7IIrjS1PL9Xmxm5DW+ZXHkASb3/wV+/kG2D16ch8lEv337GLF6Bf8cWcIfHrCu0TqYq2T/dSc8dxi8rt1PTOrXj12PP+5x/fduxZHfJ8OGDXOe6epuRkmfyK2UlZF29EvebXaQy22tn78+/xQsWw9t8mt/z6kJEzi0ZAmlAQH1CNRxbHWCaNy4cb3aP3To0IFu3bpx/vx5m8Qj4iqcNem77lL//qz8zW+Y/uGHtI+Pr/LazLNw7D146i5YbWVNppXtL7M/6RUeMc6iZ+9FTv/3INYLzMhg8mefkZx9knGPwLF2t96muiHJ8MUqGHjtPqLpWgukqLlzMdlgeYKncuf+qu5ISZ9ILQzl5QRE7uDT8vXs6GpFk6lrmhTDv7eYq9XVdhmSHxTE/gce4IKLNwy3xYWWLU4eBoOBWbNmkZeXx5dfflnv/YlncXTCUNffgcmTJ1Naav13VEMraNGCDb/8JcM3bmTYpk14Vfp5WxXAym/g42HWT9lLDTTxJluZEHOIBZ1/TPMWvewQvTQ4k4k+ISH0Xfctv59YzPsjsXpJhZcRXg6B3+2BRtc6+xQ0bcquJ57gsqo+A47/3pOGo6RPpBqD0Uin8MPsS17BP4flU1yH35IJF8yVOXtk1v6e2Ntv58jdd7vE6F6XLl24cOFCra8720mjiaqdigfp1asXp06dcnQYFjF5exMxfz5J/fsz7eOPaZqeXvGaAXgiCiYnwqMLIcTKZc0hrXMIz3uTBy4NZkS/J/H19rNp7NJwAjMzmfDF5+zxOcGSpyAt0Pp99MiAz1fD+IvfP3f5ttvY9cQTFKhFjE00bWrFnGxxOCV9ItcZjXSPiiLr6Ap+PiaD+FHW78KvDH6/G148CN613LTPatuWfQ895JJr92rj6KTP0ccXsbcmTZqQl1dzpWBvb2+X+x1I6dWLFb/9LRO//JLeoaFVXuuVAXs/gf+OhldnQKEVxRSLfeCTlsfYG/8C9zZeSLdO013u78aTGYxG+u/Zg3/IKh6aVWp14n/dU+Hwj23QpFJrkKg5cwi/6y5M3lb0dZCbGjBgAJGRkZSXl1c8FuelpE88nldpKb2PHMEvbBN/GJHO5rl128/4C+YeVH3Sa37d6OVF9KxZRN55J+VuVBJ65MiRdltDZ8v1AvVZKyjiSN26dWP69Ol89NFHjg7FpkoDAtj9xBNcHDiQiV9+SaOioorXvE3wiyMw7ww8vgD2W1mS/2yzUl7nO8af2M68Tk/QKsh9brK5q5YXL9J3xaf8t+dFlj0O5XVYatctE5auN68Tva6gaVP2PvooF92k96et2KKHaKNGjViwYAHHjx+nSZMmKsDi5JT0icfyLSqi3759tDu4nTeH5fDBvXU7yTQuMVcE+2lo7aN7yT17cuAHPyCjc+f6Be1k2rRpQ//+/UlMTKz3vrxtfPd1xIgRREREVDyeMGGCTfcv0lBGjx59y98PVx7Nih8zhpSePZn68ce0S0io8lqvDNizHN4ZBa/MgAIry/MfbJnF4fx/sPBSTybc9mOa+Da3XeBiEz7FxQzYuIadBbt5bJGJ3DrMyjWY4BeH4Y+7q47uXRg4kL2PPEKhqnPeoFu3bjbZvlWrVkyZMqXe8Yj9KekTj9M0LY3+e/fS7fABlg0q5E+PQLZ/3fY17ay5Mmdta/cKmjblyOLFnBkzBtysQthjjz2Gj48PBoOh3hecI0eOrFeD95qOP3jwYAoKCkhPT6d37960adOmPiGK2F2jRjVnNEEesP4ot1Ur1r/4IoO3b2fEunX4lJVVvOZlgmdDYe4Zc4XPXT2s27fRC1YFJ7Dz0svcXTaW4T1+QCMvrfdzOJOJrpERJMV8xb1j8rgQVLfd9E+FD9fBuKTvnyv38eHw4sWcmDoVXPiGiL00a9as3mvfR42qwxoYcSglfeIZjEY6nTzJgN27aRcbwyfDYN6P4FIdb/4FF8DftsPjtVTmNBoMnJg6lYi77qLETacV+laaolrXpK979+6MGDGC4ODgGl+vz/ROX19fJk2aVOftRRpScHBwjcldMw8aoTB5eRE9ezaJgwYx5dNPaVNt2njPTNjxGfxvMPxytvXFPbL9THzid4iN50NZ4DOdoZ0X4GPQZZAjBF1KonDfR7za5zJRs+u2D99yeOUA/GYf+JV//3xG+/bsevJJMjp1sk2wbiY4OLjeM18GDx5MixYtbBSRNBR924lbC8jOpveRI/Tdv5+maal8MRh+/zM4V4/vqici4fUd5hLjNbnSqxch99/vdlM5b6auSV/r1q1rTfhEXN20adNu+vrDDz9MZGQkJpOpzmthxo4dC7j29M7qsjp0YO1LLzF4+3ZGrl+Pd6VRPwPw0DGYF2ee7rl0pPX7Tw0oZxnb6Jywh7sC72RQu5l4GdxrJoazapSbS8mBT3mrVQxHptR9P9POwjuboO/Vqs+fmDKFw4sXU17LqLmnu/vuu2nVqlW99+PvX8fpUeJQSvrE7XiVldHl2DH6HDxI5xMnKMfI1wPhL0vgVOu673dwMry3sWr558qy27ThyKJFnB82zOOmk9R0wdm8eXOys7MrHi9cuJA1a9Y0YFQijtGhQwc6duxIz549b/o+f3//ehdT6NOnT722d1Ymb2+i77iDC4MHM3n5ctpUWzfcogg+2ACPRMNP7oSYttYf42JgCe+yiu4Jm5nZbC5DW0/H26DKjvbgVVJCUdi3fOYbQshQY5330yEH3toK956oOssmPyiIfT/8oUcWa/H396eoUhEkkdoo6RO3YDAaaRsfT4+ICHqGhxOQl0eBL7w7Ev4+HhKD6r7vJsXmxeE/CwWfGs5VRYGBRM6bR+zkyRh9PPNXqqakr2vXrnTs2JGUlBQ6d+5sszV1gwYNIiYmxib7EqnMFqNlgwYNYty4cTaIxuxWMfn5uffatMwOHVj78ssM3rGDEevX41OtCf34ixDxgbm9w++n1G199rnAQpaWr6TDufXMbDyTkW3voJFBI0W2YCorJfn4d6zjAJE9ym+9QS28jfDcYXhtDzQtqfpa3NixHLz3XkoC69DMzwW0atWKq1ev1vr6PffcwxdffNGAEYmr8swrVHEPRiPtriV63aOiCLw2qpQeAP+cBP8aW7eGrtd5Gc2Ngv+4C9rm3/h6uY8Px6dOJWrOHLc92dRX586d6XyTaa63Kt5S05q+9u3b35D0udPUNnE/TZs2JT29ll4ucksmb2+iZ8/m7IgRTPjyS7qcOFHldV8jPH/YPO3ztanwwQhz8RZrXQ4o4VPTRtYnbmWG3yRGt5lHU281n66L0vJizsR9xwYOktC27skewKx4c8+9galVny9o1oz9Dz1E4pAh9dq/s7vVeVLtiMRSSvrEpTQqKKDTiRN0OX6czidOEJCbW/FaVDt4ewx8NRCK6tkGb/pZ8xSSwSk3vmb08uL0+PFEzZ1LXsuW9TuQm6jppFRTItaxY0cuXbpUsU3fvn3tHpuIo02cOJG1a9fWaVvd0PhebqtWbHn2WXqEhzP+229pnJNT5fXWBfDuRngmDJ6fDTtuPru2Vhl+ZXzLbtZc2cNEY3/GtptP10bd6v8DeID00jSiz37LDt/jpAfVfRonwIBU+Ps2uCP+xtfiR40i5P77Ka5nBUoRT6KkT5yaV2kprRMT6RAXR6cTJ2h79ixexu9PJIU+sLqfuYfTwS71P16fq/CPrebS4NUvtYwGA2fGjiVy3jxyW9djcaAL6tq1KxcuXKh4HBAQUOX1vn37kpSUVH2zG0yYMIG9e/dSVFTEiBEjai1RfzO6CBZX07ZtWwIDA8nPr2HKgFjHYODsqFEkDRjA6NWr6b9v3w1vGZgK2z6H9X3g5Rl1X8td4m1il/cJdqWfYEBRG8a2nsPQwJGa+lmN0WTkVOEJwq6s5bD/RYz1LDjbJs+8pOLxqBuXVOQFBRHygx+QOHRo/Q7iQurTzqiubnWeVSEX16SkT5yKX34+rRITaZeQQPu4ONqcO3fDGg4TcKQTLB8KXw+se4+9yjpnw//bC48cNU8VqnI8g4GEkSOJuPNOstu1q//BXFDjxo0ZOXIk4eHhNbZC6Nq1q0X7CQoKYsGCBTaPT4mgOLsBAwYQGhpq9Xa3asruqUoaN+bAgw9yevx4Jnz99Q3tHQzA/NPmG3hfDIbfTanf2u4T/qmcyP2UwMz/MbrRMEa1mEoP3x4e/d2TXJZMePZ+wvJCSG5UCPWcZdi02Lxu78WD0Ky46msmg4ETU6YQtmABpdVuOor9devWjfPXfsd8fX3p1auXYwOSOlHSJw5hMBppkp5OUHIywZcu0ToxkVYXLtDsJouVT7WClf3MJ/D6VOGsrG0e/Ho/PBUB/mVVXyv39ubM2LFEz5rlscleZcOHD2fQoEEYDAZ8qhWsqenCxxYXQzWt6fPkiyxxXf369SM8PBzjtZkKnSzsIWbpXX5P/b1I696dNS+/TO8jRxizatUNUz59jPDoUfhBDCwdAX+6HVLrMSMw36eM3cYwdqeH0aksiOHNJjCs8Ug6+Hao3w/iIrLLs4kqiiIsex/xBvNUfeo58Nm4BJ4NhV+FQMvCG1+/2qkT+x96iLTu3et3IBfVpUsXkpOTbbKvwDrWH7j99tsrqoQOHTr0hmsAcQ36VxO7MJSX45+XR2BWFoGZmTTJyCAwM5Om6ekEpaTQPCXlhhG86kyYy3Cv7Acr+8MJ2xR/BMzN1X91EJ49AoHVwijx8+Pk7bcTM306BWo+WkXlhuwiYjk/Pz8mT55MREQE/v7+Flf41EifBby8ODNuHOeHDmXYpk0M2rkT7/KqxUP8ys2JxeNR5rXfb42rX6EvgCSfLJIKNrKuYCOdjS0Z3HQMwwNG0NGno1sl4VfLrnK06ChRBeEklJ3j/7d333FNnfsfwD9J2HvvDSoCIiIgIipatXrds64qttbaYW9721/nbatdtrXzttbWah2trVfrXtU6qHvvrbhwAcoGASH5/UE5lzCTkOQk4fN+vfIyz8lzzvmSxCTf8yyFBHXHP2jAsqJq/OVru+ufLO2hhQWODBiAU716QdGC/x9ERkbi9OnTKClpYHFgFYWGhtYZmqEqKysrdOvWrVnnJ/Ex6aNmSf7lF7Q1M4O0shIWDx7AsqQEliUlMC8ra3rneuRYA1tDgM2hwJZQ4KajduP1LQBe3gs8dRSwqzXtc7GTE850746z3bu3qNk4Y2NjcfToUbHDIDJ5rVq1QqtWrdTaR4zxPMbqobU1Dg4fjvPJyUhcsQJBJ07UqWP7EHh9N/DCAWB+B2BWFyBDC98zGdL7yCjeiA3FG+GisEdbm3aItIxCuGU4bKXG9X1SrijHxbKLOFd+DudKz+JW5e3/PaiFZM++DJh6uKorp09h/XUuJSTg4LBhKOaFV5ibm2PEiBG4du0adtYzhrUpERER8PHxQXALbSml/2HSR83inZ4O32bsf8se2BMA7PUH9vgDR701m2q7Ka3vAa/tqZrS26LW7NG3W7XCmR49cC0mpkVeTQwPD2920mdKV7WJDAmTPvUVeHpiy7PPwjM9HQkrV8L7ct3pH20eVrX8PX0EWNIO+DgZuOimnfPnSAqx58Fe7HmwF1KFBP5mvgixbIVQi1CEWYTBWWZYiUyRvAhXy6/iysMrSC9PR3p5OipQ0fSOavIsAv65H3jmMODUwFri2QEB2PvYY8jkmDElVlZWCA8P1yjpCwoKUrk7OZk2Jn2kF+UyIN0ZOOlZ1WXzpCdw3Es7V1gb0+NqVRfOQRcAWY3hYRXm5rjUqRPOpKQgp5F15FoCKysrJCcnY/fu3Q3WqW9sXVN0NaZPV+ciMkTNSfpGjBiB33//XYvRGJfM0FCse+UV+J8+jYRVq+D693IxNVlUApOOAxNOABtbAf/ppPlSD/WRSxS4XnkT10tuYkfJDgCAs9QJfub+8DPzg6+5L/zM/OBm5gZziW67z8sVctyvvI9bFbdw++Ft3K64jRsPbyCzsp61ibSobXZVsjfxRN2x89Ue2Nvj4JAhuJiUBAUvdKitXbt2ddavJaqNSR81yw0HAJbAA/Oqrpn3bKpu2TZVCd1VJ+Cqc1WLni5a8OpjU171Bf78QSAyW/mxzOBgXEhKQnp8PGcAIyKD59WMSaTsuIYZIJEgo1073IyMRNjBg+i4bl29E4bJFMDAi1W3s+7AtwnA4vZAsQ5WZ8iV5yG3LA+nyv73I10CCZykTnAzc4ObzA1OMifYS+1hL7WHndQONhIbWEgsYC4xh5nEDGYwgwIKVKISlYpKVKISZYoyFMuLhVuhvBA5lTnIqczB/cr7yKnM0UkLXn1kcmDIeeC5g0DKtYZ7hT60sMCpRx7BiUcf5XdyM8THx0MmkyErKwu3b99uegdqkZj0UbP8YzwALU6w0hwxd6pmaZt4QrnrSImDAy4mJuJiUhLyvL1Fi89Q6aqVjK1vZGxcXFyEGerE0qlTJxw4cABA1eQvkZGRKu2nqxl0TYVCKsWlxERcjo9H2KFD6LBxI5wy62/hisiuWuT9o21Vs0UvjAGO6HhyTgUUyJXnIrc8F5dwSbcn0yG//KqW0ylHAL+ChuvJpVKc69oVR/v3xwNHHXf5aQHMzMyQkJCA0tJSLF68WOxwyEAx6SOj5lZcNU4v9TjQvsb3d6mtLa526IArHTvidps2LXKsnikICgrCrl27hDJbLkiXpFIpunTpIrznysvLm9hD+9q3bw87OzsUFBSgVatWnDFXyxR/L8VzOSEBIUeOoMPGjXBpoGXEqbSqx8jzB6uGJCyMqUoCmzvrp6mxLQeGn63qYZNyTXkoRX0ux8fj8KBBKPAwkCvGJoQXeqgxTPrI6DiWVo3RG3EW6Hv5fxOzMNETj66+aKytrZGQkIBDhw7B3NwcycnJOjkPUbXQ0FCEhlYN6lq6dCkKChpprtBhDNrAH4ANU0ilSI+PR3rHjgg6fhzRW7fCKz29wfrRmcAXm4GPt1bNLP17BLCmDZDXQnskWlQAva4Ao84Aw8/VnQ27NrlEgvT4eBzv1w+5Pi1jTUNDwc8Bqsakj4yCa0nV+IDhZ4FHrv4v0bvn74+MqCjciIpCVnAwEz0NaTJRS1O0tXhrTEyMsCi8VCrFjRs3tHJcIiJIpbgWG4trsbFwv3oV7bZtQ8iRI5DK5fVWt6gEBlysupXLgG3BVQng2jbAPRNvAbQtB/5xCRh2rupfBxVWZpJLpbjYuTOO9+3Llj2R6OL7nYwTkz4ySDI50DkDeDQdePQyEHunqstIsaMjbsS2xq3wcGRERnLxdC3Q1lVAGxsbpcVjQ0JCtHJcgAtUE5HuZQcHY/vkyTgwbBiiduxAm927YdXIgtgWlUC/y1U3uQQ45gX8EVZ12+cPVJrAJJTt7wK904E+6UDyDcBaxXlgyq2scKFLF5x65BEUubrqNkgiUgmTPjIIVg+B+NtAUkbVrfs1wLEMKHR1xd2wMOx+pDXutGpVdaWQXRUMUmxsLPbs2QOFQoF27drBwcFBJ+dhVxXSFysrK1G6d2qLRCKBu7s7srOzm65MgmIXFxwYPhyHBw5E8LFjCN+9Gz4XLza6j1QBdLxTdXtrF5BnBewOqFp/dk8AcMgHKDXw4ZkyeVWSl3gT6JIBPHIF8CxW7xj57u443bMnLiYl4aGVlW4CJbXwO5OqMekjvbMvA9plVo2RaJcFdLwNdLgLlDs4IzswEPfCA7GnTwDuBQai1N5e7HBJRREREQgMDERlZaXOEj6AXVVIf5KSkrB69Wqh3KFDB/GCAdC5c2fs27dPKLdu3brR+hKJBF26dMHatWshb6C7IjWs0sIClzt1wuVOneCQmYnw3bvRev9+2KhwIcCp9H/dQIGqrqBHvavWpz3pCZz4e73aIksd/xENsKyomqU0Kqvq1ukmEHcbsH2o/rHkEgluRkbibLduuNGuHcB19kTD70dqDJM+0jrnB4BbSdUtMA8IzgOCc6v+9S+xgqvMBYXuHsjz8kJepBduP+KFs15eXKNHJNr8krC1NfFBLdSieHh4ICkpCRcvXoSLiwvat28vajxt2rTBlStXkJmZCQcHB8TGxja5j4eHB4YNG4a7d+9i9+7deojSNBV4euLg8OE4NGQIfC5cQNihQwg6dgyWDx6otL9FZVULWuLN/22TS4AbjsAV56o1ba84V90yHKvWus22BXI1/Fq0KwNcHlS11AXmAYH5QFBe1f3we0BIbtOzbDYl38MDF5KScDExkUMtiIwAkz5qlh/S3NDK2gpmMIOtwhLW5g6QW9uizMam6mZni2I/JxS5uOCGkxOusLsHNVN9rYhSXlkmHYmKikJUVJTYYQAALCwsMHDgQDx48ACWlpYqT5bk4uICFxcXHDlyBA9UTFKofgqZDLciInArIgK7xo6F/5kzCD18GP6nT6ucAFaTKqoSsaC8hutUSIH71kCRBVBqpnyTKQDzyqqE0lxe1Xrn8gBwLv3fZGfaVuLggKsdOiA9Ph53w8I43MLAsCsnNYZJHzXL7ZHPAZx+2WC0bt0aF5sYe2LsnJyc4Ovri1u3bgGoav3gRC/UUkil0npb1Lk4u/7Jzc1xPSYG12NiIKmshNflywg4dQqBJ082uPC7uszkVa116o6t06ZiR0dc+3s5pLthYVDwIpvB0lbPHTc3N60chwwLkz4iE+Lt7Y2goCBs2bJF5X2MsZWsb9++uHz5MmQymdbWNCMi0pRCJsOdNm1wp00bHBgxAvbZ2fC5cAE+Fy/C++JF2OXmih2iyiplMtwNC8PNyEhkREYix9eXLXomLjY2FkePHgUAeHp6wsvLS+SISBeY9BGZEIVCoVarV3R0NCQSidEN/pbJZGjTpo3YYRAZNLb0iafQ3R0X3N1xITkZUChgf+8evC9ehPv163C7cQOuN2/C7KEGs6boQKmNDbJCQpAZElL1b3AwKjgUo0WJi4uDl5cXSktLERwcLHY4pCNM+ohMjKo/9Pr37w9fX18dR0NE1MJJJCh0d0ehuzsudulStamyEk5378ItIwOOmZlVt6wsOGZlwbxMhVXPNVBhbo4Cd3fkensj18cHOT4+yPX1Rb67O2fcJPj5+YkdAukYkz6iFqhHjx5M+IhMCFv1jItCJkOury9ya38OKxSwKiyETX5+1a2gADb5+bAoKYF5eTnMyspgXlYGs/LyquoSiTDGrtLcHOXW1iiztka5tTXKbWxQ7FQ1kVqRiwvKbG3ZTZOoBWPSR2TA+vXrh02bNqlcv6lumklJSXB2dmbCR2RiPDw8xA6BtEEiQamDA0odHJDj7y92NERkQtieT2TAHB0d1arfVNIXFRXFhI/IBDk4OCgt1p6YmChiNEQkBnNz8zrb7O3tRYiEDBFb+oiIiLREzG6WKSkpiIiIgLm5OZy5WDZRiyOTyRAeHo7z588DAAICAupd25ZaJiZ9REREGvL390dGRoZQbteunYjRNN7Nk+P+iExf165d4efnB7lcjpCQELHDIQPC7p1EWqRud8ymqLuUgrEtvUBk7Dp16gQXFxdYWloiMTGx3oXTDUW3bt3EDoGIdEwikSAkJARhYWFGuQ4v6Q5b+oi0SNsfsNbW1lo9HhFpl4uLC0aMGCF2GCrhlOxERC0XLwEYoczMTGzYsAEzZszAwIED4e3tDYlEItxSU1PFDrHF8vb21urxLCws1KrPlj4iaohUKkXnzp1Vrq/u5w8RERkutvQZkcWLF+Ott97CzZs3xQ6FGuDk5CR2CDoZt8Nkksg08P8ykXji4+Nx6NAhjfcPCAjAjRs3lMpEqmJLnxG5cuUKEz4D5uXlJXYIREREZKCaO5Nmp06dhBZ4CwsLdOrUSRthUQvBlj4jFhwcjLi4OMTFxeG1114TOxwyALq6is9Z/4hMV1BQEK5duyZ2GETUBGdnZ4wYMQL37t2Dm5sb7OzsxA6JjAhb+oxIhw4d8NFHH2HLli3IycnBlStXsGzZMrz66qtih0Y6FB4erlZ9TWYQbSpZ5AxgRKYrNDRU433NzHjtmKi5kpKSVK5rZ2eHoKAgJnykNn5aG5HBgwdj8ODBYodBDdBVa1hsbKyw0GpTFAoF7OzsEBISgitXrmgtBrb0EZkumUym8b5+fn5sJSRqpqioKLi6umLdunVih0ImjJfviQycnZ2d2j/KHnnkEa3GwKSPiIioeRrrVePt7d3sMX9EjWHSR2QE1F2vTyKRaHViGXbvJDIN9f3o5IyeRESmj7/kiEwIJ3IhIiIiotqY9BFpiS4TI1WTOSZ9RKQutvQREZk+Jn1EWqJQKEz2xxOTPqKWh//viYhMB2fvpGbJysrSeF87OzuTG7TcVNJnaWkJZ2dn3L17V/RY1MExfUSmQR8XpoYOHYpVq1bp/DymytnZGbm5uWKHQTri5OSEvLw8pTKRPjDpo2aZM2eOxvsOGDAAAwcO1GI0hm/ixIk4d+6czpI+du8kInVp+3PD3d1dq8cjMlYODg4oKCgAUPU9GhAQADs7O6xdu1ao07VrV7HCoxaGSZ+abt68qbNjOzo6wt7eXmfHJ926c+cOAgICdHJsXV+db+r4TPqITJepdksnakj//v2xYcMGnZ+nS5cu2L59Ox4+fIjExERYWFjAy8sLAwcOxO3bt+Hj4wNvb2+dx0EEMOlTm7+/v86OPXPmTLz++us6Oz7pntg/nnR1fktLS50cl4gMl766ohOZIldXV/j7+2PixIl1HvP29q432RP7NwSZNiZ91CzPPPMMPDw8NNrXzs5Oy9G0LKNGjcKyZcsafDwsLAyZmZlCWdPEzcPDg68VkQmrryVfIpGgY8eOemkNITI1Dg4O6NKli9hhEClh0kfN4uHhAR8fH7HDMBj6vErX1ODvNm3a4MyZM8jLy4NUKkWPHj3UOn779u2hUCgQExOjeZBEZFAcHR3rbAsICICZmRkqKiqEbYMGDVLpQhFbJsgY6XrIwujRozXaj0MpSJeY9KmJX3DUGLHfHzXPb2ZmhmHDhuHu3buwt7ev98deYzp16qTt8IhIZEFBQbCzs0NRUREAICIiAubm5khOTsb+/fthbm6OlJQUeHp6Ks0wSERExo1JH5ER0DSZNDMzg5+fn5ajISJjJZFIMHToUJw9exZWVlZo27YtAKB169Zo3bq1yNERNa32kgdEpBouvkVkQjRNDk1tvUQiapi1tTU6duyIyMhIrsFJRqddu3Zih0BklPhpT6RFYnfv1FRgYKDSciHh4eEiRkNERERE2sTunURaZKxJn0QiwZAhQ3D27FlYWloiIiJC7JCIiIjqsLa2FjsEIqPEpI/ICKiaTDYn6azu8kVERGSIJBIJAgICYG1tjQcPHjTrOI2xsrJCaWmpxscnMkTs3kmkRcba0kdERGToevXqBalUioEDB+r0PMOHD9fp8YnEwJY+IxMWFtZknZUrV2L37t11tnfq1AlLlizRRVj0N7GTPrHPT0QtCz9zSF/i4+MRFBQEoGoGz8jISJw5c0Yn57K1tdXJcYnExKTPyKSnpzdZp7CwEIWFhXW2c+p+IiIyRjXXFqSWJyIiAh06dFDaxoXMidTDpI9Ii2rOgKkObf2g4VV3ItKnmJgY3LhxQyj7+Pjo5Dxjx47FvXv3UFpaCm9vb/z2228oKSnRybmIiEwRx/QZGYVCofEtLS1N7PBNXuvWrWFpaan2fl27dtVBNEREuuXl5SUs6m5jY4NOnTqptX9SUhKio6NVquvm5gY/Pz/IZDIMHjwYUVFRiIuLUztmIrYSUkvElj4iVI0PyMvLa/ZxZDIZhgwZgoMHD+Lq1asq7+fr69vo42zBIyJ9U/WHcUpKCpKSkiCTySCTydQ6R1RUFLKzs3Hy5Em19rO3t0dSUhIA4PDhw2rtS0TUErGljwyeo6Ojzs+hzat+jo6O6NKliyjnZ3JIRNqizueJhYWF2glfNTMzXn8mItI1Jn1k8Nh9h4iIqOXSx8VfbXFzcxM7BKJ6Mekjg6fp5CimRB+LsxOpSiKRCLeFCxeKHQ7pCMc9qc/b21vsEEyOhYUF2rZtK3YYKlO3pw+RvjDpI4Lh/7hR9Sqnubm5jiNpnoULFyolDA3dLC0t4e7ujg4dOmDSpElYuXIlysrKxA6fiFQUHBwsdgh6FxgYiAEDBogdhskZOnSo2l2AVVnTWBuioqKUynFxcfD09NTLuYnUxaSPDJ5UanxvU20nkbWvHCYmJgIAQkJClM5Z+wvIWJWXl+PevXs4fvw4Fi5ciOHDh6N169ZYt26d2KERkQpiY2PFDkHvXF1dIZFIEB8fL3YoJiMhIUGjrp1NfQdr6zs6OjoaLi4uAKrWQm7Xrp1WjkukCxw9TQbH0dER+fn5AABbW1u4urrq/Jyenp7IycnR+Xka0tQXkIeHB1JSUpCeng43NzchuUtMTERlZSWKi4sRExMDKysrfYSrNR4eHvV23y0pKcG9e/fw8OFDYduNGzcwePBgzJ07F5MnT9ZnmESkJnU+t02lC7+dnR2Aqh//hw4dEjmalq05SV1AQIDKde3s7DBs2DBUVlbCzMzM4HsNUcvGpI8MTs+ePbFnzx4oFAp07txZLx+isbGxuHjxIiorK7VyPF3E3Lp1a2E9rGp2dnZ49NFHtX4uffnkk0+Qmppa72MPHz7EgQMHMGvWLKxduxZA1ZjFadOmISUlRW/dd6gujh0lbTIzM0N0dHSDyzZ07txZzxFpplWrVmKHQM0klUrVXmtSKpUaZY8kann4LiWD4+7ujiFDhmDo0KHw8vLSyzltbW0xdOhQxMTE6OV81DRzc3MkJydjzZo1SolhaWkpfvzxR/ECIyKt69ChQ51tUVFRGDJkiNF0mdN0yQrSv/ouzLZt2xZDhw6Fs7OzCBFVqW4tJtIFtvQR/c3FxQUJCQk4e/YsysvLxQ6Havjggw+waNEioYVpz549Ku9bXFyMkydP4uLFi7h37x5KS0vh5OQEb29vdO7c2aBn21MoFDh69CjOnj2LrKwsKBQKeHp6IjY2FpGRkRodMz8/H0eOHMGFCxeQn58PuVwOGxsbeHt7IywsDO3atYOFhYWW/xKgsrISZ86cwblz53Dnzh0UFxfDzs4Obm5u6NixI8LDw7V2ruLiYuzYsQM3btxAQUEB3N3dkZCQYDTJA1UJCAiAh4eH2GGQEWqqt42bmxssLS2FCcJsbGyQnJwsevfMzp07Y8WKFUKZS1aRNjHpIzIQiYmJ2L9/v1Du3r27iNEYFl9fX7i7uyMrKwsAhH8bkpGRgaVLl2LNmjU4ePCg0tjA2uLj4/HWW29h8ODBDdbJz8+Hj48PSkpKAACvvvoqPvnkE5Xjz8/Ph7e3Nx48eKDS/oWFhfjkk08wb948ZGZm1lunVatWmDFjBsaMGaNSDFeuXMFbb72FVatWNToTqqWlJbp374633noL3bp1q7dOzR9GCxYsaLCLbmFhIVauXIkVK1bgr7/+QkFBQYPn9ff3x7/+9S88++yzKiWdKSkp+OuvvwAAEydOxMKFC1FcXIw33ngDCxYsQFFRUZ192rVrh2+//bbBv4tIG9j9WXs0TcKa2k8qlaJLly7YvXs3JBKJQSR8QNVY2B49euDixYtwdXVFdHS02CGRCWH3TiI1qbJeUH1fHk3NZtemTRsEBATAzMwMISEhSjNzEpTGW9ra2jZa9+2338arr76KPXv2NJrwAcChQ4cwZMgQPPPMMw2O6XR0dMSoUaOE8qJFi1BRUaFy7EuWLBESPgCNTkSzf/9+tGrVCh9++GGDCR8AXLp0CWPHjsWoUaOa/Bu3b9+Odu3aYenSpU0ufVFWVoYtW7Zgy5YtjdZTxYoVK5Camop169Y1mvABVYn6Sy+9hB49eiA7O1vtc924cQPx8fH45ptv6k34AODUqVPo1asXVq9erfbxici0hIWFITU1FRMnTkRQUJDY4QhatWqF/v37IzExUe2lKogaw3cTGYXO//0vXG/e1N0Jfv1VuNv37l3IG7lS6+HhgVb37kEulzd4HHO5HANq/WB3cXEBLC0RUFKCAX/PTlpzP0sAfWtu++ADNf8IDcXEAF99pZ9zaejSpUu4f/++UG7fvr3K+wYHByMpKQlRUVHClOq3b9/Gzp07sX37duGq/Pfffw8PDw/MmDGj3uM8/fTTwkLkmZmZWL9+PYYMGaJSDPPmzRPud+/evcEJH3bs2IEBAwYILYpA1cWAAQMGIDQ0FGZmZrhw4QKWLVuGjIwMAMDy5cshkUjw3//+t95jZmVlYdiwYUrHTEpKQo8ePRAQEAALCwsUFhbi+vXrOHbsGHbv3q2T7s0uLi5ITk5Ghw4d4OHhAWtra9y/fx+HDx/G2rVrhaR47969GDVqFLZt26by5AglJSUYPHgwzp07BwsLCwwYMABJSUlwcXHB3bt3sWrVKmE2xYcPHyI1NRXnzp0z6K69RM0RFRWF06dPix2GQWrTpo3YIRCJgkkfGQXXmzfhc/Gi7k5Q49hNTh1z8WLDdf4+jhSATwNVbP++NXR+UlZRUYGXXnpJaduECRMa3cfc3Bypqal49tlnG10z68SJE3jsscdw4cIFAMCHH36Ixx9/vN6ZQRMTE5VmGJw/f75KSd/x48dx7NgxodxQK19WVhbGjBkjJGdWVlaYPXs2Jk2aVKfl+P3338dLL72EH374AQCwbNkyDBgwAI8//nid43733XfCEihWVlZYtWoV+vbtW6detYKCAixdulRrV5i7d++O//u//0OfPn1gbm5eb53s7Gw8+eSTwjqMaWlpWLRoESZNmqTSOVasWAG5XI6YmBgsX768zuv3xhtvYPr06UJCn5+fjy+//BKffvppM/4y08cZCY1XbGwsrl+/jsLCQrFDEUVjXTWTkpL0GAmR4eAnOhEZnNLSUqSnp2Px4sVISEjAhg0bhMeeeuop9OzZs9H9v/nmGyxYsKDJRZLbt2+PrVu3CrO1VVZW4rvvvmuw/pQpU4T7mzZtwu3bt5v8W2rONOrs7IwRI0bUW+/1118XunNKpVKsWrUKTzzxRL0/XqytrfH9999j+PDhwra333673tbn7du3C/enTp3aaMIHAA4ODpgyZQqeeOKJxv8wFYwePRppaWno379/gwkfUDVj74oVK5R+jH3zzTcqn0cul8Pf3x/bt29vcCmP6dOnKx3/1xqt+1Q/e3t7ODg4iHZ+QxhjRcapsfcO31fUUjHpI4Pi7u4udgikR9WtWLVv1tbWCAsLw8SJE4VWMi8vL3z++ef4/vvvmzyuOovU+/n5Ydq0aUJ506ZNDdYdP348bGxsAFQliNXdPRvy4MEDpeRi3Lhx9cZ29+5dLFmyRChPnjy5yeQMAP7zn/8IydT169excePGeo9drfY6j7qmzutgbm6OD2p0aT527FijYxpr++STT5qcar1m0n7r1i3cunVL5eO3VD179oSHhwc8PDz03h2WE6IQEzQi7WHSRwaF3S6oPm3atMHMmTPx/PPP66TLWa9evYT7Fy5caHDSEUdHRzz22GNC+aeffmr0h+nvv/+OvLw8ofzUU081WK/mOLra3Vkb4uPjoxT7n3/+WadOdZIKVI2XM2Rdu3aFpaWlUK4eh9cUOzu7BltQa0pMTFQqnzt3Tr0AWyAPDw8MGTIEQ4YMgaenp9jhmLw2bdow0dExPr/UUjHpI4PCHxUti4eHB0JDQ+vcgoKC4OTkJNS7cOECJk2ahLCwMGzbtk3rcdRswVAoFLhz506DdWu2FqWnpyMtLa3BuvPnzxfux8fHNzj99q5du4T7ISEhaq1Zl5CQINw/cOBAncdrzhr7yy+/4P3330dxcbHKx9cnMzMzuLm5CWVVW+I6duzYaPfRar6+vkrlmgk5NU3fP5bF+nHe3PGsjo6OGu0XGRmJzp07s4VTC2p+f9TGpI9aKiZ9RCSaTz75BJcvX65zu3r1KnJzc3Hr1i18++23wsWAjIwM9O3bV5jwoynFxcVYunQpUlNT0bFjR3h6esLa2rpOd9Las2k2lgxUT+hSrebMnDVdvnwZO3fuFMoNtfIBVRPKVFN30fWaF0pu1jPD7ZQpU5R+5Lzzzjvw8vLCqFGj8MMPP+Ds2bM6/5Epl8uxfft2vPDCC+jWrRt8fX1hb28PqVRa57WomeipmpR5eTU5/RKAqhbBmgw1+SVxDRs2rFldoS0tLdWaYbhaly5dVFqjkprm5eXFZY+IauHsnURksHx8fPDcc89h2LBh6Ny5M65fv46Kigqkpqbi/PnzjY4BnTt3Lt544w3k5OSofd7S0tJGH58yZQqef/55AMDKlSuRm5tbZzzZvHnzhGTK1tYWo0ePbvB4NZejWLduncZXonNzc+tsS0xMxMyZM/H6668L24qKirB8+XIsX74cQNVY2p49e2L06NFNTrqirp07d+KZZ57B2bNn1d63qdehmjpjB2tiiwrVx8nJCSkpKbjYjFmVO3XqhKCgIKxZs0aLkZEqPDw84ObmhkceeQRyuRzXrl1TepwtfdRSsaWPiAyet7c3Zs6cKZRzcnIwZ86cBuv/3//9H55++ul6Ez4nJyf4+voiJCRE6E4aGBioVKepZKDmhC6lpaVKk7AAVctMLFq0SCiPHj0a9vb2DR5PW90Ma67FV9Nrr72GLVu2KHUFrSk7Oxv//e9/MXToUISHh9c7IYwmVq9ejV69etWb8NnY2MDb2xvBwcFKXXtrdq1jUkZi6ty5c7P2d3Fx0Wg/JiWaS0pKQv/+/QFUPY8BAQF16vD5pZaKLX1EZBQGDhwImUyGyspKAMCGDRvwzjvv1Kn3559/4rPPPhPKbm5ueOGFF9C3b19ERUXB2tq6zj5Xr15VqytQ9YQuCxYsAFA1dq+65a86tpqzZja0Nl81GxsbYfIYZ2dnjX8sNqZ3797o3bs3zpw5gz/++AM7d+7E3r17ce/ePaV6V65cwYABAzBv3rxmLduQnZ2NSZMm4eHDhwCqxklNnjwZI0aMQGxsbIMzbQYGBuLGjRsan5dIW5o7aZSmyYU2Lna01MQmKipK7BCIDBaTPiIyCnZ2dnB1dUVWVhYACAuq1/bFF18I9z09PXH48GH4+fk1emxNWtqmTJkiJH3Hjx/HkSNH0LFjRwDK4/yioqLqzBpZm5ubm5D0jRw5Ulh0XRciIyMRGRmJl19+GQqFAqdOncKaNWvw008/Cd2gFAoFpk2bhgEDBsDDw0Oj8/z000/C8yqVSrF+/Xo8+uijTe7HyVWISBWqJLbsLUD0P+zeSURGo+YX+IMHD+o8LpfLsWPHDqH84osvNpnwAVWtW+qqPaFL9Uydt2/fVlrrr6lWPgBKs3WeOXNG7Vg0JZFIEB0djbfffhsXLlxQWo6ipKQEq1at0vjYNWdZ7d27t0oJ37179xpcLoOopWiprXTqkslkTdZh0kf0P2zpI4ORnJzc4GP3Vfjh3hw+Nabsv5uZCblc3mjdSrm83oWjq4+jUChwp0b3PgBwcXaGlZUViktKkJ+f3+D59S4mRrxzq6GwsFBpwpP6JnG5f/8+ysrKhLKqM+hpugxEzQldfv31V3z++edYuHCh0AXV0tISjz/+eJPH6dGjhzCObv/+/bh3757S0gX6YGFhgTlz5mDZsmXCDyVNJl+pVnMWTlVfh+3bt2t8PjJu+vhxHhYWhsuXL+v8PM3FREU1UVFROH78uFCuPTabiJQx6SODEB8fj4iIiAYf31ejBUIXaq699ufPP9fbilSzbllJCdb/8kuDx5FXVmJ9jTXagKrWjuDgYNw4d05pXbba56f6rVmzRikZry+RqP1jSZXZH+/fv4+ff/5Zo5jGjx+PV199FSV/J/LLly/HTz/9JDw+bNgwlcbnjRgxAm+88QYqKipQWVmJWbNm4ZNPPtEopuZwdnaGu7u70IW2ejyeJmq+FqrOwvn1119rfD7SPWNvgYqJiVFK+nr16oWtW7eKGJFumULy2Nh7zsbGBl27dsWxY8dgY2ODTp061aljCs8BkbaweycZBE3HDRkqY/9xZGhu3bqFN998U2nb8OHD69RzdXUVZtUEgPXr1zd6XLlcjqeeegpFRUUaxVU9oUu1V199Fenp6UK5sbX5agoKCsKYMWOE8hdffIEtW7aoFYtCoUB5eXmd7bWnK2/MrVu3lCZ2CQoKUiuGmmrOmrdp0yah9bMhX331Ffbu3avx+ci46eMz087ODk8++STGjh2LyZMnG+w6bvz+UF3btm0xduxYDBkypNEF2YmISR9RHfzCNRy3b9/Gt99+i9jYWGRkZAjbo6KiMGHChDr1ZTIZevXqJZQXLlyIxYsX13vs+/fv47HHHsOqVauaNUtfzVbaml1+Q0NDkZKSovJxPv30U3j/3c23oqICAwcOxOeff95kK9mdO3fwzTffIDw8HEePHq3zeKtWrTB+/Hjs2LGj0W7LOTk5GD9+vFBHIpFg8ODBKsdfW80xfJcuXcK0adNQUVFRp97Dhw/x4Ycf4l//+heA5s+YSMZJXy0yMpkMdnZ2LeJ9xu8y1cb9EbUU7N5JpAF+mWrHa6+9hg8++KDO9srKSuTl5dU7k6Ofnx/WrFmjtJ5bTa+//jrWrVsHhUIBuVyOiRMnYv78+ejXrx+8vLxQUFCAI0eOYM2aNcLYyvfffx9vvfWWRn9D9YQuJ0+eVNo+efJktd4nXl5eWLFiBfr27YuCggKUl5fjlVdewccff4xHH30UMTExcHFxEZ6bixcv4ujRozh27FijP5grKiqwZMkSLFmyBJ6enkhKSkJMTAw8PDxgbW2NnJwcHD9+HKtXr1aaRGXq1Klo06aN+k9Ijb9/5syZyM7OBgDMmTMHW7duxciRIxEaGoqysjJcvHgRq1atwvXr1wFUJdCbN28WykRiEqtroLaWbGDXxqqLb3v27BF6GniLOX6eSGRM+oj0hF/AdWVlZQnjx5oikUgwatQofP311/D09GywXufOnTFr1iy88sorwradO3di586ddepKpVK8//77GDt2rMZJH6A8oQtQtSZdamqq2sfp3Lkz9u/fjyFDhuDixYsAqma0rE7amtLUVe3MzEysWrWqyVk5x40b1+zxdfb29vj999/Rr18/YdH4S5cu4aOPPqq3/qBBg/DNN9+gdevWzTovkTGKjIwUOwQl9vb2KCwsFDuMZjM3N8cjjzyCQ4cOwdLSstEJ44hMnen3byCTYGhfiPWpuTQAWwKbRyqVwsHBAUFBQejfvz8++OADXL58GUuXLm004av28ssvY/Xq1Y0mEImJidi2bVudsYKaGD9+vFLCNWDAAHh5eWl0rLZt2+L06dP4/vvvG53cqFpERARefvllHDt2DPHx8XUeX7JkCcaMGaPS85aYmIiVK1fil19+gbm5uUbx19StWzccPHgQPXr0aLBOaGgo5syZgzVr1sDCwqLZ5yQyFOp8D7Rq1Uqj/bR1/tq6d++ulRgMQVBQEEaOHIlBgwbB2dlZ7HCIRMOWPjIKbdu21ev6ZZrw8fFRqV59Sw20FKmpqRq1gGli8ODBGDhwII4ePYojR47g/v37sLOzg7e3N+Li4hAcHCzUDQoKalZL7Llz55QmKlFlbb7GmJub4+mnn8bTTz+NW7duYf/+/cjMzERubi4sLCzg7OyM0NBQREVFNfl+Gjt2LMaOHQsAuHr1Ks6dO4fr168jPz8flZWVcHBwQGBgIOLi4lR+D6vzXEVGRmL79u1IT0/Hnj17cOfOHchkMnh7eyM8PFxY0L6aqhPPpKWlqRxDTWxxb7kM+WKcLsaeafpej4qKUvmzQNcM+TUjMjZM+sgoNDR+Sxe08SXT2DHc3Nzg5+eHmzdvAgDi4uKafT6qn1QqRVxcnM6f4/k1lufw8/ND3759tXZsX1/femcq1URwcLBSsqtPoaGhCA0NFeXcRIbOlJMbR0dH2NvbC995RCQOJn1kFAztC1GVeMzMzJRmK6x55bRv377IyMiAhYUFB5Ybuby8PPz2229CefLkyZwxjojob46Ojujbty/mzp0rdihELRrH9JFR0GfSV3N9seZISUmBmZkZJBIJEhISYGVlJTwmlUoRGBjIhM8EfP755yguLgZQ1S1T1bX5iEi/DO3iIRGRPrGlj4yCPtdUio2NxeXLl/Hw4cNmHSckJAQBAQGQy+WcoMJE/frrr/j000+F8qRJkwxmLAyRManvM9LV1VWESIiITBNb+sgo6PMKra2tLYYPH46kpCS19qsvRjMzMyZ8JmTt2rWIiYlBdHQ0nJ2dMW7cOJSXlwMAnJ2dMWPGDJEjJNIdXX4OS6VSJCUlCefo0KGDUu8I0h9tT3ZUfdHW0tJSq8clIvWwpY+Mgr675Tg4OCAqKgp79+7V63nJsOXk5ODEiRN1tltYWOCXX37ReJkGIqqaNbJ6Jl17e3uxwyEtqU76evTogT/++EPkaIhaLrb0kVHgWAwyNDKZDD4+Phg3bhwOHz6Mf/zjH2KHRGRU/P3962yzs7Mz+IQvISFB68c05e+46r/N398fHTt2hJubm0prkBKRdrGlj4yCKX8hkvHQ5zqDRKbO2tpa7BA0EhMTg4sXLyIvL08rx5PJZHB0dNTKsaoZ0ndmdUufRCJBx44dhbU5z549K2ZYRC0OW/rIKOhzIhdVGNIXKhGRMeLnaFXC17VrV4P7jtMmvs5EhoEtfWQU+KVBRET6pO0JTWpLTU2FmZmZRglfYGAgrl+/roOotK85CS2/+4m0x3QvLZFJ0cYHPxfMJiIyHPr+QW9oCYRMJhOthU+f5zXlVkwiY8L/iWQUtPGl8eSTT2ohEiIiMiQhISFih2B0EhMTG3xM2y2chpZsE7VUTPqIiIioSdr+8a6t4/n4+GjlONomk8ng7Owsdhj1MjPT3+geJn1EhoFJH5EG+CVGRERN6dq1a4OPtZTvEXbvJDIM/J9IpCUt5QuciEgbWsJnppeXlyjnNaTnlkkfkWHg/0TSmqSkJKVyfQvvEhERUfOImdQNGTIEgwYNUrm+ISWgRC0Zl2wgrXB3d0dUVBQkEgmuXr0KDw8PeHp6IiMjQ+zQiIjIADEZ0Jyul5NojKurq1qzYXPJBiLDwKSPmqVdu3YIDg5GVFQUACAyMhKRkZEAoJeETyqVQi6X6/w8RERk3NRNPsRMrEwJEzciw8DundQs4eHhiI2NhYWFhSjnHzZsmCjnJSKi5tFnMpCcnMzkQyQc00dkGPg/kYxGWFiYUnnQoEFwcXERKRoiIjIGrVu3RkREhNr7mXKS2Jy/Td19mfQRGQb+TySj0aFDBzg5OQGoamH09PQULRZT/jFARKQPoaGhejmPjY2NRvvpununPhOv2vTZdZXfl0SGgWP6yGg4Oztj5MiRAPglQkRkjMzMzFBRUYGQkBC9Xbjj2Dz1aPv5YksfkWFg0kdGpbnJXnR0NE6ePKmlaIiISB1jxoxBWVmZ0GtDH1xdXfV2Ln1pbmKmzwuntra2ejsXETWMl1+oRYmOjhY7BCKiFsva2lqvCR8AhISE6PV8LV1AQIBw38bGBoGBgSJGQ0TV2NJHLYqNjQ1atWqFS5cuCdusrKzUPg67lxJRS2Osn3u66F6ojS6Qxvp8NiUlJQUnT55EeXk5oqOjRR27SET/w6SPWpyEhARkZGSgtLQUEokEPXr0EDskIiIilTWVDImZLJmbmyMhIUErx7Kzs9PKcYiISR+1QLa2thg+fDhu3boFFxcXuLm5iR0SEREZkZbcAqWvhNPBwQF+fn5aORYRMemjFsrW1hatW7cWO4wW4dq1awgODtbZ8TkzH1HLps/PgOrvDVP+3GnO3+bj46O17rSDBw9u0ck1kbZxIhciLeG01EREpi02NlbsEAAYbtLZq1cvrR3L2tpaa8ciIrb0EWkNk776mZubq7QIc05ODnJzc4Wyj48Pv/SJqEn6bA1ycHDQ27mMja2trUYToxGRfjDpI9ISJn318/X1xeXLl5usN336dMyYMUMoL1myBCkpKTqMjIjIOInZ7ZFdLomME3+lEmkJkz4iIv0z1K6OhszQEzdO4EKkfWzpI9JAfV+YTPoMw5kzZ3Dq1CncuXMHZWVliI2NRZ8+fUSNqaioCLt27cLNmzdx79492Nvbw9fXFykpKXB2dhY1NiJVGXqiQP8jkUgaTYYNMVF2c3ODg4MDLCwsEB8fL3Y4RCaHSR+1CHFxcTo/B5M+/UhLS1NaW/Hq1asICgrCihUrMGPGDJw6dUqpfvfu3ZWSvpo/XBcsWIDU1FSNz9mUEydO4O2338bmzZtRXl5e53EzMzP84x//wKxZszibLBk8FxcXsUPQK0NMjEyZi4sLu/QT6RB/pZJJ8/LyQmRkJKKjo3V+LiZ94pk2bRpGjBhRJ+ET0zvvvIPY2FisW7eu3oQPACoqKrB27Vq0a9cOy5Yt03OEROrx9/dXapmOiYkRL5gamtMCWbsboYeHR3PDMRiNPS/aaLX19PRUKuvje5aINMeWPiOVk5ODU6dO4eLFi8jJyQEAODk5ISQkBAkJCXB0dBQ5QsMwaNAgnRy3vivAMplMJ+eixn311Vf49ttvAQAhISEYMmQIwsLCIJFIcPnyZdy+fVvvMT3zzDP4/vvvhbJUKkWfPn3QrVs3eHp6orCwEHv37sXq1atRXl6O8vJyjB07FtbW1hg4cKDe4yVShUQiwZAhQ3Dp0iVYWVkhJCRE7JAANK9FLjExEatXr0ZFRQVkMhmSkpK0GJm4mnpepFIp5HK5xsfv3LkzNm3ahLKyMri6uqJNmzYaH4uIdI9Jn5FQKBTYt28fVqxYgT///BOnT59u8ANdKpWib9++eOWVV5S6pBm70opSpOek19l++2HDP+rPZJ1p1jnrO3b1MYusi1BQUAAAsLCwQJ55HgqyCpp1Pn0KdQmFlZnxT6/99ddfAwBmzJiBN998E2Zm4n6sLVq0SCnha9++PX777Te0bdtWqd4///lPXLhwAQMHDsSlS5dQWVmJyZMn48yZM3Bzc9N32EQqMTc3R0REhNhhaI2LiwtGjBiBu3fvwsPDA05OTmKHpDePPPIItm7dqnHS7OHhgcceewxFRUVwdnbmhU8iA8ekz0g8/vjjWLJkiUp15XI5Nm7ciI0bN+Kpp57C7NmzYW5uruMIdS89Jx1Rc6LU2mfGnBlNV1JTQ8d864e3tH4uXTr9zGlEekSKHYZWvPbaa3jnnXfEDgMFBQX45z//KZTDw8Oxc+fOBtf2atOmDbZt24bo6Gjk5eUhKysLX3/9Nd5//319hUzU4jk4OLTI9feCg4MxdOhQrFy5Umm7OkmglZUV1+YjMhJM+oxEUVGRUtnBwQFJSUlISEiAp6cnLCwscOPGDWzcuBFHjhwR6v3444/Izc3FsmXLOPMamSRPT09Mnz5d7DAAAPPmzUN+fr5Qnj9/fpM/Jv39/fHmm2/i1VdfBVD1f3b69Om8ak5EOsdeBUQtB5M+I9O3b19MnjwZAwcOhIWFRZ3H33vvPaxYsQKTJk1CYWEhAOD333/HTz/9hCeffFLf4RLp3OjRow3mSvOvv/4q3O/UqZPK44MmTJggJH2ZmZk4efIkOnTooJMYiaj5WurMnsHBwWKHQEQa4nSDRiIlJQUHDx7Epk2bMHz48HoTvmrDhw/H77//rrTtww8/1HWIRKIwlIkXioqKcPz4caHcv39/lff19PREYGCgUD5w4IA2QyOiFkgXy8CY0jwBRC0Nkz4j8eKLL6q1WGmfPn2U1ia7evUqzp49q4vQiEQVFhYmdggAgNOnT6OyslIoR0aqN16y5vTnN2/e1FpcRKSZxlrzjGG4RLt27WBra6u14zk4OIg+URYRaY5Jnwnr1auXUjk9ve7Ml0TGzlAmYLh//75Sefjw4ZBIJCrfDh48KOybm5ur7/CJTJKuuiMaevdOiUQCKysrDB8+XO0Fzw39byMizTDpM2F2dnZK5eLiYpEiIdIdQ7nynJeXp7VjlZSUaO1YRC2ZOj1kTJGVlRXH4RERAE7kYtKuXr2qVPby8hIpEiLTZ2Njo1QOCAjQeKkUDw8PbYRE1KK5ubm1qHX3iIgaw6TPhK1atUq4b2FhgdjYWBGjab5Ql1CcfuZ0vY+VPCjBrp27hMXSq40cObJZ51y+fHmdbc09pqEIdQkVOwSjoUrLW+2pz5cuXYrOnTvrKiQiakLtCzFERC0Zkz4TtXLlSly+fFko9+3bVydjn2qeo7Y7d+7g9u3bDT5uZ2enVkxWZlaNLiZuFmWGQ4cOKW1r7uLje8z31NlmKguat1Q2NjZCEqdqN8rMzMwm67Rp00apfObMGSZ9REREZBCY9Jmg+/fv4/nnnxfKUqkUb7/9tk7ONWTIEI33HTBgAAYOHKi9YIhU4OTkJCR7t27dUmmf/fv3N1nHw8MDkZGROHPmDABg3bp1mDx5suaBEhEREWkJJ3IxMZWVlRgzZgzu3LkjbHvhhRcQFxcnYlREhiM8PFy4r8p6eMXFxfV2863P6NGjhfvr168XEkAi0j9jWFZBLHxuiFoetvSpSZfrZzk6OsLe3r5Zx3juuefw559/CuWOHTvi448/bm5oRCajU6dO2L59OwAgLS0Nly9fbnStv9dee03lJRSef/55zJo1CwUFBZDL5RgzZgx27doFR0dHleMrLS2FlZWVyvWJqH5ceqBhfG6IWh4mfWry9/fX2bFnzpyJ119/XeP933rrLfzwww9COSgoCGvXroWlpaU2wqvX6tWrG/zBfOfOHezevbvBfWsvKUGkD2PHjsXMmTMBVLWMjxs3Dn/88QecnZ2V6pWVleHf//43Zs+eDYlEotKPJCcnJ3zzzTeYOHEiAODUqVPo1KkT5s2bh+Tk5Ab3UygUOHz4MBYtWoT9+/fj8OHDzfgLiailq9mSp26rnlTKTmBEpohJn4mYOXMmPvroI6Hs6+uLbdu2wcfHR6fnDQsLQ2Rk/RObODg44MqVKzo9P5G6oqKiMHz4cKxYsQIAcPDgQbRp0waPP/442rZti4cPH+LChQtYsWIFbt68CTMzM7z55pt47733VDr+hAkTcPr0acyaNQsAcOHCBXTt2hUxMTHo2bMnQkJCYGdnh6KiImRnZ+PUqVPYv3+/MOlR7QlhiIi0rWYiGBISovRd3aFDBzFCIiIdY9JnAr788ku8+eabQtnT0xPbtm1DSEiIiFERGa7Zs2fjzJkzOH/+PAAgOzsbX3zxRZ16FhYW+PHHHxEQEKBy0gcAn376KYKCgvDSSy+hvLwcAHD8+HEcP368yX1lMpnK5yGihrVq1UrsEIxCfHw8iouLUVhYiPbt2zc4zITjAImMG9vw1aRQKHR206Rr57fffot//etfQtnNzQ3btm1jawFRIzw9PbFr1y5MnDixwa5MycnJ2LdvHyZMmKDROZ599llcvnwZzz77bJ2uo7VZW1ujV69emD17Nnbt2qXR+Yjofzw8PBAcHCx2GEbB0dERgwcPxvjx49GuXTuxwyEiHWFLnxH74Ycf8MILLwhlFxcXbN26tcHulkSGbPr06Zg+fXqT9VJSUrQyCYGbmxsWLlyIzz77DDt27EBGRgYqKirg5+eH+Ph4pVYCTc/p7++P2bNn45tvvsHRo0dx7tw53Lt3D8XFxbCzs4OnpyfatGmDyMhInY69JWppBg0a1OyxaU1drCEiMiZM+ozUggUL8Mwzzwg/RB0dHbFlyxa0b99e5MiIjIubmxtGjhyp03NIpVLExcVx6RQiPdHGZCQBAQFwcHBAQUEBgKrxwERExopJnxH65ZdfMHnyZCHhc3BwwObNm9GxY0eRIyMiItIvXS0/IJFIMHToUFy4cAFWVlYcI0hERo1Jn5FZtmwZUlNTIZfLAVQte7Bp0yZ06tRJ5MiIiIhMi6WlJaKjo8UOg4io2TiRixFZs2YNxo0bh8rKSgCAra0tNm7ciKSkJJEjIyIiEocxzirp6+srdghqM8bnmYj+h0mfkdi0aRNGjRqFiooKAICNjQ02bNiArl27ihwZERERqSM5OVnsEIiohWH3TiPx/PPPC+t9AVWD1J988km1jvHCCy8ozfZJRERk7HQ1pk9XfHx84OjoKGoMbLUjanmY9BmJ6i6d1YqKilBUVKTWMXJycrQZEhERUYvk5uYmzOpJRGQM2L2TiIiISA0JCQlKrWUtYWy9g4OD2CEQUTOwpc9IXLt2TewQiIiIDI4YXRUdHBwwcOBAXL58Ga6urmjbtq3K+9rZ2TXr3Pb29mrV1/T5iYuLw+HDh4VyYmKiRschIsPAlj4iIiIyWmKN6fPy8kJycnKTCV9MTIxSOS4uTu1zubq6AgDMzMzQrVs3tffXRExMDGJjYxEcHIxHH30UTk5OejmvoYiIiBDuW1tbo0ePHkqPiz0uk0hdbOkjvZLJZAgKCkJ6errYoRAREelcbGwsACAvLw9t27bVqKVvyJAhyM7Ohp2dHezs7HDmzBlth1mHVCrVKEE1FUlJSXBwcMCDBw8QGRkJGxsbnDt3Dnfv3oW5uTlnTyejw6SP9Orxxx+HXC7XSdLH2ciIiMjQmJmZISEhQeX6cXFx2LJli1AODAyETCaDl5eXLsKjBkilUkRHRyttGzBgAHJzc2FjYwNra2uRIiPSDLt3kl7pMjEztmm7iYio+Uztx3dAQACCgoIAVI3/i4+PFzcgEkilUri6uprce45aBrb0EamBrYlERIYlODgYlpaWKCsrAwAhYTJWUqkUffr0QVlZGczMzCCTycQOiYhMAFv6iBpRu0tOr169RIqEiMi4uLm5KZV11ToilUoxcOBAhIWFISIiAt27d9fJefTN0tKSCR8RaQ2TPqJGREREIDg4GDY2NoiIiEBAQIDYIRERGYXk5GSl3hG1Zz/UJhcXF/Ts2RPJycmwtLTU2XmIiIwVu3eSydBF10sLCwv07t1b68clIjJ1Hh4eGDhwIG7evAlvb2/4+vqKHVKLxGEJRAQw6SMTwolciIgMi5eXF2edJCIyAOzeSUREREREZMKY9BEREREREZkwJn1EREREREQmjEkfmQwOViciIiIiqotJH5kMTuRCRETUNF4kJWp5mPQRERERERGZMCZ9REREREREJozr9JHJYHcV45Sbm4sjR47gypUryMvLw8OHD2Fraws3NzcEBQWhbdu2cHV1bfI4qampWLRoEQCge/fuSEtL03HkpiclJQV//fUXAGDixIlYuHChuAERERGRVjDpIyJRrFixArNnz0ZaWlqT4zFDQkLQrVs39OvXD8OGDYOZGT+6iIiIiFTFX05EpFe5ubkYN24cNm3apPI+V65cwZUrV7Bw4ULcuXMHXl5eOoyQiIiIyLQw6SOTwdk7DV9RURF69+6NI0eOCNskEgkSExORnJyMoKAg2NjYoKCgALdv38aRI0ewf/9+FBUViRg1ERERkXFj0kdEevPuu+8qJXzt27fHwoULERMT0+A+ZWVl+PPPP7F48WKsWrWqwXoLFy7kGDQiolo43p2IACZ9ZEL4xWbYioqK8N133wllPz8/pKWlwcnJqdH9LC0tMWDAAAwYMAC3bt2Cs7OzjiMlIjJefn5+YodARAaISR8R6cW2bdtQWloqlJ9//vkmE77afH19tRxVlYsXL+LAgQO4ffs27Ozs4Ofnh27dumk9wZTL5di9ezcuXbqErKwsODk5oW3btkhOTtZocpry8nKcOnUK58+fR2ZmJh48eAAHBwd4eHggISEBwcHBWo2fiAxXUFAQLCwskJCQIHYoRGSAmPQRkV5cu3ZNqdy+fXutHl+TJRsOHjyIadOm4eDBg3Ues7KywqhRo/Dll1/CxcVF5eNPnz4dM2bMAAAEBgYKf/e3336LTz75BDdv3qyzj7u7Oz744ANMmTKlyZjv3buHZcuWYdWqVdizZw8ePHjQYN3w8HC89tprmDhxIlvCiUxcnz59xA6BiAwYF2cnIr0oKSlRKtds9RPDjz/+iM6dO9eb8AFV8S1evBgdOnTAuXPnND7Pw4cPMWzYMEybNq3ehA8AsrOz8fTTT+P//u//mjzet99+i+eeew5bt25tNOEDgPPnz2PSpEkYOnQoiouLNYqfiIiIjB9b+ohIL9zd3ZXKmzdvxpAhQ0SJZdWqVZg6dSrkcrmwLS4uDgMHDoSvry/y8vKwc+dObNy4ETdu3MCIESMQGRmp0bmef/55YQKa5ORk9OnTBz4+PigqKkJaWhrWrFkjzDz72WefoWfPnujXr59Kx/b29kaXLl0QExMDNzc3mJubIzMzE/v27cOmTZtQUVEBAFizZg2effZZoaWSiFo2tvwTtTxM+ohILxITE5XK8+bNQ1JSEh5//HG9xpGbm4tnnnlGSPjMzMwwd+5cTJo0Saneyy+/jKNHj2LIkCE4e/Yszp8/r/a5MjIyMHfuXDg7O+O///0vevfurfT4P//5T/zxxx8YPHgwysvLAVTNcNpY0ieVSjF48GC8+OKL6NatG6TS+jtsXLt2DWPHjsW+ffsAAIsXL0Zqaip69Oih9t9BRERExo3dO4lIL6KiopQSv4qKCkyYMAGxsbH4/PPPcfz4cVRWVuo8jq+++gqZmZlC+euvv66T8FWLjY3FH3/8AUtLS6VWQVXJ5XKYmZlh48aNdRK+an379sXLL78slA8dOoRLly41eMxXX30Vq1evRkpKSoMJH1A1qcMff/yB0NBQYds333yj9t9ARERExo8tfWR0FAoFysrK6mwvKyvDw4cPlbaJPW7MEFlaWorWtWfOnDlITk5WGl927NgxHDt2DABgY2ODmJgYxMfHo0uXLujWrRs8PT21dn65XI6ffvpJKLdr1w5Tp05tdJ+IiAhMmzYNn332mUbnfOKJJ+q0ctb29NNPY+bMmUL54MGDaNWqVb11raysVD63g4MD3nrrLTzxxBMAgC1btqCyshIymUzlYxCRcWNXTiICmPSRESorK8PixYvrbM/IyMDVq1eVtpmbm+srLKMxYcIEtRIHbYqJicG2bdvw2GOP4fr163UeLykpwd69e7F37158/fXXkEgk6NGjB5599lkMHz682ec/ffq00mQqkyZNarS1rNrkyZM1TvoaakWsKTAwEF5eXrh79y4ANGvimNp69eol3C8uLsa5c+cQFRWlteMTEWmDra2t2CEQmTR27yQiverUqRPOnTuHL774Aq1bt260rkKhwPbt2zFixAh07doVt27data5Dx06pFROSUlRab82bdrAy8tL7fOZm5ujY8eOKtWtuQZhXl6e2udqiLe3t1K5uc8hEZE2RERECPelUinatWsnYjREpo8tfUSkd9bW1njppZfw0ksv4cSJE9i+fTv27t2Lo0eP4urVq8JsljXt3r0bnTp1wsGDB+Hj46PReWu3BNf80dGUyMhIoSVOVS4uLiq3NtvZ2Qn3VVleoby8HJs3b8b69etx8uRJXL16FYWFhXWWxqhNmwklEZGmEhMTYWZmhqKiIkRFRYnWA4WopWDSR0Siat++Pdq3b4+XXnoJAJCfn489e/Zg9erVWLp0KQoLC4W6t27dwsSJE/Hnn39qdK6aCY+1tTUsLS1V3tfZ2Vnt82n6I6a+pLemVatW4Z///CcyMjLUPjbHuRKRJj0XtM3MzKzJ8c5EpD1M+sjoWFpaYsKECXW2nzhxAocPH1baVl+9lk6dREcMjo6O+Mc//oF//OMfmDlzJqZMmYKVK1cKj2/duhX79+/X6MdCzQmA1H0eDOV5mz17Np5//vl6H7O3t4e9vT2srKyUJm9IT08X7jeVUBKR6enWrRt2794NuVyOmJgY2NjYiB0SEekZkz4yOhKJpN4WlNatW+PEiRNCWSaTsbuIkXN1dcWyZcvQrVs37N27V9i+YcMGjZI+BwcH4X5RUZFa+xYUFKh9Pm07e/as0CIKVHUJffbZZzFgwADExMTA3t6+zj4KhUKlyWqIyHSFh4cjMDAQlZWVSl3JiajlYNJHJsPZ2Rnh4eE4f/48ZDIZF6E2ETKZDP/617+Ukj5NFkoHAHd3d+F+RUUF7ty5U2eik4bUnPVTLN98842wLIm1tTV2796N9u3bN7oPx/AREVD1mUFELReTPtKZ+r5gdL1eULdu3dChQweYmZnxC86EREZGKpXz8/M1Ok7tBOno0aPo379/k/uVlpbi7NmzGp1Tm7Zt2ybcnzBhQpMJHwBcuXJFlyERERGREWCfH9IZNzc3pckv/P39YWam++sM9vb2TPhMTO3JR1xcXDQ6TkJCglJXx1WrVqm034YNG5TGA4ql5nILqiR8gHKiSERERC0Tkz7SqeqxRrGxsUqLRBOpY8+ePUrlsLAwjY7j6uqKvn37CuUlS5bUu0h8TXK5HDNnztTofNpWcxIWVWbhLC8vx5w5c3QZEhERERkBJn2kU9bW1khISEBcXJzK65WRaVqzZg2++OILPHjwQK397t+/j48//lhp24ABAzSO44UXXhDul5aWYuzYsY2ubffWW2/hyJEjGp9PmwICAoT769evb7L+q6++imvXrukwIiIiIjIGTPqISC+ys7Px8ssvIygoCK+99hpOnz7d5D779u1DcnKy0iQqPXr0aNbaTo8++iiGDx8ulPfu3YuEhARs3LgRFRUVwvYTJ05g5MiR+PjjjyGVShEeHq7xObXl0UcfFe5v374dH330Ub31iouLMW3aNHz99decuZOIiIg4kQsR6VdWVhY+/fRTfPrppwgMDESnTp0QGRkJNzc32NraorCwEJcvX8Zff/2F48ePK+3r5eWFuXPnNjuGuXPn4tKlSzh58iQA4MyZM+jfvz8sLS3h4eGBvLw8pUXh//3vf+P69evCrKEymazZMWjipZdewty5c4WunW+99RaWL1+OoUOHwt/fHyUlJTh9+jRWrlyJrKwsAMAHH3yAN998U5R4iYiIyDAw6SMivahvMeDr1683OaauWocOHbB06VKNx/PV5OLigq1btyI1NRUbN24UtpeVlSEjI0Moy2QyfPDBB3jttdcwduxYYXvN9f70KSgoCAsXLsT48eOFVsnjx4/XSY6rTZ06FW+88QaTPiIiohaO/X6ISC/Gjh2Lq1ev4ssvv0S/fv3g5OTU5D5SqRQpKSlYuHAhDh8+jNatW2stHnd3d2zYsAEbNmzA6NGjERQUBCsrK7i4uKB9+/Z4+eWXcfr0abz++uuQSCTIyckR9lUldl157LHHsGPHDnTs2LHBOlFRUVi+fDkncSEiIiIAgERRczo4oiacOXMGUVFRQvn06dN11lBrSmlpKRYvXqy0rX///vD19dVKjGQc5HI50tPTcenSJdy4cQMFBQUoLy+HnZ0dHB0d0bp1a0RHR8Pe3l7sUAEAPj4+uHPnDoCqLpNvvfWWyBFV/X88cOAAsrKyYGlpCW9vb0RHRyMiIkLs0IhIh7Zs2VJnkqYpU6aIEwyRCdHG71xDxe6dRCQKqVSKVq1aoVWrVmKH0qTjx48LCR+ARlvZ9CkyMtJkvoyIiIhId9i9k4ioCTVnybSzs0NycrKI0RARERGph0kfEbU4JSUlwsydTfn000+xfPlyoTx27FjY2dnpKjQiIiIirWPSR0QtTkFBAWJiYvCPf/wDS5YsUVoHEAAePHiALVu2oF+/fnjttdeE7c7Oznj33Xf1HS4RERFRs3BMHxG1SAqFAps2bcKmTZsAAPb29nB2dkZpaSnu37+PyspKpfpWVlb4+eef4ePjI0a4RERERBpj0kdELY5MJoNUKoVcLhe2FRYWKi3IXlNERATmzZuHzp076ytEIiIiIq1h0kdELY67uztu3bqFdevWYffu3Th9+jQyMjJQUFCAyspKODk5wcvLC0lJSejXrx8GDRoEqZS94YmIiMg4MekjohbJy8sLTz31FJ566imxQyEiIiLSKV66JiIiIiIiMmFM+oiIiIiIiEwYkz4iIiIiIiITxqSPiIiIyIhIJBKxQyAiI8Okj4iIiMiIKBQKsUMgIiPDpI+IiIiIiMiEMekjIiIiIiIyYUz6iIiIiIiITBiTPiIiIiIjwolciEhdTPqIiIiIjAgnciEidTHpIyIiIiIiMmFM+oiIiIiIiEyYmdgBkPoqKytx+fJlXL58GTdv3kR+fj7Ky8vh4OAADw8PxMTEoHXr1pBKDTOnt7Kygr29PQoLCwEA5ubm8PLyEjkqIiIiIiLTxKTPiLzxxhvYuXMnjh49itLS0kbr+vn54YknnsArr7wCe3t7PUWoui5duiAtLQ2VlZXo0qULZDKZ2CEREREZBU7kQkTqYtJnRGbNmoXKykqV6t68eRPvvfce5s+fj99//x2JiYk6jk49AQEBmDBhgthhEBERERGZPCZ9RsjS0hJxcXFo164dQkND4eTkBJlMhnv37uHYsWNYv3690HXy1q1b6N27N3bv3o327duLHDkRERE1F2fvJCJ1MekzItOmTUP//v3RrVs3WFhYNFgvLy8P06ZNwy+//AIAKCoqwlNPPYWDBw/qK1Qig5KVlYXvvvtOKD/77LPw8PAQMSIi1fC9S8aI71syVvfv32+0bMyY9BmRL7/8UqV6Tk5OWLx4Me7cuYNt27YBAA4dOoQTJ06wtY9apOzsbMyYMUMojxw5kj9AyCjwvUvGiO9bMla5ubmNlo2ZYU7vSM0mkUjwwgsvKG1jSx8REZHx40QuRKQuJn0mrHXr1krl7OxskSIhIiIiIiKxMOkzYdWTuVRzdXUVKRIiIiIiIhILkz4TtnHjRqVycnKySJEQERGRtnD2TiJSF5M+E7Vv3z7MmjVLKPft2xeRkZEiRkRERERERGLg7J0morKyEnl5eTh16hSWLVuGefPm4eHDhwCAkJAQzJ8/X+QIiYiISBs4kQsRqYtJn5G6d+8e3N3dG60jk8kwZswYfPnll3Bzc9NTZEREREREZEiY9JkoV1dXzJw5E0888QRkMpnOznP58mWN93V3d+e6PUREREREOsakT003b97U2bEdHR1hb2+vUl2ZTIbQ0FChXF5ejvv376OkpAQAcP/+fUyZMgWffPIJ5syZg969e+sk5iFDhmi877vvvovp06drLRYiIiIiIqqLSZ+a/P39dXbsmTNn4vXXX1eprrOzc51WNoVCgQsXLuC3337DF198gaKiIqSnp6Nv37746aefMHHiRF2ETUREREREBoyzd5oQiUSC8PBwzJgxAydPnkRISAgAQC6X4+mnn8bZs2dFjpCIiIiIiPSNLX0mKjg4GL///jvi4uIgl8tRVlaGmTNn4ueff9bqeVavXo2wsDCN9m1qIhoiIiIiImo+Jn1qMqYFUTt06ICuXbvir7/+AgBs2LABCoVCq1M9h4WFcf0/IiIiIiIDxqTPxMXExAhJX25uLnJycuDq6qrx8crKypTKzZm9k0hfar9P+b4lY8H3LtXn2rVruH37ttK2M2fOiBRNXXzfkrG6ceOGUrm8vFykSLSPSZ+Js7S0VCpXVlY263gZGRlK5ebM3kkkFr5vyVjxvUsNmTFjhtghNIjvWzJWd+/eFTsEreFELibu6tWrwn2ZTMZF2omIiIiIVODg4CB2CFrDpM+EFRYWYsuWLUK5Q4cOkEr5khMRERERNcXJyUnsELSG3TuNRFFREezs7NTa55///Cfy8/OF8ogRI5odR/fu3bF69Wqh7O/vX6cLKRERERGRsSkrK1MaytS9e3cRo9EuicKYpqNswTp37oyEhAQ8+eSTiI6ObrRuRkYGXnzxRaxcuVLY5u/vj3PnzsHW1lbXoRIRERERkQFh0mckYmJicOLECQBVyyTEx8cjMjISLi4usLGxQXFxMa5fv46DBw9i586dkMvlwr4ODg7YsmULOnXqJFb4REREREQkEnbvNEKXL19Wefrjdu3aYdGiRejQoYOOoyIiIiIiIkPEWT2MxAcffIAJEybA39+/yboSiQRdunTB/PnzcfToUSZ8REREREQtGLt3GqG7d+/izJkzuHbtGnJyclBWVgZbW1s4OjoiLCwMMTExJjXFLBERERERaY5JHxERERERkQlj904iIiIiIiITxqSPiIiIiIjIhDHpIyIiIiIiMmFM+oiIiIiIiEwYkz4iIiIiIiITxsXZiYiIjNzhw4dx/vx53L59G9bW1vD19UVSUhK8vLzEDo2ISG8UCgXS09Nx+vRpZGRkoKCgADY2NnBxcUH79u3Rrl07yGSyZp/HGD9zmfQRERHpgFwux7lz53D48GHhduLECTx48ECos2PHDqSkpGh8ju+//x6fffYZ0tPT6zwmk8nwyCOPYNasWYiOjtb4HEREhqywsBDr1q3D2rVrsX37dmRnZzdY19nZGZMmTcIrr7wCb29vtc9lzJ+5XKePiEyKRCLRaL9Zs2bhlVde0XI01FINHz4cmzdvRnFxcaP1NE36SkpKMHz4cPzxxx9N1rWwsMB//vMfPP3002qfh1oeXVysuHbtGoKDgzWKZ/ny5RgxYoRG+5LpKywshIeHB0pLS9Xaz8XFBfPmzcPQoUNVqm8Kn7ls6SMiItKyI0eONJnwaUoul2PcuHFKPz6cnZ3x+OOPIyIiAoWFhfjrr7+wYcMGKBQKlJeX45lnnoGbmxuGDx+uk5jINKh6sYLIUFRWVtZJ+EJCQtC9e3e0adMGbm5uKC0txalTp7BixQrcu3cPAJCTk4ORI0di+fLlTSZ+pvKZy6SPiEyWh4cH7O3tVarr7Oys42iopbK0tER0dDQ6duyIoqIi/PLLL8063pw5c7B69Wqh3LVrV6xZs0bpPfzKK69g+/btGDp0KAoKCqBQKJCamoquXbvCw8OjWecn06XLixU1+fj4wNraWqW6dnZ2Oo6GTIGDgwMmTZqEJ554osGulV988QVefPFF/PjjjwCqEsYnn3wSXbt2hZubW4PHNpnPXAURkQkBINwWLFggdjjUQr399tuKuXPnKo4cOaIoLy8Xti9YsEDpPbpjxw61jltUVKTw9PQU9vf29lbk5uY2WP+3335TOt/zzz+v4V9ELUFgYKDwXrG0tFTEx8crpk6dqhg/fnyz3rdXr15t1v5EDSksLFS8/vrrivv376u8z9ixY5XejzNmzGiwril95nLJBiIiIi1777338NRTTyE2Nhbm5uZaO+6vv/6KzMxMofzuu+/CycmpwfqjR49Gp06dhPK8efNQVFSktXjItEyYMAFz587FkSNHUFhYiIMHD2LOnDl45JFHxA6NqF52dnaYOXMmXFxcVN5n1qxZSuP/169f32BdU/rMZdJHRERkJFatWiXct7GxwdixY5vc56mnnhLul5aWqjQRAbVMurpYQWRIfHx80LZtW6Fc30yc1UzpM5dJHxERkREoLS3F9u3bhXLnzp1VGrPau3dvpXJjV7WJiFqCmmNFGxrHamqfuUz6iIiIjMD58+dRVlYmlBMTE1XaLyAgAL6+vkL55MmTWo+NiMiYXLt2Tbjf0ILqpvaZy6SPiIjICJw7d06pHBYWpvK+oaGhwv3z589DLpdrLS4iImOye/duZGVlCeXOnTvXW8/UPnOZ9BGRyVqyZAm6desGDw8PWFhYwMXFBa1bt8Zjjz2G77//HgUFBWKHSKSyK1euKJUDAgJU3rdm3QcPHuDu3btai4tIXV999RU6deoENzc3mJubw83NDW3btsXEiRPx888/K7WuEGnbp59+qlQeNWpUvfVM7TOXSR8RmaytW7di165dyM7OxsOHD5Gbm4tLly5h2bJleOaZZxAQEICZM2caxBU4oqbUvkihzmx1tdehLCws1EpMRJpYs2YNDh48iPv376OiogL379/H+fPnsXjxYkyYMAGBgYGYN2+e2GGSCfrtt9+wbt06oRwTE4PBgwfXW9fUPnOZ9BGRSbO1tYW/vz+8vLzqzEaXn5+PN998E3379sWDBw9EipBINbWn/bayslJ539oLYRvKFOLUcjk4OCAgIAAeHh6QyWRKj2VmZuKpp57ChAkTeFGOtObMmTOYMmWKUDYzM8OPP/4IqbT+dMjUPnOZ9BGRSbGwsMCoUaPw22+/4caNGygqKsKNGzdw584dFBUVYdeuXRg/frzSGj1//vknxo0bB4VCIWLkRI0rLS1VKltYWKi8r6WlpVKZFzlI3+zs7PDEE09g9erVuHv3LvLz83H9+nVkZmaioKAAmzdvRv/+/ZX2+fnnn/Hyyy+LFDGZkjt37qB///5KydfHH3+MuLi4Bvcxtc9cM7EDICLSpps3b8Ld3b3exywsLJCcnIzk5GSMGzcOw4cPR0lJCYCqtXiWL1/eYN9+IrHVvspcXl6u8r61x0jVvgpNpEve3t64desWHBwc6n3cxsYGffr0QZ8+fbBw4UI8+eSTQgvfV199hTFjxiAhIUGfIZMJycnJwaOPPorr168L26ZMmdLkBQVT+8xlSx8RmZSGEr7a+vbti59++klp2/vvv6+LkIi0oua6UkDdq9CNqX2VufaxiHTJ0tKywYSvttTUVHz00UdK2/jZTJoqKChA3759cerUKWHbuHHjMGfOnCb3NbXPXCZ9RNRiPfbYY0pXj0+fPq20dg+RIan9ozk3N1flffPy8pTKqiwwTCSWl156CX5+fkJ569atBtE9joxLUVER+vXrh0OHDgnbRowYgUWLFjU4jq8mU/vMZdJHRC3asGHDlMr79u0TKRKixgUHByuVb9y4ofK+Nbs1WVtbN7gYMZEhsLCwwIABA4RyaWkpjh8/Ll5AZHRKSkrQv39/7N27V9g2aNAg/Prrr3UmDmqIqX3mMukjohatTZs2SuWaC7YSGZKIiAil8uXLl1XeNz09XbgfHh6u0lVuIjHxs5k09eDBAwwcOBA7d+4UtvXr1w/Lly+vM4t3Y0ztM1f8CIiIRFR7cHX1xC5EhiY8PFxp9jhVW6UzMjJw69YtodyuXTutx0akbfxsJk2UlZVhyJAh2L59u7CtV69eWLlypVqzbwKm95nLpI+IWrTMzEylspubm0iREDXOysoKPXv2FMr79u1Tae2nLVu2KJVrdpsjMlT8bCZ1lZeXY/jw4UqfeT169MDatWvVWmOvmql95jLpI6IWbdeuXUrl2n34iQzJ0KFDhfslJSVYsmRJk/v8+OOPwn1LS0v069dPJ7ERaRM/m0kdFRUVGD16NDZs2CBs69q1K9atW9es5RJM6TOXSR8RtVjZ2dlYunSpULa2tkZycrKIERE1buzYsfDw8BDKM2bMqDNLXE1Lly7FgQMHhPLkyZMNYupwosacOXNGqXteUFAQwsLCRIyIDFllZSXGjx+PVatWCduSkpKwceNG2NraNuvYpvSZy6SPiEzCw4cPUVFRoXL9iooKPP7440pdNR577DGNuoAQ6YudnR3+/e9/C+U7d+5g8ODB9f4I2b59O55++mmhbGtrq7QvkT6UlpZCoVCoXL+oqAjjx48XFmcHqtbuI6qPQqHAk08+if/+97/CtsTERPzxxx9aSbZM6TNXolDnfyIRkYG6du0aevXqhf/7v//DqFGj4Ozs3GDdS5cuYfLkyUoze9nY2ODcuXMICAjQR7hk4lauXIlXX321zvbCwkKlWQh9fHzq7Xr06aef1llOpJpcLseQIUOwbt06YZuLiwsmTJiAtm3boqioCGlpaVi/fr3wY1sikWDp0qUYNWpUc/80aoEWLlyISZMmCeUdO3YgJSVFpX3T0tLw4osv4tVXX8XgwYMbbXk5cuQIUlNTcfr0aWGbt7c3Ll68aDCtJWRYdu3ahW7duilta+hztTF//fUXfH19633MVD5zmfQRkUm4du2aMObD3NwcnTt3RkxMDIKDg+Hg4ICKigrcuXMHu3fvxvbt25WuIstkMqxZswb9+/cXK3wyMbV/JKtrwYIFjbZuFBcXY+jQofjzzz+bPJaFhQW+/PJLPPvssxrHQy2DLi5WpKWloUePHgCqLq516dIF7du3h5+fHxwcHFBWVoaMjAykpaUprakGVLWy7NixA3Fxcdr488gE1Xx/NcfVq1cRFBTU4OOm8JlrJnYARETa9vDhQ+zcuVOpJa8hPj4+WLhwIXr37q2HyIi0w9bWFps3b8acOXPw+eef48qVK3XqSKVS9OzZE7NmzUJMTIz+gySjU1BQoLS+WENu377d4P6NKSkpwZ9//qnSD+fw8HAsWbIEsbGxTdYl0jVT+MxlSx8RmYSCggK888472L9/P44dO4by8vJG64eGhmLKlCmYMmUKnJyc9BMkkY4cOnQI586dw507d2BtbQ1fX18kJSXB29tb7NDIiOiihfrmzZv48MMPsX//fpw6dQqVlZWNHiM6OhpTp05Fampqs2ZdJNIlY/zMZdJHRCanrKwMJ06cwJUrV3D37l0UFxdDJpPB0dERXl5eiI+Ph5+fn9hhEhG1KMXFxTh27BiuX7+OrKwslJSUwMzMDE5OTvDz80NCQgLc3d3FDpPIJDHpIyIiIiIiMmFcsoGIiIiIiMiEMekjIiIiIiIyYUz6iIiIiIiITBiTPiIiIiIiIhPGpI+IiIiIiMiEMekjIiIiIiIyYUz6iIiIiIiITBiTPiIiIiIiIhPGpI+IiIiIiMiEMekjIiIiIiIyYUz6iIiIiIiITBiTPiIiIiIiIhPGpI+IiIiIiMiEMekjIiIiIiIyYUz6iIiMVEpKCiQSSYM3Y5SamirEn5KSovXjT58+XTh+UFCQ1o9P1BhjfP8tXLiw0c+ZhQsXih0iEanATOwAiIiIDE1aWhrS0tIAAE5OTnjxxRdFjYdaHr4HiUibmPQREZkAe3t7eHh4iB2GyUhLS8OMGTMAAIGBgfzBTXpnKO9BBwcHhIaGKm1LT08XJRYi0hyTPiIiEzBs2DB2syIirRs2bBiGDRumtM1Yu48TtWQc00dERC3G9OnToVAooFAocO3aNbHDoRaG7z8iEguTPiIiIiIiIhPG7p1ERC2YQqHAhQsXcPbsWdy8eROFhYWwtraGq6sr2rdvj+joaEil2rk+WF5ejl27duH69evIzMyEjY0NBg8erPIshsXFxUhLS0NGRgby8/Ph5eWFuLg4REZGaiU+fVDnOTCm16YlKC8vR1paGq5du4b79+/DxcUFMTExiI+P19rroG35+fk4cuQILly4gPz8fMjlctjY2MDb2xthYWFo164dLCwsxA6TiPRBQURE9SooKFD4+voqACgAKAYOHKjRcT744APhGAAUZ8+e1Up83bt3F445ceJElfcrLS1VLF++XDFq1CiFm5ubUmy1b66urorp06cr8vPzVTr2xIkThX27d++uUCgUiuLiYsW//vUvhbOzc53jL1iwQKX9n3vuOYWdnV29McbGxir27NmjUnzvvvuusF9gYGCdxxt7Luq7VceorefAEF+bsWPHCtt8fHwUFRUVKp2v2pgxY5q1f22BgYHC8d59912V9rl69arS37Zjx45669X3HD18+FDx7rvvKlxdXet9HYKCghQrV65UKY6m3n8KhXbeg+np6YrRo0crLC0tG93X0tJS0adPH8Vff/2lUvz1xVj7/zARGSbDvDRFRGQApk+fjlu3bgEAzM3N8dlnn2l0nNjYWKXynj17mh1bc+zbtw8jR47EsmXLcO/evUbr3r9/H9OnT0enTp00mrEvIyMDHTt2xBdffIHc3Fy197979y4SEhIwe/ZsFBUV1Vvn6NGj6Nq1K2bPnq328fVBnefAEF+bKVOmCPdv376NTZs2qXyO3NxcrFq1SiinpqZCJpOpHatY8vPz0b17d8yYMQP379+vt861a9cwbNgwg3n/bd++He3atcPSpUtRVlbWaN2ysjJs2bIFW7Zs0VN0RCQWdu8kIqrH6dOn8Z///EcoP/fcc2jdurVGx+rYsaNSec+ePZg8eXKz4tMWOzs7dOnSBR07doS3tzfs7OyQm5uLEydOYM2aNcjLywMAnD9/HgMGDMCRI0dgY2Oj0rHLy8sxcuRInD9/HhKJBD179kTPnj3h5eWF3NxcHDhwoNGuZXK5HOPGjcOZM2cAAN26dUO/fv3g7u6Ou3fvYv369di/f79Qd9q0aXB1dcXo0aM1fj6qp6bPyckREiEzMzMEBgbWW9/X17fR4zXnOTCU16Z79+4IDw/H+fPnAQDz5s3DgAEDVDrPzz//jNLSUgBVMz4++eSTKu1nCORyOcaMGYO9e/dCIpGgT58+6NGjB9zd3ZGbm4tNmzZh27ZtQv0XX3wRXbt2RXR0dLPO25z3YFZWFoYNG4aSkhJhW1JSEnr06IGAgABYWFigsLAQ169fx7Fjx7B7926Ul5c3K14iMhJiNzUSERmifv36Cd2XbGxsFNnZ2c06npOTk1J3RG3QtHvnjh07FB06dFD89ttvipKSkgbrFRYWKiZPnqzUleudd95p9Ng1u8dV37y8vFTufllzf6lUqgCgsLa2brD73C+//KIwNzcX9nFxcVFkZWU1eHxVutepU6+pv0Hd58BQX5vPP/9c2MfMzExx586dJvdRKBSK6OhoYb9HHnlEpX2aoq/undXvv8DAQMXhw4frrT9//nyl444cObLRONR5X2nyHqy5j5WVlWLTpk2N1s/Pz1f88MMPivnz56t0/Go1/2Z27yQyDuzeSURUy/79+5W6sE2ZMgVubm7NOmbNq/FiL2ycmJiIo0ePYvTo0bC2tm6wnp2dHX788UeMGjVK2PbDDz/g4cOHKp/L3NwcmzdvRlJSktpxyuVyAMCCBQswdOjQeuuMGzcO3333nVDOycnBzJkz1T6XLqnzHBjqazNx4kRYWloCACoqKrBo0aIm9zl06BBOnjwplJ966imVYzMEcrkcDg4O2LFjR53W+mpPPPEExowZI5TXrl3bYDdkfdi+fbtwf+rUqejbt2+j9R0cHDBlyhQ88cQTug6NiETGpI+IqJbp06cL983NzfHKK680+5h+fn7C/fz8fOTk5DT7mJqysrJSq/7HH38s3M/MzMTRo0dV3veZZ55pVne3nj174rHHHmu0zuTJk5GQkCCUFy9e3ORYJn1S5zkw1NfG1dUVw4cPF8rz589vcp958+Yp7d9Q4m7IXn/9dQQHBzda5+mnnxbul5WV4cSJE7oOq0F3794V7mvaHZ2ITBOTPiKiGi5duoTNmzcL5QEDBjQ5bksVtVttCgsLm31MfQkODkZISIhQPnTokMr7Tpo0qVnnrvmDujE1W5Hu37+PvXv3Nuu82tTc56Ax+nxtar4Wly5dws6dOxusW1JSgqVLlwrlCRMmGOXSAKmpqU3WSUhIUFqy4dy5czqMqHE1x3Qa0v8BIhIfkz4iohp+/PFHpbIqP/pUIZFIlMrqdMMzBN7e3sL96hlNm2JnZ9fsSS369OmjUr3a3djUSX50SRvPQVP09dp069YN4eHhQrmx1r5ly5ahoKBAKBvKxEXqCAwMVHpuG2JtbQ1nZ2ehXD3BjhhqzhT8yy+/4P3330dxcbFo8RCR4WDSR0RUw5IlS4T7Tk5O6NevX4N1b9y4gd27d2P37t24dOlSo8etqKhQKhvKtPUHDhzAq6++il69eiEgIAAODg6QSqWQSCRKt5rLTKj6ozY4OLhZi1b7+/vDyclJpbp+fn5KdatnmhRbc54DQ3xtarao/v7778jPz6+3Xs2unUlJSYiIiFD7XGLz8vJSua6dnZ1wX8wka8qUKUoXmN555x14eXlh1KhR+OGHH3D27FkoFArR4iMi8TDpIyL629mzZ3H79m2h3LVrV5ibmzdY/9///je6du2Krl27YvHixY0e++bNm8J9iUQCHx+f5gfcDKdOnUKXLl2QmJiIWbNmYdu2bcjIyEBhYWGTPwqrp+BvioODQ7Ni9PDwUKu+u7u7cF+TNQF1QZPnwJBfm5oTupSUlOC3336rU+f8+fNKiagxtvIB6o+vrCZmUpWYmFhnIqOioiIsX74cU6dORWRkJDw9PTF69GisXr3a6HocEJHmmPQREf3tr7/+Uip379690fpHjhwR7kdGRjZaNyMjQ7jv4eEh/HAWw759+9ClS5d6x/xYWVnBy8sLQUFBCA0NFW41fwCr+qPWzKx5S8E2NntlfWxtbYX7Ys6gWJO6z4Ghvza1J3Sp2aJX3zYHBwelGUZJ91577TVs2bJFaXKjmrKzs/Hf//4XQ4cORXh4ODZu3KjnCIlIDEz6iIj+Vr0IeLWYmJgG6+bl5Sl1IWxsprzbt2/j3r17Qjk+Pl7zIJuptLQUjz/+uNJEMmPGjMH69euRmZmJBw8e4M6dO7h69SouX74s3Br6AalLDx48UKt+zW51NbvbGQtjeW1qTuhy5MgRpdkqHz58iJ9//lkp/prJOOlH7969ceDAAZw+fRqfffYZBg0aVO+yM1euXMGAAQPw008/iRAlEekTkz4ior/VHpdXc9KK2tLS0oR15ADlJRlq27dvn1JZkzXrtGXNmjVK6wTOnTsXv/76K/r3799od0oxJqfIyspSq352drZwv+bEGsbCWF6b2hO61GzZW7t2rdLrpou1+WpPiqSKkpISrcdhDCIjI/Hyyy9jzZo1yMrKwokTJ/Dee+8hKChIqKNQKDBt2jS1/78RkXFh0kdE9LeaXTAlEkmjEzn88ccfSnVrjierbcuWLUrlnj17NiPK5tm2bZtwv02bNir9KJfL5bh27ZoOo6pfRkaGygnNrVu3lOq2adNGN0HpkDG9NlOmTBHuL1myRBhLWDMBjImJaXBR8+aouSyBqslcZmam1uMwNhKJBNHR0Xj77bdx4cIFpfUvS0pKsGrVKhGjIyJdY9JHRPS3mj8gbW1tG5xhs6KiAitXrhTKlpaWDbY+VFZWYv369ULZ399flK6S1WpO6d++fXuV9jl8+LDS9Pv6VDthbkjNJBxofhfamhP41GzR1SVjem1qTuiSm5uLlStX4ubNm0qvly5a+QAozdKq6hIV+/fv10ksuqTL96CFhQXmzJmj9Ll19uxZrZ6DiAwLkz4ior/VnMmuvLy8wXpr165V6kpYUVHR4AQaGzZsUJoRdMyYMRp1T9OWmnGqOtPjV199paNomlZ73cSG1GxhcnV1RZcuXZp13ppjAhtalkDbjOm1cXFxwYgRI4Ty/Pnz8dNPPwnJibW1NcaNG6eTc9fsWnrgwIEm6ysUCixatEgnseiSrt+Dzs7OSj0UOJMnkWlj0kdE9Lea46bKy8vrbUVQKBT4+OOPAfxv3FhFRQXu3r1bb90ZM2YIZUtLS7zwwgvaDlstAQEBwv2dO3c22Uq0evXqeqfl15etW7fi999/b7TOggULlFpyJkyY0OzZUWuOeSooKFDq+qsrxvba1OziuWPHDnz77bdCeeTIkXB0dNTJeTt16iTcT09PR1paWqP1P//8c1y4cEEnseiSJu9Bdbr63rp1S2mCqZrnIyLTw6SPiOhvYWFhSuU1a9bUqfOf//wHhw4dqq7VKgAABxtJREFUAgCMHj1a2L5169Y6dT/88EMcPXpUKE+ZMgW+vr7aClcjjz76qHA/Ly8PEyZMqHdclEKhwPz584VxP81ZZF1T1eecOHFiva8FAPz222+YOnWqUHZxccEbb7zR7HMnJCQo/c2vvvqqzlv8jOm1AZQndFEoFEqt37pcm2/EiBGwsLBQOld9CVFlZSW++OILvPbaa6K2rmtKk/dgq1atMH78eOzYsaPRLqE5OTkYP368UEcikWDw4MHaCZyIDFLzFlEiIjIhAwYMUGpV+ve//4127dqha9euqKysxOzZs/Hyyy8DqFrDb+TIkZgzZw4A4N1330XXrl0RFBSE3NxcfPTRR/jss8+EY7Vq1arOosliGDRoECIiIoTxO2vWrEGrVq0wevRotG3bFnK5HFevXsWaNWtw7tw5AEDfvn1RXFyMXbt26TXWLl26wMzMDDt27MCQIUPQvXt39OvXD+7u7sjMzMT69euV1rOTSCSYPXt2o5PqqMrb2xt9+/YV1jBbunQpfv/9dwQFBSktQRAXF1fvWnWaMKbXptqUKVPwr3/9S2lbmzZt0LVrV52d08XFBdOmTcPnn38OoKq1LzIyEuPGjUNMTAwkEgnS09OxevVqXLx4EQDw/vvv4+2339ZZTLqgyXuwoqICS5YswZIlS+Dp6YmkpCTExMTAw8MD1tbWyMnJwfHjx7F69WqlluSpU6ca5eRHRKQ6Jn1ERH8bMWIEpk+fLnSRys3NRbdu3eDu7o6SkhJhHTg7OzvMnTsXfn5+sLW1RXFxMa5evYrQ0FB4eXkhKysLFRUVwnE9PT2xatUqg1ivTCaTYcWKFejWrZvQMnP79m188cUX9dbv3Lkzfv31VwwdOlSfYQKoasH69ddf0atXL5w5cwZ//fUX/vrrrwbrfv3110qtr801Z84c9OjRA1euXAFQ9YP68uXLSnVqTirSXMb02lSbOHEi3njjDZSVlQnbdNnKV+29997DgQMHsHv3bgBAYWEhvv/++zr1pFIpPvjgA4wZM8bokj6gee/BzMxMrFq1qslZOceNG4evv/5aK/ESkeFi904ior/Z2trit99+q7OIcXZ2tpDwubm5YePGjWjdujVsbGzwwQcfCPXkcjlu376tlPAlJiZi165diIyM1M8foYLw8HAcPXoUQ4cObbDbm7e3N95//33s3LlT1DXvvLy8cODAATz33HMNLrjeoUMH7Ny5E88//7xWzx0QEIATJ07gm2++Qd++feHr6wtra2utnqM2Y3ptgKpWt4EDBwplc3NzTJw4UefntbGxwebNm/HSSy8pdfWsqX379ti8ebNWuvuKRd334JIlSzBmzBh4eno2eezExESsXLkSv/zyi9JMoURkmiSKhqacIyJqoW7evIn//Oc/WL9+PTIyMlBRUYGQkBAMHDgQL730Up0fVEuXLsU333yDkydP4uHDh/Dy8kJ8fDwee+wxDB8+XGfjiVJSUoSWr4kTJ2LhwoVqH+PWrVvYtWsXbt68CblcDk9PT4SGhiIpKUm0sWINKSoqQlpaGjIyMpCfny88z4aUUGuTsbw2bdu2xfnz5wFUtZYvX75cr+cvKCjAjh07cO3aNTx48AA+Pj5o3769ystemKqrV6/i3LlzuH79OvLz81FZWQkHBwcEBgYiLi4OPj4+Gh+75mfaggULkJqaqoWIiUiXmPQRERkpbSR9RM2xZ88eJCcnC+XNmzejT58+IkZE+sCkj8j4GM6lQiIiIjIq3333nXA/JCQEvXv3FjEaIiJqCJM+IiITsGjRIkgkEqUbkS5duHABy5YtE8pTp07l+84ELVy4kJ8tRCaASR8RERGp5eLFixg9erQwaZGrq6vSeolERGRYuGQDEZGR8vX1RWhoqNhhUAsRExMDoGopk+rJZap9+OGHsLe3Fyky0iUHB4dGP2ccHBz0GA0RaYoTuRAREVGTGurW9/jjjwvdi4mIyDCxpY+IiIjU4uDggPbt2+PJJ5/EhAkTmPARERk4Jn1ERETUJHYMIiIyXpzIhYiIiIiIyIQx6SMiIiIiIjJhTPqIiIiIiIhMGJM+IiIiIiIiE8akj4iIiIiIyIQx6SMiIiIiIjJhTPqIiIiIiIhMGJM+IiIiIiIiE8akj4iIiIiIyIQx6SMiIiIiIjJhTPqIiIiIiIhMGJM+IiIiIiIiE8akj4iIiIiIyIQx6SMiIiIiIjJhTPqIiIiIiIhMGJM+IiIiIiIiE8akj4iIiIiIyIQx6SMiIiIiIjJhTPqIiIiIiIhMGJM+IiIiIiIiE8akj4iIiIiIyIQx6SMiIiIiIjJhTPqIiIiIiIhMGJM+IiIiIiIiE8akj4iIiIiIyIQx6SMiIiIiIjJhTPqIiIiIiIhMGJM+IiIiIiIiE8akj4iIiIiIyIQx6SMiIiIiIjJhTPqIiIiIiIhM2P8DxSEiBvaNAr4AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "source": [ + "s=bay.omega[-1]/sdata[0,-1]\n", + "cubic_mean_spline=bay.model(bay.omega_fixed, bay.parameters_mean)\n", + "cubic_max_spline=bay.model(bay.omega_fixed, bay.parameters_mean+bay.parameters_std)\n", + "cubic_min_spline=bay.model(bay.omega_fixed, bay.parameters_mean-bay.parameters_std)\n", + "f, ax=plt.subplots(figsize=[3,2.5])\n", + "ax.plot(sdata[0][1:], cubic_mean_spline(bay.omega), color='red', label='Bayesian ',\n", + " linewidth=3, zorder=1)\n", + "ax.plot(sdata[0][1:], true_s[1:], color='green', label='True',\n", + " linewidth=2, zorder=1)\n", + "ax.fill_between(sdata[0][1:], \n", + " cubic_max_spline(bay.omega), cubic_min_spline(bay.omega), color='red', alpha=0.3, zorder=1)\n", + "Nf=0\n", + "ax.plot(sdata[0][1:], st.md.tools.filter.runavefilter(bay.noisy_data, Nf),\n", + " linewidth=1, color='black', zorder=0,\n", + " label='Signal', alpha=0.4)\n", + "ax.set_xlabel(r'$\\omega$ [arbitrary units]')\n", + "ax.set_ylabel(r'$\\rho$')\n", + "plt.legend(loc='best', fancybox=True, framealpha=0.0)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.8.5" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/examples/data/bayesian/CsF/dc_minimal.npy b/examples/data/bayesian/CsF/dc_minimal.npy new file mode 100644 index 0000000000000000000000000000000000000000..04576462f9ceacf4837592c53128053d0baeca65 GIT binary patch literal 9600627 zcmbq)XHZm8(O7Iu!#j>fjP?HtX_|1+#)Z0%%D9Cxxbwl^n!=RYaP`H=Jf@1pW0GqrWG zv3D0TwR1EVvT?C?wla2fGSnd-<=Bp8TIiX3p;R=2Q;*^!AXDkZ4FcP=tmAJ5Xvn?B~BirbkK~^Kzh4 zS65fvC0_saaRrO?nj+K;a48PDSO868tkc%tOK|_( znt7>i2_EOJ4;F(wI2d`S%TT`rZ<;@TKBQWPVHD;YM#pmC$lwblZu4S1RVa2u`9nGO zWhm#a_h-Oi%`tU*x+08x%lb#g1y%{ER>zD%jYx5sOb_d7;GD^FlR$Z|INg|m)(-3cOUnX9Gy79b_Y3E+cKODOEFR_ ziqrq23u;~N%e|%Q44Q9Jb+Z_X@rm!PyK4jwbcxQXwGs`1=7>Y#{pJPuF611e#Vb!# z3$RP@T#tq7g3ISy406#;I?JnnzdJ(Puj*>A6gYgQWZ3jy28zcxcHYCFO zS}PVvp7LFtsVIY=v73&uwsDYfzp3@DbP9C6y3a~#Q~|{+ha?l_)8Y0-r=B|9Y$&>J z$*s6t32u#!&j);RLAGlyd0Q?YNEyEzL#}FIO;-qK8!QB&&B;X??P4H*6nikCuNpj? zGynRom%?8)Iy%`0q`%C>7j$Yw`x^G*$% znq&SpcDoj?EAyL}Mb(0xQ+eT(P#q}OQ-ysttA_^v>B%m>I{10u$41U#J+!{Te+O?i zg3H9w-wZul` zZpP218T4Euzn_)w1kJvUV-cDJkW|&8G7WBq<93;YwfdcK%OF4a!vg|9(U-<7*Jem2 zY~PN((g~|}*WaHACcx%{n4e_Q%|QS5nwcR(CvfpFWoY>k;9W?$pwdVaSkaj5E?0Me zZC||Zq7?y3ha+r?PBy{SoCiYh_&Z>^Q{DUl5Fmh|$3b7W5r)gUq<(p|gU;|iF7CYq z_>g^|o?Ej4whBbs)T-OylG)PqpY|@$ecto+^3i%oRz2xuGtdf^H!RHzt-4@c^?lrI zUoEVkZTn_1&;s(5(H>a`x7v9#9E3=hwq<(1P$Sd5ZLvkk3+xTQ+V z8!1f?EPL*gx?d-}Hd@RWH!TOz^%ssO-5Q}j&F=V8MF%_yB^*AaTmk~dn{)Mg4KPz} z_I7Qy9j3=@{@ze4gua=pF|2a+;1=zENQR;v;-;G)%|zwF!hTX~yK{BW{-8#9{d^m! zK9#qv=E;HN!e_I;WoqFu+Z*Gz?yaz$)E1nsmJ%lm^1m(7J6w|8UMt+63sdqEHj6Bg3_#p`_?R0Tm zqY?m;) zR*EKYakP5%n>-aL4#_TXa+iVhiNj2GC5`aPWFq!GcRHMrc|6=GRtggyPEJ&}8i6{L zdhK{+CWxBP@@OfPz~Tp%y=Pb(VaRECQL8B%*oPX_os^4Vw({P1F|wL` zD0*t0=A6?2B&=lb)kF*6!I6J7)Ixb+dBmsKr=S7EGAQhL(h7jKkkr7%EeGBp%S<9FV76xw!?ApCx%ljQHYhZ+9iF}`0HX4 z?U+IbNY1>EOzMn5S0?piUoO?+dD|yS4E&u?dW};0@vS&~!_4_kAgK-sE6?B6vLk37 z7 zh@qEgcCRaU!^MozgC*;6D9c=Jr6tpd0l(4Dd#)R1(=}|lSmJQ8IXaxPvH?YvkER(| z_CRxBdDtLxEPmcRyEk#R9xp7}iSDlV02}KuS;OzqxT9|;d%vp=^=}1>U$gH8cTLyj z65A;Jxw%RqYF&%eBUOPoa!Uy;AaHJX`X3vk>#y zjyav)?gOS4s-3it#P#IH#&(!B59cmWe7H&053I*?_LyyXqK9q`{ENv%ogXi(t2g_g zT;j$~8| zKJIMuXh&qZsS>(3!UwuCj`c}cBJ9ty^1pxI4eK_Z>FpYNfTKg-{CSNIC?8cx3}o`b zxZ6mxD(?vMgTt@MPPDjbk-^S+zi6SU*|4&1mVy0b}Vet z#P;nyhvljofjqQMmFip=uE?oN@*HwNDb~xS84mUE;`K+HyP6Rg)>I#)#paCtm~-l^ zq&*yi2V*rJ)7^~1*Y$SdiG(6xc-;TQ>1i~cvKPw8xE6y21r9FL_x2y7d z!^?!38#f(pf%~($Kciy)C=-7#-lEDJE=>P@I2P;!K1YsFDAqY6*ZF&~RVjMdd-vXw zFIgmH3SWI|Nk<32TfXO*3^?Pjk}U6&zY}4~bN<^;ZZ`;O^7p#r=ZjxeH>7x4vS5H` zN1RtJ6pWi&3cTzC(R5Dyb3|M|P#88++#ZhuRn>%L7tv5OQVUn$jVl3zdW*-8Owz!* zsH`b#@-Zf58wv#sRl>*E=701#IqFflOme}uw zXX;^MT39_SIS4CiC^@Liy5OO~6x~{311M*Uktu5g;KJm)6xK@w@XNci*MFrEF0VGd z_7w6%uT&mN>%RoZGnBo4eX$8xsct5w82e(ti)(`Hq1|9+uVuOz*$kx8#-dWh^|-d9 zK<)Cj8-8$eS8)*6cj9b|pL(Vj9wc+5I7HtAf6oLRxcjXcJUNPaZU2(uf86Qg`9Z;S_B58q;3-RS)3`L8nM}JRrv< z!Mm3t9jE#nq+O`$z?m|vSoNe6{=4z%B@;s?^3e&+9G0p9MYW}i7fwYZea!on(=%D< zZO!@e_u(pN9O3GvP)tK|I@UhYyll*M)VwyrP!3YnN`gR=hb0C%L*Mvvkl(%l$(kTZycl4C%>59PR{SQ|Tx(Zyjx;UWuCq)xIRB3^)m- z*t79?W0S8!S2oP8znM|q*Mw2M0vDa6GjTdKFqBO{3%oM>53)@(Pj-{(L4}^h!3;9S{cNd;ayG=u0 zZ2_0`Ctimq`oW{ue{RGcCSdNDyOX>bA+4xU{@*+nRvk zRByC9WJ}?W#N5MO_AH#FaQS&cihx4#eeZ_UDna14tQFN(F6Og0xGMhYLe6;Qzh}j2 zK=gK9`xB!=Ja%X?(zm(`CCgR6^vKo$$&m@e%RMD1evGn&!n6y8gzGc=R2!hHbL;X2 z<_gpjC6VXnd-+u^=pW}u`^Jw7&#$^5O>iDJ7p zp&JREpmgab_+&QVo1QI~qlY@NkX1-IkG2cu4%FlbRy5+vW4?X<+Z}l3n&f?lt}fWp z?j6xiZo>NL1FuwnbYQWxZ1}`20vM^YMDpKhMz+>lt3RnaQQ`LdBF9T&9*MS|{=K&a zg2JlH zPP8*wrI4%chHa^N`3B`y9QILbU|;G)A^mqo1@+xfv}RP<64;6bgr?`OI1xWKR)498 z?}lQr@nGSGR>ULcFWKHkjM7ziBiHDLLY6ljUh}Q!Y9~S|l!5r6uAS}6G65K+Xan~A zYekY=tNw>C5kI>`$p;YY_n?hLciQ7^Nc~Fb-aK6we&x8w+LGJ_RNQypd0%Zqt5}J{ zc2dN3{&mxF*#kk!-B;fJQ5*8MG7DGV??S8jU+lL29k8vULL%PVhI~SzpL5E(P}JGa zPxx9JOlQ60`o`Rj!a+w(RsIt1!zuaDaH|<|SJ#yFJlb)%rlMKTjDVfL-6LN(Ho_OK zz3xeC?Wp_n;Jes21QdL0_xHzq9qe$8aVXe!VEflIAJV+K@z&3pAFCH?fMU?m!+`kz z9aUfKyK$xm^^|t{2GuH{MJy;^J*X4MxWeyz`PGBITU}&=D#b9LrX=i5kGPLt^-0WZ zFG^Qv8y*VIgJPAJrE#%{vLD}!`}OtV-GB1Y=cO~@H}{Ut3`rM0crW?bw517bAqmM0$n({K>8xBYygXeX?1>Fii8#GytN;fx=@i^T(m285NXe8o0J^%1E=mE z5r40Cp=R|x4qfvhwBjFf4K}ocGu6Jq3KzTZhOcXyJlinNN*5}c{ou#nhqK5P4|ieK zNlzu?l3@&;Wd0yFc@M*tc6dwc5z}b6__wJ?Fj4)F&SjY-VvtG?=mCk zb?eLlEpjj1drH4~hDV8h+*wAB;Dj`)EQRw!G*l>Nw*JCTttyex!9s%l6u?SOXEGj%Xm85>!1_iiR`NCm~=GKEu^VOtoMUG5cZd{hQW z8;4Fb9gRV8W;snWO%=Q!z1L-XupF{H>sKs%BXMQ4S97&C2&{Z%O$J&j;B!zHOKaa_ zbn;S@O5L9XyX+lz;#DePgFat9@>eJdS6qKQ#FYcDbPAIPZ7V@$-1W~YX(&Ee$zVDd zPzb>}N8(tyD&aH3*GsE}5d23=BD==EOp^XJ1Y@LGgYyG%G2z6Ezy3Xevi zW%?UqJ+d~K>i;C2E|vkk9A=eimC?93%%%HktR3dGyk2c6C&1jjEe3Mq7&Lw^rlk0w z6ZG|U?#wubLLVbZ#HIBZ%rxKN{_+c9#!$pbUcd%=Z&k9hYQ*9JGZJ7Z>w>Wl-TmJ* zT#3BGCFU&qSmdO(pJGuYK+d=1g1g6~u+eLi_OwbY^2?S}ck~m_LoK_S@*Gl7YhmD^ z(?krCl}$-6iFAWsQT2(Vr8zjJPf$?ZiN^0Y*mpdMb!oERcz1PpA!=?umzO5iMZE8L zLk2s#LFB>1Td%aru=e@y&)Om3SQ@27a(bZ~_8dryY57!zMVyD!+DAjM|DDQBt>tbA zd%WaQ&RdIn4{uvlcn6>dcgP>Mv2KXe)|)asTaRXsT)Rize6XfujIKSS8}hIB81Zv7 zV&BwJQWt#}^j0XUNzv(sN2Ljeo40{B}A5T`3W}T{bn#;mf_M?C(8xDoba^LLseL4Gs8SI z5QSOM^~G--GJr0$;$ogpDQc*xJrO+_kH6Piow`+$z{}*Uw8--UR4UKBYjGzThu8Kg zI;FcC7UYnzUm?>pJ{ybOV*f#-wwSW@tH*JGarB2KqqUryB)_W{00j`=^hD_w}U?rb+N z$a@p(&@0}R>anKQY_+uGSEE5tA+){Y)JQr0-cMnoG8)J#8UiO=-=|Fl% z{2rL+;9=EAJ`P<_Y5rdmfZAI$G z!hwH54L1g5P&M7{BXdR^x`msFC-EhN#f~S}NUtBh;&+R84~;>7-Y)}tT{0p2wxOEg zfjE5rXhh~EZ#44GZX_&cHLRcDb?zM5xxm*HVsH?cr>d=G1%x4M?w=`mPH{0-mL*3vV z!Pz-1*NYEk1e$-IY{oz`p3k|K-JmRbz_saMANt*Md(~yqf`Xz^cmELc@QXjs17qj< z@X&{|QcSm7@!M4`4W1^VefOQ++}wUNXl7f9Jko}yYUdj-631E2?Vo428bH2sNzSpX zHl#fjs>7Yz4X1B*y)hLS#3SiE-N!$+pVC#K_w5>HWix z15~?VznWf+X7Ui)#hWWNZnojknMIj$`fiY{`mySFei)tGDMx(z+Ay|x*(qU~04Mmk z!}vyru}hui>Pi1L6f|4g9L^xX7mdC9nlFvu-0oASOA>APpyOXe>U{znk@aJn$s57i zcd)nlQ!D<+WjQjUK;-k@nmjIF9ziAbikzDztw_*R3~f9~fENpgg~fMAko>xTUH=0j z{$wi6SK}nW4-uvj=bt0UK@mI9q1TEQ4@`re5$!3Nne4`fN6Y*>1@r5Fy}Sr;I?v0xn_>i|dtQb6`?R96n@Udj00GLY`?~#I zhcPb0BSD$Ck3F~EEwMS-4f?0$()XmHoe#H$jIr2DUk%_PKF^&r3)*1 zM%{+belWdeJ<|h1>Cf&TzcPpyMESY81&RBK>+RErp7g*9X|!gS_W+^`@AGfO_-yNm ztyuZ>!l-dYpkIAIhOlVd8{lcfd-)a{h6;TU!zVb%xY>ts9k*tA*IThp;X%(w+I~26 zEnh%Ewh#Blx%p|twc>~F3z?-W{m>+7M&QipMP;wkG8Htfs0u3F$2td~pNx7WfwdPU zGML$yZnxmFN!5daO7=w}IuJb zHapc7C!owS`m{@DA4XFfn@lJdqoc9;ikQm;2+Y|IAG+R;{CD-AyyY!KpDL;$kLU^D zmvW-Mzuu4Ea||=Gh=h9~%R>RhgbA2VZ?h#*O*mX^^Ow+(gT0TxG1vM{z+79!3gwYO zeExN_-Lona({E~=ZND)AhlWjR?1~1_rKNiFplb>i8c$x)W}JXKHLP6}JVV$lvwbA*4?H%XGXT44+{bj;~s_V z>lr&5LBrVcWv`|BkvMpNtMmGX)ClmgY*1Z~8Akh|KiYe%)1iFs)W~~@VdymqxUT7A>xXZ;Lva!H1wK)KrEFyQN^@i~f7emEc zi3+HAl@PMo+z+*JUI*I5hS8lg(aLV88oC>M8QGlrAeM2D`zrM?S{|L$NhR{)IFqdO zfwvcY|2$*fT^T~Q*EjUyWEvn-;Ag=eBHxxB@=i{qdkFt@yz&*_(*$i2CttpaAi%GE z_S!!ShS1kFZuiNX-8GjRXxL z`EEvkqgN{gDNh*<54J%$1H~PafFZmyczE&AuU4>({$AxD(*pnGZtf`y9l}e5>1nEC zZJ?L9Z1MYH6GSysMGeLeVc-L=(+OW&p}m>9X)3A#=ASUxspSo!P_>b^nq4b+`;(F9 z4%ER~sD^`T?GWxh-13>pYk^cB^NtHAY9Ucf)u*&`2n*{k=~KrO^%YSr6-Ig0@XI|l zNwaSVH6G1q4J$W+YoJ2JIsZyn*Yn&K?ioVnyMhtqgAE`w(HU{-dl@Xr+*+S%7{V2m z<8JOmU4;5r&0=3{324aWT$V^1LP}|cCr!Gw(5(N=>6TUza9GFJ?K%wMzAN{Ry>_bx z$G}BjG2Q~8tm#_nkQ&0RJbAZ^M126I?So8CiabbX3REoI7)0-hM7s*p66o-mi%|WP z4UH#U#j`U8@u+s?nVQZ5SbVppb~Z5s8XGenoR=BI?NV=sy&Ac2-bu2tQ$7VwHRVwF zKN-MsUM{{f*D|4Wx)8{w%e-00X&(?Z*zf=4Dur`>{9B{;4Myf`{bK`{QZz7 z|L@*-D6DDHiZ%#_=@X0Hv=;rSoERv*do~(Wy6ZU07UEi@;hAd zLW&Uft_15|%yikTn1~L5pvz<{=0d^5eD>P#?0OG2`&k;U2L!^h{b!Nf*HKunBe1Z~ zxd%Ha?Xu+TgCY2Ht5gzGJbsW2qIvtH8+$`k43kzvp+$K&=yU7`m-#876qof6$FMUs5_!cX@A5WFRX7xHXRD~EFM?NJfUx3tMPmEfJ5_p%lf(6OFSMZ~XR zqOz-_smQR*wfXgR9WD(93)kEW#$V!gZVf}}nCkn1D{7%0KV=F8u#R)Xisy&uwCxP+ z5!ib_XSe}ers2w4Q)b#$wYQGeKow9fVEd#4{_sU zEYoOTBbLo(ePYS40@<^C16zS6Xr!bNHZjul}YEh6E)i$xELyz{rv*{KrH->fT*@*}!=oq}!@01k$o0EnsqR zjx+~rCldXhxdvj5TiwrFl)3Q0pX*vEG2T;=2?q(q33&f+>p|L!d64~9Dp%)19J1b1 z{ntm8jp6EN57=JJhlsJeKaQq^peOBy?S^Rgw_ zvLw9DUQqzg|7Ka-)fa%^aNT#42P?47QbMc#cp=2T>20kCSdaptdK4K|qzFy$r}f=%@wb56<#`1eMhcb|MMns&_|j7TknD|T0R z(%!{@zSr7ehk;tuGozfzcP@lZiqU!Z=y=HT{~|!KR*N(qp(1aIe)lf-UR{5f2p_Y* znY7l{qLXsQOWN!LxETH7sa;(X7g^IS4)U3baNURp<;wAJza*~Z?5TVdetJH0ESSjajT{bB z;Ejcj>DN^fv6;A$?;*i>C>{d8of7-?APTY`z5D)UZ#;fH;d^7Q_%V!oHePsiF$|it z=Ijg zx3R{#t@B2LuzS{cHPE&giZh*ew%2me!4t;5b{pdQmhAX!Sp_T^F5VGXE5f(}v-YcT zHrS=1eb7+81}csm)H?XN9F70P2i6nyRxB6ZK0fDM2PFbe^{qcvqZo}7t4y;8-le@O zv(LN%8qYRtKDk_n7wtdZ=1lj&gowTkA^Ii=7{5am9MpjPCMPfblj)N5`F zu!@zZG@-BezQkKs0&rg3w!${41*jW5dPLn@@L+Uh-)wadwo9}$k-M~lw6y&)1+flI z@25x~bqYo6!En=E#x^*?KcCX+-HtwX*8Nfg;pnJwng4}*8`O&9C`C#K#>icJvuzWN zOY*xPPL&hS?V{%|Sz30Y!1=eW8EeG&jmQMA67`#B>+8s-O#w zXamtNvf^Kfd|2q-4Y`!i6kKL!f7hYZ1_gnaL_bp_X1}~Uy|*C)uY}SM(Z6nm4~AXz zSk;N65z*utQaMP{9G}Z;&%#UuR@(8yh&kN2vui+B34?e#6n70`$J0%Aei2NG6%FBHzJLM?W zzq`mG)C4IkX^Ye~E%=b_#t$~GY8<)#hsTtu5l*oZ1({mS_=QU2b68&up4a8I8lA3( zGIm>Mm(Pv(x?uimlW843W#cs0a;k%c1l_$P;SHGS4CnZ_>hae3@*fWGYv3^d9@90c zdQ>Z)XpgaPL_Ym{M`q4e1HWTAneo3`ycweE{dcMfDO+irw3^F-I*-FQYOw~tuIMh% zv$tShef|N(_F_=iPR_PkszwJso_%tPt+>e)V?g1X4~8eBTpRaRqetS50i|Xe262!t zxYK3>G$>FnCspEc{(GMu%eG_i()827%|x&`Pv@#>T7eH}dEC-jJCN|nz&2n0F}yX} zcWRx;znl#6(UW=If#c7`PbA4Wz^j=`5xaykR7_0TcQ>^YSBFU>=8M?3QHNQxuUW!zgud_*zc47S*bG{>6B3AN;Ib0`{;I&8e#+Qw{ zaQ3BMzQd;s{5G6(#zCS4QQlttV^+s=|IJ@l45k4bQR(gAYePE;O*$< z0{m`0WXsQ3j6bL<|0)rA_P=UpNk0V?;|bES%o2wpJnCZ+@SUw2w{G^ou=-SrW4dLA zynTfj+5L=qH@h31KQA*&eJMwp-$7x*w1sGu5{-^TUUJd6eO z*}XmJ;kUx1wo--4Q|tPQ@%dP?!xtiC)Qj}OGNL9f)mSeou9Y!M)Z6j1FCG8Yi+v|j z;?0Tp#b;jowh0e$z1Dk=?TzijPEsk(Ys7q8eNuT<$Tt_iXnt;{;OWO~in0!7gBskw zW`ET2OAc~HbyQJQ_G7Pud!~9&4USoAt{S=I-~sJ)n@Row+uOaXORPB< zf0|ZVIA#DNy0&x{duni~bLi2N#cbSV7c@KhW&pdrJY7u}YVgLfjLUk%**HE}_KS{v z5R;tac-6nx;Pz*#FQ?|S(W2t9ec9PT6v#=WI!9fLe;HyK?=j}!sq^)rcZ7-jpsw35 znIp9r%TnU}&mjjrI$M6q?;pgEB@a&O@Yf=(nCBqr_Z-{~63Rb@1GqtDFH1)pXYn~S zOGwT|`vv}kBRiR64UrO{ivA;#$WMN6V8w*&)1|4`S zksXDOJ}e^kt$5#foJ-V!WHwNw&2N-p5qYHRUAq#DZM`LP`88t5-{-7_cS=zAFt6s) z@lxD#i#s7Gx&xcXj*G9j6yl7`i}zbZy=F#+^{ETQ_c1E9?2^TWJhX(DlQPG@LaVQVq{SHU>(6pN2BzTt31cCeehsOTp#el#=lu+lw$#x^ld_Sk=7l(SYyn zTwj)+jYevpaNWTh<@hFE*ocw59)mN#-#32ihg}C9Oa-He=O^hhI%W&Cn0sW_o>$)l zgN2SLWj2?isQCBL#e=n2*jmElmgNBa1$t!@)8*J$zB;v?QG=dF?kraC0)R56Uij6g za^&J!c>FWG1`U5c+vd@Z0{5PbpSi!vvDs5p@BND!+~v-EZMGB#yhQB$i?jln_BiPq z``2QX)n(@8e~EBP#B|TeeHF+PCS9KGU5BOmcdJ;xCPTvLjc6l^3hXa9JwHRJM=6;N z$1`Oqkg;;x#)oKsBDPYH9~$vgYW`G)L<+oGe_6CjM!e5n1IN_WCR8*nS+2`Z0-GU0 z`aQel_)P$uf(lzO!2HwWa_R&q;J^8N=SMjzxc@B?wr)d-8TLz25iwxzj?QMpek7+c z$^4WP9T?$JE<%|b1_jIfJn@)sT`H+uWd;ecHuX3117^(V{DEup!HxY$2o4oyG;fH&acWQz7_RB zHht~}r{ps9$`Rk6ca4CI$%HrC)nT|j)W~q|bt#dLs*kKA>MMdI6Ry5%kHtMx#Z&#u zB?$5?-$0RorS%-WkxNM^f8VoJC8`*2f70YSv(bf5*S;SQtV_o$4njuBQ-!!xs1wX& z--XnHBpday+2|sTR=3jg(eWX@$YVc5YTYA0J(6TGQ_run1+NKmYaBNx=GmOT zZ2`Xm@zqP~88s*3y5;!$**~=yQ})LWozoP8jCIvd8jKAX^7M!~NkIt`t|`8BBn^W= z{~o%T%391&;s{v{CH7Ih$Z#OJmL72h;bod)njd{K>ar_j-qTkm>7uF#|fq30NGk4rEDc~Qiz)K z=@I);(x0BDBTvM}pd)=GLzTG3W+M5;y&ERI#EPXGV(`v*-+@f+DjaQhvS#q?g}~V= z7JkccyJm8mRR*b$S3!mox%)*yp76{+Oa zF{rVO_}pS?i!Jm19}@IyFi7fstjE+C>>inMd!=cKodut-gnQOtOvB>yDB`(o%1UHp zMuagkoNB(~msW#YEKEiX?&Gk0gXc1Z)iqq{w`>)|8a(XrG5SsRI9w%CbT*`Ps3pfI z^!sBC9%#GqxvFX$oR(ijbQlRSg|D~wpek~f1 zyzViM8VAjy_MY4C9N_GlqQ!4w9du^?#LX9G<4_}kKJKIx-{B-e$=--S%!ljSNb4mg5@kZ7DTGM*;H|D&z7%>JZ=gzIU zvxI=bk;@~ui2RU=-6yXVfia-}YRSx7_ZW&|N~W*9Xuze=k$CuFh2=rvvO=gnm)lbqdV?n6Mzy|GGknx6>&Xv9) zxIiu3Mp7IL53l)Bq&;oHE>cs6zq^C5MsuB9>vs&4(Xs|+{BFU!D)N4T0>trqZu6g> zMFUw)Cl&c}3r^oR&JtD`fb_4U;!M7gkn0!~pzPa%?ke|1FY5P$AE_eiLTnhk{!OP# z{j?dS7}G-N%=_T!G`4KfDr^+LVcTF(T_BVxbI(wC^vMx<PHQ;BxMXdY-mD#vkbIn>8&!)o8gSkB1$QY?3B8b-@Wq()&Ep zXmilyS>2F9SUWgZm*_3`Ibm`4TRyeP6ny?f?rVR48;I#O>Ew?%VC3m{)tM7{U3 zgOP=AuE3D|7NfX`I=so4G)&@X1qnulp)x8v_%X%ZeAxa0B=qR~5?E=0NxP+sH(x#k z(od&VK1}+-HTQ@2%d1*ohu4hH{7f+XX1x5duRR1Vka0U5bZdcfeW{!m($O$Vsg|-r z6#<9ho#Xu^TA(E^)wA+O0#H6W7b@@~3J%>oc$fD>GaT)eB29gQ5%A%>@j1n_jX?69ZvP9; zN-$uW-w7%XgX?cET)uF(0oEfWg|~lH19dt`ss0HDMmfeTTfce`m0}9WUaJKiu|bY= zhJo;PW{>Q2P#rMKwm4L5)WiAdh^N)${y^{hnW^2m7MQ-dHiwWmK~M8Sfgax@IMElu z!F06-7(4CL?{l?)j!}lo@FyQg_!eJ9N>dH5Q#AZEl-r<^m(ly_Ssw^~{&eD}Z3S>Q zah>OJ?tpJ{_V-Un`+~NRNQHJ%DTwRDvW5}M08h6P38gQOpxA{{^NArCe8D?(GH#&sdG&p%A!t#WhluE(hEUc6zQJ>4D&=gp0yo zBH+fQVUBQtG{~cmBNq|r1ui+8(qr_out&O1_T-N^$O><{z6gEb{8Z%3{=5V@b@JsE zGL}%d_^L}VO1U5Ayz_R7l2V|@?(siiV!zp{xpk1O(g573y707jIs*$9R^g7wcu(b0%^;028krJ6?Ev2-caOx$xb|gW$(EVjPM6O|H!0W)(X_ zQ0KkRE+(-6=GSy?c-N%hn!%qixq)F=yw6?j(NF}WO7%NRiP?BnHYkJX(Fk}B9W8XP zC;_KJ2FB}n?o$3WJZ_x;s>mGD6D3X{ja8nh@| z_2eQQhlx$Pps(&#K+V}C^{c9us1xV$HkTWR9j0cq^+ zARx3PUj?mv5BKxYHR4BG&8wwew+(w;)eWY&$05z);=Zt(rC=@F-+Z~b z1N&t~*=1(O;QF2<88-7`*m2f3s#`}46a5&;={5!*>sA%T?E$;9s;gw*fCz( zHwNAh4}O%U%!km~C@N3WZZtppwfbJrDC9)f3>0-d`0x|AV3P4yXDJ!#JU` zN}`3dRVW!rsV9VxWEBk~Av-G(+1Y#Vy|-hJ^Bm_Kj+v2CzlNkFq#+Hf-}m45I@fWo z<2~>9d7t~fKM%TqZlCmOA4D;))YH~yK`yHo#|l#?_VHgRUv}sNefiE6&#F{-^4j;fTkR_CvEUxu++_Q$8((B9 zI&#eP!1`N;4Vz6OAz}<%e;w?_H(Z7M`vZGGV}GlZdtVSt546yKDE48+jOW8rnH~uI zTWMdK?F$AharyTZ`mtl>!NTxrH}pSRdpdm24SdCBtcwH(Fsv+;U-xY{6g<5fDiLG} zNu~Xi@u2~fBj1?xdEO1)avDB|JlQe-+CQiM8&B|PyHfIj58Ytp;33V|ZiTORxCvcs zdxAf*J}|Se_JB`P*6PuG53EV%@YVV81jR}G3qMcvfMUwYb))kE$n1K!cx>$nDmFA- z1*;wq_~x9n!8!sd+MPGuC!b)_+V!db@_WGH$(K)j4smGJd*qvS?h}k~R+Z!f@esu00>vmcj>5*}Z+?1f1qwrM-P610Qdt)l8lNbS3BT9_^Y^pY zF9kJV!*-I0rhgZTGCZ~?baewwJ)^0_uL-$p{7sM9cH(i3vpjakx`C7=OTJ~_f)84L zalh6l^!(SrdC89fRSBzIKQ6SPd4oq}ni35uvL4bLom~)TrggcEiH!f=O?KTpMMas- ztFQk3?Svy8bRS*9|Gr`BbQ$Ah2Tl%kr*1gd3BHehj=6R&zn7Wj2d ziJJ_YEyhilp3|`W@x&L^(K_Vc`q^ciryXc3xvx+BA^aQOzc_hGB+T=7e}0g-e`ppj zZF1a9_@-BASEmwdQTPW(fo^ImJYHWPX(B{N2Vr}@jHm`1FBIJHkbB{v6M6uXRHD7C<+uri)m zemc&6sZ}{$l7XGiHX50oXaPBy##Z5jbTsU$FdzAogavXZl-YP%;D^Ik$J;>1%V9ZZ z6qRFxoNu zE|*QnG(%2xf@SU`9o=q!srk0o2)F&GS!+pcg25}y$5u{vqTEV=-Nlf*@c4c?Jou{W9>IvO@v)SoU21W|J ze$4(T0oJo_3ROw2gZXottySE*u_E{TQS7(>|sp7p|l?X)WC?1pZ9<6c*xq*H`-E zuD&xLVzV!w-mxtYhOM+l`Y!h)wdD2>?%D!i%1=15eKixzTNV{lD&J#t1f9z_>wCSt-639L@F4)Q*3I0#CSZW z`|8@q@^|&2+)s{3|IAA0&T}-0MYhKjWDNk+-}OUVB-}Gz7iPZ*EJ; z>A`0n_dPc%)t+VhA9bLKJdo;=Ik z?udF2kTQrYlrO{&^S}M>x_9C9hH!e2N+U2BA>s#?$}k{jwuE%56USs;ghsG7!y5@j zmx{mD$e`E`8-1kV)5m)%*eER!QPAX($6tpp0^W~*@u#9$$4y+j*9J_Y-z;@?8qw`s zslh9v?`UWGmFePUGCackJ>RNZ@T;w?9gjAmR#*jpd@RBdZjWD1M2;yw%C)%Ft_@3{ z(h?oqDe#0WVy*R=f;%_tAhky}V=H6tj5%Kitm>8XMRilrVm7UbsigrWBMd0)Nga@S z>pXumiH>PM>trAPB;jkbnunj(I$-~V8b@Pc7e?Kvian-SgGxd}5Jvb8m1>+k&!=~z zQwBe(UaG*YQ_J5Rh@s%E zLj$snzX{=+Z@jYK)<*dWRt#oEg|%g%zqo;)+Z`&@h;}#mFAd^f_kE+@8xpXeqcXzj zI2A0{=^ozMIfT<)UaxNDhoFMPl}j$u9kA`(-$=gu!x*v{Iwlh4f=ZIiVH zCF^ZviGb*0ZNGSR3aB>xaqHoGiifg787GF~KvP?1g@^%zfy6mB?jujpFQEQM@V#V6 zs@?q4-G&UU#Zf*%yPl$f+}`o0SJPp-SmbQFNIN8*Z!K&5Jc9G5%AJ>8vVcGG8OQq; zLLXc7Kb)I1f`jbB)^TsL;jb}u{XL-;*mpd&ihOVcx&8Ze`oeNRFD#zzooW+wmsJhE zNEpVEY2Nz6)*Nu9rs8?&29TGnmS>t7LVw?wjMHX0@T1Uoew5hHvk#3AcpVr*(`sLH z7x!%F3}MykR;htV>-W`pQAGXnt;IEKj<_#mn!KXDE{F8jg07hr{m8$wOYLe=3eXKr z3|t!uK{=IubQ6(p%B-JAbP$M#C#Ai;qoUccU6|QFXkFf;H_11{wrxB4bd=(_JD_pdK%#Lu~s&c1|D?5YPWJ-^v3n;upL97FDiv z)Yn}!X-yCXSngoC$D)!g}r9&EnwNwS7`4ljq; zrx_9bf^{}o7p1)kf8dNg=g(9+z7wL|_1YH$!lxN&o!WgEuI#PR%-o3~J#mp7b1~rQ zF4#J>p&!ThF6ex_(TP>tHa1V*jfFpP+kLY0`|;cfL1VMBP7Jj-T2pR{1;_4Y=UUML zJbS}(ru2I!3JM+Bu=*z!gbp9D56B+Cx2IIzb4qmK?9Zl=GW9q(A#0Ixa{UvGzNUGK z*Rl&Ax$GK(-Z+@QV={ct_z5n^YUNcYcHwcikc8{;@i20In}|Z?6AYUbli((I;b>J$ zp)Dl=zGe-ZE-gGk3+~^(p|85|F5iTe%k3mM{OZuFt0x9gikUt-GDrA%tq#QZVgJ?8K_t6gKK?kAii`H?310}V5_9Q%&TFSZtUC2K z_bpLh^M44uKewqCHfp)Q{AN6eq<~llr>z}m8@2b<)q+~^3!vw+>kZ=Rm|M5yiCppV z{fh&K;nJI__l5hYQyw3iITu|ByhEicXcco z#36~fzv~w-1QI#f;H_1ce)HGD&oIG;o9l+~=_u{Z z)AvLUxBt@P3$8UlcJhtY78pX~$vD0Kc*3V0>i1p+t061vN>7*65DNAgPP5!>!C(dF z$qzrOK(~Prb6R}}ow%0Oh`JWHrSo=Q(;;#e%(JeNw}x<0oUgo!@O4LUthVVDmBaH5 zkv1Nic$9aO$yf#RD3J@Y-cA@A-`(!uLBWJoKsw z9m`K!2F&M!;nXm7i1}ejVLXarvms?y%IfkoasOwr zvhhqLVa2q-7$;vgTsW+c_tgfFbUAd@GrAW4>^)pIAdw9&+3MemvimXoT%wdKp@-8= zZW!_eWy7Jn5qg5(`mnQS=yHiyHC~fZ{MNBO2VUIz;=YH-(eiIOYDfB2iR&wtvoj`h zAk65tU$ZCSPv+ggeSKpER%f>zkC@2?+j!g)+1i6NrKnEFQ)Sr1=BVu^mJb>0wQN@x zyYVI$-;6^<2^O4PTij4WZeCNq(U@FZ>`Sgp1UBS`mW(42oL8cKTrqzJ& z+jqTPTWCly8(2GHa&go0;;E5cB=|2tYIE;lD&9RZo?Ri5i(;l%UVGNoLAqk_M5TNO z3Ry58)+ThokF7I_H6{&!4)sPRmkHnLjq6t~rVu`a3kkJP_BFwpBETOj9tj|#eHe3NWdYO&Yx zUf#Bd9F+CrD~XYy!N;*Y!_9;rz&|<7O?xy4UlzR|ZhB4w4N;EPD9=jNTW}f4IGKxs zqCdTbZV@`(@-3T`_A+EK9_!3#%*B!&!WA3IbVy#QI2C)c1YhtnpzL}c^0zL1Tv?#Q z#bmGSu(?7!eno_~dtW~KE^PX_d5I36C;w`Ae8|T#kE5$EHWgsz-0M`femd+=z17#X zFAtwc?|;j-rw~Qd3a;c>(Ba9R(LI@E1h3=cnRBRHgjRn&H@;-h!11)#s)t`TCbXtV zRTUJY)&*u^)~{5Ee%>2O*Uv(QlWuCNJf%4EVzZ(8n+_;)zQxp~m5E0dJ8fyii$-9{`tc?#C>sZs7PoBgsz#ltIi89V5@;yY>a{f! z`9uwmcvq(y)a(?=_96VH*5sq+)`b6o%d$(ya5JI%z1=vPKUV}d%#X2b;3~kt>u0{w zQfjf|>4xDkgKT*3WN2|zi0Bs^ZAr4*Ov0tsLOC|VH>mlpQt`QY2}D~Q z&PQ1`pc<#HP5=7MT!#tT&%XMzWgy#+QJXhUYcPmjWYe{w4zK8Z$vRw>i@zQT=I<0D zVRYW*U#FHy*thTfeEoq!bdLF|V}893UvHz?9vCO#n3bn_{#-HUY~zrZ464WC=pXU3 z#OK-S&&ngmUxtO!?qyfA8&K7bZ*eq`gi61PuJTqBKG?%!eFyRzaSJZSN)!3Dj~KjW zH&lUUqee^Iu}zrdhQBHNBs8mj7aSW>iRmvQ^;WH$F@|JrM1NI_PVHIi+2beU-A6szq)YeFUYhwN2dm~;VSJy>j;vEWa#b>i*q#mUM*RJEUAuW-Qg<-jMrxJhv(_d7-N_1KaS<+1vIP2)%c- zKg}v+x&ot*Zrx|A-HruXtDaF_HTY5EkDna7cKQ=V% zRIk9>x$iy|Z7IcHMN((xlPE~NY0v+-pbXE%Cx}L7mf(}VI+FJY17R>HgwyT|k4OjRd=O}TxVr#f*T~F}%Zkx6 zd^GRU=?)x!e5$3(G#9-B2+o#YF@^_8UUDONEw>!x|Kzr0;^jc9GM{ZR;$DGdt-T#+ z_Wa|Z*x_XSIvD=a{cbU?jueM!85yKbfZkjN>yg}Z}E)gi^C znqqwU^iPxUpLSH`V7bhr6anV9U2p%YC`L9u-tpnPZP+>WWhnd&;U|{4J(m+yj1|(d z%(VO#+@a0*Yxgaa@DFak7%N_kq4lAz)ubkjO_$&ZFvtS~j=ZBh5k+{7+t<#J@XPy& zKH++?R0y_JzWiKqg}ClR`_V4vI{dupt_hops@0?`aP&IrQ@itKj zOT%X?MRkf_i_k(^u&Up`23!PlTa1pyWo)xRogXB8b2efbNWs_| zPN9Q_HSoGpU`ww>0(|39UmLocgr|+%yscxZ;rkQa9pwZEbdUbcTf^3gcr<6Ld(rteb`oRO4`iWpABHu&oE&%7Ld4wf7jd|3(EEyeR&Ba^Xgf66Z#%@T0bT~{SH zTMId7w*_VgrJ?TAG4h`tg0CRdCAsNV18|Le_1Tn`g|kNf0(c{mW=yw@pwlEt>^0$AKkCVyLYlUM!YV0DBVN30&8NAavqWDg!qi^CAv-%N|~m6 z&WI7dYbNTUlLDP!H0i@rI@5%!uf@Hyd~49}{mc9Ri08Oc)o_m6jb=0#F7jhduO)JM ziJwl==%5#S$oLtd|BWC1C7tReR+Q!>d9Q|9Yz|&&Xh|Xm2bt#_V1tTqe%q+U}r~991TK#i|V{3a>CTA2A@7c)25CMiz?8Fe786G(^@-fK6xHmzo{CX8|JUg zY^Q;a^6!#;Hi(y|vbW5V%5i5k*S(%OD$oy>h-g+l;z{8^yQe#VN^)SPm^KwrsA2gbNe5h%f@#9H>US>s6dNsT@#6-As1sY zedbOQIt+dU5neSlZf1_yyaN~i_~y@8D#&{uaC%O^LWKsly~9@ogc|JpSmI( z;vHyw*a7Vgfm|~MUD)e-%3DX>5;jS=SJH_6soErP)jg1bf@{2mS|?HfDRm=VWb&G*T@3UtkJstzQb4NGHhRPBZe)Je`OH8$39?QH>iIMweBu3YH&eX_ z|FqT%AL2*{HVXE8)|0_JOOh!svIl`O(w1M7Mbw>#Y_?>!0~&4FiN!=exoE92UnmE( zx?gZEIkiEqrq(-gB9}KQGrH~hSPsE4+|H{e(+VnVYAR=}dN6Z4*GEpCTu|fNDeE=W z3`D_cxP5yMDkhEpXF8k%Ox||e^@E$>hV8_CX~m-m2EOMR3YM+R0AAfh>iPY3klku>_Ske6CI+n@ zUbY)s=YL%2QqVLHGUV#sf*fp?N;qmc0f7&TVsc@ax1nu3ts`E^!d1 zEV{s$u7naV1RiNBgYePhL_=;uw>o)c&;F1g7%+MAV9mdn zxF@zSPV3UpeVb9F^E+?wI?ZxYL8}0MZn>iRI*p1A3%^pO)Er@cos91hpIsgaH{aFpVM(ClVr`D=_0&wwrtN6{I5!k#f)a59_ z3s{t6;W=gNhl~#u%hBR-$o9cl-ta*ahPYAhD&=}%u;*2^Zyyq|eYKFgmdJG!oqLnn z!{mZlDc{dWZcW9wH+#fdiTqYg$CXJAf6xI90Xr3g@1IQ!)vv92(&4|tA~aPN9?@;Jmp{bGMv!MbdmNK)P}A6bhV zT!kNf?oEOH@vSe^YcsL!)7c!mA2qmW?I-stJPWRDa1>*-rz6+F9qi)QYfxeR>YeuH zT+rjzUn-PHML+3-?rpScWWGp!;#5!Mt%^eA|MDlH(KnON_rjs>E(2{5(x#TNNIXkXZ4UWafk!T$amjgD3FpJDoO%}m@ehal zXjol2mj3OVpG&WXBXM~Gq@f4Mck*^*>fJIN`?;QW^>YnK+drjQRp=neeeGWVrcx9i zvif^Pm;{^8RW*OsxCfR-+~14}i}CBmhHdNQ>wvvmX)0;P513vRK6E}_gn`aSaobsf zW4*=ovDm8!Fi{(sNG~nGepDXd-P-^wO<}a+SrR8$mGd((ZNISs<-w!}%ZK%Qq_i^;t)-3Eb{)s(z!H3lHmu zrAMqXak*q7d@r9DZQ zl(xZQ;!rcRG*HF@3QC~Tm~8Ik6OV$)4q5m0nqmBT$K(7bWuTCvpV1F7Xu*8Nf3ssV zga%ssD0fu=SCH}EEnC7-ZLrSM(YqO>GN2up){cGW2Gh}}b6rAR(f&9r&Sz@=G@M+P>v_|`8SR7uju*s(e(xqi& zRhbO1{4(c)$IWK=B4%GO-%8Y3VT$LkEE#}Uz^9r9m1c0UEpia+tbvesuS$REI)O;m zmX~G6n&Gfx)u!r{8i*8qF|dzY%FVc6NqM?_DEt> zKuYVt9yR`0STy9=no&h?R8?g1J0F*U%TVl9v19Szv_Lm10KdLF~)-Iqszra}Dfd*6mLPzD|3dzvcwL z)yr{W;zB%V)xR334@!k7HIECCj!p2x)`V5TI2_g*-?W|XPK9tj5uw7MCb%~Bv9vqb z2WoGWner{A!Z~rTD;r9h;MXLGMdscCzKYNjK{9DjXS&;N?irEC?~#zOO1HqOzb~cp z>TYzylUcQed4X^5OC_QuCj`P>`D(_yQHPO*?yGi11Kzf+tvLm(=JkWb& zX;C7tws0`?qB3s`o(SA6G-aL%`PzGm^xrqb&Idx$6^9bAaDD*Yd9%UpVfyzq(H0P0 z-u&tD*JPXzpT=qN91wq6K%Ta5fx}tRImYhkDBxg@qJgY-eZWE^vS-U3JXzb=U#&cnlQU++^$ zMX=P$P0k|b5Ihpd_h25%M@q1;UqV?4tVLSr?n-Tew6EULUJ->Te&S)}zv433+CLP3 zgYZMxEHK^wU{j1LnsQ3HX%+CmeDZVr+h)jAbjhH(lw#_oONKhmgm2AHUo~2%8O-=z z)yh_tW8hJSE*EisxbD%L=26xJ`2{~YlZC6$oFpdw>T(V2S6TZv{G|~*<>dYgpR7jG z(-3hYF9X_@V|>xO8zEfMWT8R37AGRMvXnd5f{9h|i&@16;AJo2h#4ce>%+S_ZC=;H z={jx6-^TUuVlGfG`(8bEu1m4*K1PBKH)8XTdeniGtVzY~?Tz?XiL>dgBMFW)|E^|A zAo7bjw^nUCi5&QZ+7|Un5~z896%``Y!fnML_g*@;;QiR^(}iD%KG4SeH{YJsz`22M zstE#wABQw%%YB;Q7qAztf4N!>Y}yiEmg?Jaxnib(Kcfy_)crH`J6a8;N!Q$GU|lq6Z4*eXx~!aboRfi(&ydxd9rr8a>3 z1KStB2;N>{Sg>+@Vh3{7ok9 zhCfd%8^=*`CkOKb=A$j(6d`|krK}KcX_+YfN96qHKW%Ix*R(?2wmRx>&I0(l?ejg2 zi!=-_8Jj$A)DGVDd;Cv3(`Q8>p!{`2T0-A>ryd6&&8^6wh8-rSF>h&}XXnY?- z^QXYf^WF@Jo7rHYKfg9PL?d{NUm}^^J0Sn`?h_5)Gk}!ykzemW8jAIbZ}7LL!W@VD zop+vTur^y+%Q{TMzj^D+B8_NZetOh;&?yD9u5-ONEvWfBJLSq%0q)@li*b; zmw~K54TZ&vFXe6Tgim+FhT~Tf!C~T_^v1I^tTOr`$@9FE;N&m3Ni`YRA0H4km%RRea6?2Py`hvAGh@%z!~Y+ofjpWU%g0e3SdB1DQVvbw99T zz{Q^-qjvjJL8oY5pkAW`RSf7Ft~Cs}-xuxZpOp?y?|sB|GAP)6z%J<0e+&@#&`fz( zLCm$e7k;adjCinoYtp7E1_&NmVS1U81I#U?`Shb?+&dajJ~_sKl&hl7&w}${E_TD= zipOop#muqs35fw=bK+gPaRrd>8^B&da8+MEGR-~nhyijAqX%t@i(p%WUALNKGyc@v zG1GB|0m8wtCpI>ffa@WzZc1z;Hn#~ywS4P>xex84pGjpve=QyRhNS^l{$0}hoZSV- z&Rp;@jjn)tRpSn>usRG`DzCkz)dgFkau=x=s-R5B=oU$og!*(f`O|Bi&^*OQ{%2kd z4^+I>EI-xY&Y3K|n#xYletYN_8*dGSt@gV#wpU}B#*cA!(@vlZStyDX)qv|i^N=9J zDm2)j)|tuI3E4g}Z!U<`!tb{~75Ip}rUV3Ukm;twZd%{I2MM*nJ*fC2J-Q4ct#s?$MS=$+q{?~wzY>DWyTveAgbot#z3ww#BEd{}CTF8uG5%#qG>&;fgVZt` z#!5N~#JK0)Ta*+cU-;}7OIsRjWtt18&XItjzvGRdNCEcj=i&}uqr%Ea<=_UWgH6+! z6Sky0tT|B>TI)xJEi0?({fTv8`>;w3baL@BW8FLYuMPlrjdg@b2@QGF8PCkW*Z(wizV&VlLk1lOHp1-eIgLfw+FH zgugD_a*>$R!}~odfH>#1PNwS~5Fo?R*4xv3T@5hyV&tnyei{~Wsa`2lZG)S4Uh%Ie zH-fs(Yh#LU8rt-fHDAwSdDjj&T`oaBhi7Sq?+c){DnVR*wF$;197BYX%JGrroqYA?9Eht{+)*9Z z1h)>G7BTTxk1M6}AqYWVUS#@5ExdBxUziiS-@qm+J(kmP*br3Vw5gS49B|5}~ zc794$0M(Z!v!r|yJl#^~JG7hVBRgTK&bSM~&)QP=TK@c83q)ykPpFx|If^Qhxw_Ujd<8ZCx5Uz9GpAF`S^Ky zP`_MaId`E6)faReG?b%2{=dqvud)c=#z;w~LU#*hUnldf`Nn{n;7iFe!j~PsZj&X2 z;AHZ!%bm-ei~~RWiL~R{y=Z<(WxIw788u|%W+Ms`p)#VCzIRg}1|R(?noiu8joyS` z+EkPRvc5iYR`z|E^s-m4zk-5(+ftKD8R<~VlQt+q>BCi87_Ith2iAF1v+bD4f)7nL zF2C0G$Hr4xmlQ9*Qyp@luea?lay*K=g2*0z~ z^`?l~CMtTROl$~}%Lg{y2P~d0{V3neDr~br#mT~%svYJ9z*+dVrqHJ!<+{xI>bPha z_eJ|(y=5U(8ZNoz`1PadcXJO<78*vTuRW53BI2Cx&35$c$0PQ?8SkG{k+0Im;^IsZ zNX?p?i{I-<%FCNvo{y=h-PQHu&)s5R=F~m&)VLo_oF8s=<)xyHi79Bc7Q_ATDa@NS z`%!%C;Cu6j9Vn7`p5*_&7=&53!+yfQ7=3e1(2wB9>tFFV*BLK{2Zv?8798luhNcbo zn@5Q6vrlG{l|ByRS}2V7V5`^#XO$hv=*2qMTD_bOgU(Xydh$K^=(KCWJ+}}%B{+29 z`lb}H6j2`H^6195!Q}x*Rj*@Gqp(YGb3FWa{hrKr!iRoMwBgnLqkiz>faj&Yl_>Dp z_fm)}t_z*Ts-!}1#zCxBY0+6mAbfsbbz{uF6McuYSNQg3K(WjgmV~FSFtp*s-m7AC zY}Orc{UMqM4j&E=sScs5awo9@$ZURucR>$X-mVNyqLhHMLdT4fw~ZzEwJ`4h}b7=MM&?E$C%18I_=m zk%mofMiXqhB$dU+Ux*94N&9^R@-V&E2rQp9L*Ayjt|;Lm%(QtY^zLOEmMtmu`L7c9 zpO=CL7wJW~Cyu6MBprjNc8Im;Zfk>(!t_o(bCs_u8U%yY;v-Jp9K8IPn*DXX@YVF1% z?|6{wYf+c`h#;1)F`vGYPjJG}Edgm#+vvtFLK{aY79CW~JDOxz)fMR@E)yXQ;q`sehOFoj`me zV%?BZNr1oQ_j78M+8~~HL^SgT zq5t3T8Mq;n364P-AvEeGKhNh^w+aMD)^tQ>@&UG1ujf9&deJ`&dJ-e z{KR7#C~2!VZtNh|o$m8ryjcTrsVw8YPIRDZ8GhMym;nKg**ms8tp&b0R!j#D=RqaKqB+8n9oWl+<$eba+1aX4{L>^_gCwHd+DP^dvq6gK4|-w@|^+Y zZ>;X_F0KddBNNuUm>9%dIkr!->${=i?XOt7|{&bz~apa(BLrDPFxJIgAkba*{n%i@2$ zgQ(ZfZ_tuIN#xsT<4nEP({=Fh{>9dQqF%qkTG+AvDN%>##~B^tuYU4{<-V%X)wZK~jDo#u(N8g$s<-~1|q&|41Z$hpcM zBzWq6Ox0SoG&p}}gJnb_6}~N9U^&HF2D`;PYwh;YK=p^~;2}x}@b6Hp zdGOXKyAI@8=8ri?*T9&=*}v{1bQoNsgl!;v%scf%7S^^Cb38|Omy1Vqg2(x?mh;5_ z_2o5vQ~rWF(9k-cIZEUr`L7-^?bN9Sqoawkcf}jv({VOV{uP3=>a-f@Nc0y6hpx-% z7d67-R^?2VdqW|~B*X^`c3s@U* z@A}i+4VgDq{~Wzn0WJdSNw@B`LVh3L+gXC2DLVpY3r1zI$89&;TdOvZEVGyJw(5b- z9;c|KQza0+D>cept{sHyw&rLi^uU7K+A}4#B2Y2A)f)M>9n|L7{5IzG07HkBb$@?8 zbQTLA{AWmpkDtZtByH^nZ#TmxFG$r6=b0O?fp;5lE`yCRCwBEn++E&cB!3u zLxv`|GVoFOee1qO~zb599wkVG@ zUhamkt)kvpd=jy2!=8GMWk>N|JF&k?`7UA6HWy_tgHo{id3`dB->7*nCM{?`eVn>GHcSNx$p z`-r1}M>_=g?UX*VrxSKL-pxoskIv++b~<^{oHFz4dp8?^=78w1tcyltS%`nvn_ zc7o5Z{9Nr9rzJ2It3Nw5*b0+bl?(fBb^x2l#sKerGk9&o`<9Z{3bC&iKgX3)VE%nY zNxZljki)3zY#yx;y2w^Qh-+{)u3}%IzBwcmy-`18(+bB|?=oNdNCp{ISMLQkYslSK z#!~Fi3RfwtDu<@pVSVdS!30Z32&k3%^nu`9d(_88^zpUBGlj$zr%P@SmQXO3PlXe5%rl-(0cZo_;!%<(9@eC_UY!wXP6G`%7oMV zl%m;IeA`^2{5;FS(bSq*6lc zhcJPnrcVe13;}Y<{$iL|k=7;uCBvu2imy2j2wu1Jrp3^LGMJ8`lo_8#qAwcK=&(kC z6oa@CMUyJ{*)+hZO3bnOnPYUz&Zh&E2Sr89i)*0s`haC_KEeyhsRI&A9k8n)_$+G+ z33fP3TU>8Lm}QU3rCL%!!CmIWg~@sdF>cI~CleT_DGi?0PAcpeIr?$~;b-hw{W_>! zgfKqy%;!EYjp$HxNGUNl!CWZ`E2%neOs=wzYmpYf-GnP9B6>T3!dz9TBlB~FG}qw)SpKN{SOE?KK3 z_M<|R{CM5tc7WMCQ*2H&7$!f~3BN*v-Y-QDQoGxLE!F+@HeDKwC#G!vN^qu)*9+x- z|J@3~zm4QK9-%>F+aC$P(oP5*P8F0FXa#XaO$UzORM=F@zQ2ju1saJLjThxwfb&9w zog;+`=`k|<8oL<49J(oN@mj*7m}G z2K1s`u?-OKSJLs{a0eXr-etm9u?82N=}8+dOVS@TVX2S;i82_J^&xs?9iL(z z>LnBV!R+w2Gi$w|Vy!=Mmf-Uix=EkQOz8mHP0JQqN-soF1!At{)Wf-7@&&9J#OoW> zc)0j`!BS7z%ngaTvS$YE2eOD9=%HZ|ZI>P>U&E{ai2ZVLTu*H;vFJJ96w6OB+5o>@(b8)-Q;0}0xpN+{&fXLs^eHxWeZGinT z0n`k8Vs29i?*RMRF3_J{_mq0A0mf-f!&VnN2)(A@#lD-Ja7`s#O#4Oy7@zO5(BvQzFc)kLy!s-9@ldrUG<bnAa);L9G$S$aXtT`f;mZ0D>8YEY$4$wo3{D7ZOwU88`feD>0fs5)rktVwz) z+Yas|hOF{y1Y>pwgA1z!Z-=x!qLi2mdzJg!{l{_$t8&_N&-6&}Qz(Itsjd}L>ZwhE z3^M3>{&h1Y`j+RkRDTz5Y6YjMA{(1PGDIxrw*i;>oOHytH(@VDwA8(}) zoQAdR<-ja>)8ui1cP~-@e-l-RB<2rXjeq@c!Y~DVq>FB+h_*xha;Sc;SqGevnUzvn z9|!knBFb#H$#BO~lySVK1K4Sexm=2sszE{E?l|piLiABd`W3lt7aoA>=E=aK zY+^sO&xaLBP$B%Xi}k=T;8D^xX&;9Uctp4CetwJa*C?*F=IeW67}t|@Z8a)*lm<QJ4?jRQ`9Q^Qy-MpFb|60_zbrAQHwMSg^gIA~!du;zc*Y){$ zFQ$FHN+nTmd#Zi$5}<;pag&Cpei2IAe;dB-#Q@W7vSxu}M1R;iO;oL@6yJ@l?YIL( z-e0}P%ptG?>Vs4tI4oD-&AOmBn}2k}LGNEtWrsRool;n>MsYQYOkdpEOw>gdBBwJJ z+9(jcZR4vILifr$5O?DA{$2>~9^bI6Mu7yg)!zYsNGR-e<>1RKB42Ot-oz~nAt&HU zbA56>nobp;Rb%gi4&L0NplmYiwlCeAaI6vc_c3x?jr+h$nVJ`s)((=VGeM!g329$f zrlRutAnS)n?1qFkIL;s8ctWHFy9m)=?FIzm$wNh;xYDNR}gtGJ=D8C+y~hnv(DU(#Qdcjr8NX* z5SLQ#ZTgbc2dffwsvSQXp!Pqqli?bXJNubgymYG%sNeC&d|Cr^<`_k?{~_k~ac|!D zii6-q+;!xsc4&Zizn?EL*C77KR3h@Epcnkzulzt_{k36i0PQd$eiXI-C*BL}D%B~* z=?#$5bx`)DF&PaazZ+%d_P{awvzwKEHb6rJNpzz@JMz;%U0q(+1C*LlvVXCJs(-fnAx#nZ>>|5J3{@l?KV9G4U+(x9jaUzL@z8t9@@L>ZwW zGRw#&t6}fG_uhMtV_fzQMP{^1l29tEe)sR+^E$6{p7WgNxu5&GuFvQFiHIWp8pYUq z-#k0Ppq;E3WZvu{YvQHyp#~>Ue!TWGr-MA#PSynE*20cQ@ABg|RU@s!^Z0GG?ZBxw z^efJX0(?~u1{;4=;KPx}n|@cffqCiewp3%XZ*sb};NL{_a<+LdFXXhsUSs>{ZKPhG zc0c1;VqSvB)~K!b2a@YP>t~MR_6CqD$bA^Go$%rWIWv!%kmo`l-QE+F24IUJbnk=N zxSje&Q`ChfIQye`kM`w8xYj;7|CKupAJ%d03y^4pV_b%ndkTn-%;%-_gjpOqj-2D- zT&*L1P&$_Sca5;;gWcNPcnB6zP5fZ*t%XQ?mK*e+$$tG{(3YD&o}lcs`Gxw*YS`;hf-PT{MKaPS4qY+#BDeDRRW<(w}EIdw9XmzZ489q!)Zlr#P{4V^Rhu}xE{2>s1F@K69I$Go>wy)OW^X%eVvJRl6S0oC6M=Q z44BePT#jrmf}H(_rY^cuVDF>Jo2Bh>(702jP48*}@Ha^uwcA+>?wg<0{OBa}hmE68 zwOI2YJFU5p&Ya}HXf7PLI~5OuQcJ3P59Yv{^|#vBX_ZisZLjodZ!GLPvU7l0Aqxzy z57cv$d{^}Yb^K<=k#KIUf#Y>t20ZZ|-Yb_v<|*xSpAX1|z;Q!qhMQFBF!GP$zWBZf zw#{LM>C_rc}`3%{TLa;jX!vMYRsdRQ)*ettA;E?|!q>$;yOZZxvN_ zI-HPh{@fq0hy;i`>Z&+3mI7y(j^)(o6W)02r&^uMvGC8fz4h>qXs}>VE4)1%hqEu- zw4Mw^g54nd?qazBpx?ZC;OSf%QYwG_YyB?_wu({TXVn7Z8Q3D6l-)zbCDL8w&^Y&)$8hqQat5)rjDcX$}8gvmI@8=O= zc)gS4zXVzt6nMJe!u^+tUQcsT)3$t1&0+)Q`<*tLv-HEMlo%J2l0tkh^RrBo`10y< z++}DX4F9ome~f)sf(zU7Qa*Gv<9UfPw)0vn)afZ7U#dX>FE~qBp z=V?zGmhlSYN%E*Y>(GYx=;AESWTqhR#-;KneN`B6i^jRSy&c!zFqIcFr{h)rb=M}W z!NF;Z1AN;%37_tDfvkNdD$^es#kIDRm%Fmj-YByBS7|+tsI6*; zI(B2okL)#Lx;#uBi95Hwq7jp~I#+*4>Otp&ZS=P)cjJAgp$=Z&L1d*do6PR7#uF-c zWmi(VF+AKMRb*oT|I6QQtXE%+!j>#)rZ2mZA!mES2Jy2RU38q&)vv~p@ox{}=eyCb zA+L2}{{ViO@fkP6DvX?Aqrd*G8*M`r*M5W(e=U_EnK{J)d&+zq|sH4AjmE+);pVNv)HZplU3 zE~LNWBEQwU7roeF=lE(SMtpUxdTif`v*NeiIk^gYHntN9ddVi1+=;M&Uox8YxwhJ6@(uU|P^tRlr9qh(!hIWp0lD&G4_dpCJzSsh*x?umc5h#>8*f61fAl>c zhr3b4+`Dp1W-M?;(#DisBK#bK)MB^AZX8z(I%Y*jbX|u(iP<|NRyX3w`>Z54$snNQ=EBo+ zqYrZg3d9bXilXZ~6w4N`#kWsAXmdLI(1EUu>X5x1s>V=QfBM(pfe8QY9A}=PqV9p@ zler!Uln1hH6V>Q$z174%mt2R+XnTVv2z|fG-6-LxMgi4>(__s2_-B8MgxJGy6kk>B zYrIi~nH;Y(EuH)Em4KAil6Ev+P>$%|MtrRdQfIdYkM`qx`*OPH#c>!B6Kok0SAmml zy7!(R9l##~hnC-8OT-dgu9s;U<=AHF8p>)ifN%PD4saYv#x@%BdXJPc)E;j8+@C=F z*>d-Of8UjY9&UnLyFv)>TS|nA(l~&wIpx*j>?yeWW7c%A1L1|{An%_4`@Ao=l-x2& z#vbm9h^1=cTeP|K+veE-E>4#j(iSBWe${oIvL^-jsmwCCr*;4j=r5h*VTwmigPS+T zujb(x_0%P?hyl!Rl_tj#O>&7|U$-Ydo_$QsN59<}z_+cZ-jtH_(7~tg!%X~bTb)*l z1oo2m+f=8#(F?@erQmZyJOh7}JbcAT>Bo9)O4i(0H?(q)=PNf%!!V5496fk&k&*t=71DfPuO+!QhxeaT!C6znvLh53_kYW{t)qU4G&hEo|7j7#~UhoB$(lk%z-7(1G%JC%TPcQx_rQop^6bcR|^M}4{ zjYO$Vh65I734iR>m}caBBrNVz>c0Le6t}v}Ui)L#gM%tV5*!(^kp59lNc2Ylwpe@J zWg)_nQH|`IrxFstrqF4TDaaESS)zIb%DQlbS#QbrSrXVJ$TDB-cES()hYLiyI+5A@ zQ%~=K6xez_N9>fTF8-kUA!|L+fhXS^w*0Y7ft@urNiz@bfz(xlqxa|9G3YOcYq1&O z>vW}1$vC@!shQ08Ai_^DbJAjKW=ny8y>3iX!U6DPI_Ntq;XK`Llpj-~A)KCJXBib0 zq9dKyB{?P2itpTGG-)*xfv)fg|L6WV*y-Kde8if}&;O*`oxBncDSz49gz8gZ&)*FP zk7DBM^*Dc9_;n0iPLKF}Wq$_5^j!_7T5Cc%rq}tE+)?l)HT5L5SvJ@>++b!Rx;p9+ zApt4&a1cLVrt~d856XF{pZSt?;?I8!WgjzxVR^?w?FXWJebn;(po?)MYPtr~ob&U6 z_X3pvvTv7w{_>r?IqL@esck{y{oMtsj$OTKQ&|d0U0bAWqUupzeeFkHofVV{@7(rw zp$s~E^%fmo)Zyjsy^G(&j{&WU&Vv>*e_DY!KNlX7OH+1oZ1IC7{`@8)u%EgTq?y+@ z-UU)Hi7M45#?KXvREmsPMk^s+G@Y(@8wF)k-g&3>`Jw&u)x@8ERlu116#Pm3^?6Yg8qS-oPs9+eC8wljpeV>?1 z4XAv2Klh%d20z_e^JrdA$A5p$4Zka@0q;%gdN&%Y@$7=qjMH2u8brq(rXzI?r;hd0 zuU6Fatu-5qW+t8+|EdA)Q>s0)2ddF_XTX1BZY0OCtHmXjr50XZxaGC4whB!Y z85bym`DiP8;8Fi+qPMn~F?@ch3iW?W@yK-+pzXyTM|z!Fs8DN?c4)1{7g3w9Zm1Sv z+MLyasi0bTt?^=47};miS8roHJzR{tzAP66bk;)5L!I_;38% zPJt+wKYzoA$`Po7M`TH!Gqu7%ce)k@g4G&&*T{2y-Cy+jJPYyflF5vE0|lptitxBw? zAB_L0+W=P!M=WAH3Q%Kj{k-wlO5FYRW7fVcjj-+bkb9#oIbTr@yN67x@XM%{S$$q3 z_)UCUPduN8!M)!z)26EM;`vSSGD-+*DcTW>Cvwq=p2NErsxkd}@`Jf~lB@pPhJoQ+ z4obbMJ(dtk{JNaH8~aK9$2|J#^Ebl7j(8WO@$W@7Y6LFnulY2A;DTqt`?M^a_|^5` zF1apDB_&$wI-4Lag5(-~%f#_->Uq&eYOrVrUz#%Mf9r*LUN)D?MA79*)8(@@=)SFy z_BTK2gSt@oulQwP#nG#i{pV|NPq&K)k22|B%2d#H^`_(Q(U0<(K%Redp)Z|Col1f& z{+wG)!;35rRG$gg;NJHWfe}u`&o|%6F0?ZZeNRW5=pCxT4|i*J&j_oGPqF zIZxx%dsmu)W8&jCFR?hR*0^u9VONb=vD>p1*qebTl5IVkJ{k-AmWzBus!`!I#Z>n_ z@oAkqzb+mhj%E%uck13(p{V_^*Rz-=(0}MuBB zi!wp_0gJ7^Y5OA^K=tBnRrW((6An`Owd%cPvRH6SJ?s zQaw^z2)ayjpB>$bKxF@o4Ncv2T>Z3f;Y=`@W8Se1v$iXNs-@rs*V0s6Uek5i6q*ax zrK$(l{Yrsnqel0|krZU2`&27kPjpu{J#Kx@Wgx#xhvkWTBH5%>TFEeE0YjiW?e+`h zkXM!2_~Bn1uH2JNVSJhaSDwyTCB7p0vfqk0j@8EC7pBLqgWJ=|+{wUqK(+$x5>Fau zrbOX&v+uOsg{g3?o;OhWaRu-S+=QK7IcVc&hfn3yjkZLiZ}Rgw!YdC z<_3S>ZelAO%meu!JysguLcovK3551O0nIBklO`=WkQ_U*s`D)p0dU|%Vj%0{IiDZ3?*_*5g8Cmv21n5Bv6&J{d`r=9CC!tyx(G;24RXc z+xR!9f~*tGu61E!P>Kyax*?tdbV6p7`2A@RyCcAk*7zQL)9035>5qp^HerI--P3?i z?{fdtgdrG3$~y2ZM1jcmzD2I%X&_ve@#Oa9`*4sy@Za9HP!Q!hb^HfIDqM6DJi?}G z0`7)mv*_XjwQw$7|56f^hl?Lvj4+30kzNO87e`Pobo-CxXAErlvMW7szzS%Xj_`8i za>9|OPjc33VQ@+}C-beVE$qGb_0E@CM_iM69(Gd26I2RMobo+s4`M64J()ttkzmkJlv$?zF4rHM1O8Aop2i#zfm&x5_qT6niTWMPh&qm&CD{Izk?hrkHmDw)6 z2&;G6`vqj>VUb&BzkGuSbWB{`^|`JD&2LFDYpWFEsA%gnjguEJPlndHQI}!3O}W5a z6v;KYyuN#%zYjFrl6mOJS&mE(cQ-ha^~XMnc^~hBA9O^FWGWE;V7T()&8?oL81#1Q zTz*0zBz6UK%}-R|QG>AU7F=amdS+ZbLNWwG4l*X?T2vyh$-QC^!si&+K@;9l8VYg8 zl}w$Ulm5l+Oe%x9GL%tIllEr~2PvgfMLB;fu`f?P@9@ELR1K}a#&;(ILPd9Yx&Ere zSeF^~r@ZAzXGXITZcj&S!WqAMRK z%kaLkN{8z8DBzdKIqRKMfzE%p=f|Ix;o(E}JANLB0^fBSHqNPXe7Ahj@bSM=TytZ( zWp+0bx>Sn;UB8u~68qD2P2xW^{B^ECh%ExdM)Hv3T`9_+Zx^~AQi2xKR4Nn7VX&?K z>hxS2;hFTT^-Z2H#sr$jJsmqkV4u>=D-oGu^c6gjaO7YimRU=byczZb;qYt63#kgx z@4$Ags=_>+BSOQHA080Z5~;5`orjvTYrIk`+4wNE=v;&4W0*M;8FzX<2al`SwV&RU zi3NU~)otyTa8~Bjs*y}K3fhchyLF{voY<)OMu7_O(DJ80{FsU2X^sZ*SqTWuwHqg$ z?%>1nE|U}QGw`8CL+4e+NZfMH*YC(ZD|}!&DL8hHH2KW@Z{mZ;M?q34Pi zx9RV6OrBVB^PjQ94;E1}wpuQz=NuVjMw@|>TrV8U=kLL<`sr8snQrJB^7%h)gA9yK zHOW8I=LMeSt)ou{-ATSfRG=_bCQ?7{d|FHw0Uz2$+Uuv>(WL0Yiez^thA5~NVnG6| zc1#@mJLZOp1_8a=`B~`6{Qh53LK?jPt*mT1>VkVh!r+bllBz&_ z5V~7Q^&Z(zc#xc@#jKhl;ODz8E(hZwkU`VqC!W-svA(2YMELIH*iUGF8KIQXR+B4IWb4v_&&f(20&*nfjR zX!2z|L^K3F4wXv)(aQfuk|QY)()N!}-h%KUqf#m~>C+%o$b@Dzl+0oGN|>f>N{084 z8~E5g6J#>v)}w+c(9WJFzDqs@9QSP(?sd$860U)5H^V4|Gf*^LxjPm9OqsdkR31!N zIES|;P=I60K~crmsql~b4bzUS0^&;*Y8ELa`3Wi}!zYW0PoC!ZMA|?hu=Ozu+CQhj z04?pS`)=t_^#`r?YZn0%jUHRlKjQ1SJg`&oMh3`;ST$STDk45~z7PIVb#UmfDATCDj=HeC4gwzaJ-7b5-A8Sif+dfCXL-#__tp#7cSM(u}ez*58Y ztIZ8S6@LFndshy0*@e?vf6j!N_L@W6;~Qad&-DYB)pLPLlghH`eL83@E(nyyAhdx2 zQ}s|Tuzu_kc=J6KrrsObq-!<7P&2J!y<8q_wLj3zdN>8HTRg3l-P8=ZV!DmRlsw>6 zm=v>PNQ6O3rm9L+GpsK1D||UgbTv2Z_GjITgMC*|1Z{F|fg-`E2;J&@@bYfqRWyi! z=^E$k2E|sO{NTyhq*eg!C+71-_eaCM&k5WT$B153b+}!csSw_`zx?JM5Cuo985NDT z5uIeG!`tyCavqg;@IP*if=Zb$J14&q-RgGtqk>e$u*=Ej`(QQkoe6yutm^52y+Nnt ze;zC$`<%p}!`iWsaEWJS* zDg0-b1iwyE3ez~dVX#_Xf7ZMVhMmjL$WErfi?1ARx~<)?O>=kBI?)*%^<%$yAUln4 zz@P6ssMrH_f`@+PU#x)N*WjUI2-)Y9Fq+@1?SZ{cBhj&EDj`{bx5L;s3%HA>lf%jU zSEj}GM}SZjq|$|5SoO?-mp$P*a}vFfN?oGF&Q%R`fm>Y^obuproNd)3O9powk`gE14RqkFmGJHV3p|KVWMQYBz zZZ9UWP97UvpL)RI#nOz&V+sh~Wp_E2Tmr%aVU0NNCrg>ZA1_cDM20 zXw#)0JJu84^xN0nUS;5#$l-d2-{!WJf#{FV)m*ze;c}g_-ouc3@J>6X;Y;4{`j5BPUcLhuwEc5g)_8LrcmKaWsnu_U&s~F20DD>`SMT)eBE((qvuQEseX7w z7}2#nH&xyRWX^cS@T2;oZz2brmjiPi^|P}t<*QL>r%zy;2C*K1N>W#G~snQIl$+;!`oG-C;T zS58GMni>!q5q8!%MRcg|{x)5ZFM%fhye8wKO4vew{-^x$GT0%dHey*zIDMf$$&)(e z5KL8(X-a(Ob#gZQIdw~6e(vFt3^&Px%x~GnL;7ZWWZXCpNSA@vN~oF9Y9ag={V+sU zuo$|XA5Ar0FNZR^kKK%Oxe)u;?9cHxg+za;+Vh+E>|Tm~4PfWZ0;kQr&GY>QkUeO~ z_lCL(zA&FzZEHvanTwa*DJ%IvRjZIT6I2aS2{hfOjFRC6-``+&qEmfjXz^9-B)J~J zzGC)R9IWKs7++e+gI&j{YV2N9;C#}fv8b*{5Tve^@9oF~$6pP*CxhzYxsT|^55+Ke zw7h39pfL|99hYys5p9G`3~>)E9uR+$N}Lal=YiZR$ph&`u=?-2+VKs4VCK(=U)Y%s zldKvK8^!IQ!bzd31&7z(!cMo+*g~$p=Ba zrEQszckuE2M7w`p_Y5Bn=Gx zA2#@$M7ZIxT~<~h95M;OsaH4^IQnnocgZzE)j@BriSl6BmsP5vHkAY)Rdjw08#X{A zN9oKu$<^u^*XibCj0bJiknuNuM92H1zuATGV2T>TXtPLtIFwq-N~tCK+sfR}XDZF$ z(TSJZQIEpl*hO_?mY)=$X})iTflE;PPgc{W@lDNc-yQN`2uyFiyWeX}VqmkrJnhm6H8%=gr%;BdNy7_o`!5 z$FT;uD}s}BMM6ioQ`)t(3shg*Dd_Szk6$@;N8oomj`XKNuKGm*m&|e^O4n?UwEdX+NS2SPf5Sh zH~h(774p4CvO@X;;c19soR(t5C-mZYSx`SY&eMW{5`*69gcGVD_@KBHRYY1cZjs-$ zKYONXn|=mfI_jqiu9Hs}6F_H!M~`y}p=+|+H=(~HS9IP0C872ZOD$aub><(@2@G6*(e z{9B8sisHVRX%T&O+`}(>_GjZSXUSD{zBt`rmfQ4*j>>W^;?ST}1ISSSbqgKO z#C+DEw7Xdi7+pz|Q$yDP*P@P1nL#EdN9XX`-fh5`vrA7mQV73E@v~}oQU+=*BvnZ+ z*W>G8^wFWIhy0RH8`U%!xIK}1mzpKXOU}OMDJNV9Mx6|j#!u1-=TKwGW4sP8d0k0u zC!7kMTP*BhJSNk#wf#*R?o0Z#zc+@0_w=2|ED7(0J7tsL zPT~W5OgnV%*G4Vw(8($0r>g>sflCWBEa_NnE_Bw&ycVf0+>Vbmr~o~E&egntbbPqH zRUzu2~{~(W1VsF&U^Mb z@UDu#CiYei3itpU)BKBgcP7o_!l^CmWx6GM{8VOlw)meoFS^JyXE zjmvDUyW;^BdS8YIREp4|BWKfY&qAPyl)dt=D;S=cONv!oEyn!MxfTj1NY2&i;NM|K zBjLlH7kADok^BnE?5{VT1uzR*YMNhTA!-aq*AEcCbK05H!GZZ8l{-9m_Gl6e`}}im z-cp89k`3ldDtXZPlD~OwHU%a)_i(b&lp}vr;>&#ElTE!*$8pgq4N|NG2UQp=(9A?Y zneJjX2#)3j(lw`pSeISc$bm|<_4ID%B0g5H-f?qr%mAr-5)$73RblUvuF$ovbmBA3 zGGe#Ogol402yt^(qvPs`?>_1@a1q|bBlMosbvK2$oVVAY_os+LFWD5>fQmCC+p<8h z!(p~@x(45g{i(csn$%5^MVB(aWWqiZ(fz(;Ug+9l>l1k(4wPj?o#jYft0T3vXIg}U zH5}Eu6lJ1;)?cl4c$E0gS(m=5m6N&SukCL+%OXIM`|EtnOghM=7_aoR)ZyVTtNDet zVUY8|*L-Vr8Z10!rcKwWLv8vU9pwQba8bM9OqFaZDCmyHiA2=lp4P@5(LaH}o-60Q zc03vGDm|P`udGAHt8C{gJ^dk&?MoQy#6xhS$=0gwI=oJ$>UJ7^A&I8r$tZ6$jMK9W zS-z~p=c_c!?kPTCQQ=-W9vKGtKXQ{+rs}YY<@07~E+62pAKBWZ?@#Ig!HT-ib+{<2 zB#|KD11DEBBzjm~VWlcw+wxZ(dJhV`Wqs=d{Y*5eEfix|I%sloX-7T&Gp_%ycZ(k= zCb%D<%;+K`Co(h&ko=J!%UMgY{-7M2&u6gu1XXc#--voW_5~mE77+;dS;yL<5 z&acG?zce|5Cr7n`^l`hQy`M$H?f=di3-8FqkYmq$rbu4;7oIL@Cfyhq%ADV_+>(c7 zl!Lc)$ni&M_@2A*@jx89*z136V38t;O%!a<-hL>QFZt2lIGAl zyzz=bEa_?t^gdRMzkRb97yg^Gf7wjI#S6hsA%4-&{jTdMlTHbC(NLN9_mTX$ud{vS zH=-aR*65eV&Qk1o?Iy=tS%YFsuMW@UMu7W48k4Jar6_K6?)~{E)fnKqE@fdC1_d@& zA2syL@Ie(9Wsg7=hK?ULF27CY`i1X{M7EZr!Iw6HZLJk3UcN=@g0~MSc)tH}HMJab zlc#mlFPEdw$-5=9YA*0VR!;Eyi3&7Meq) z{DL9pZv^sMoGw=yEWtDMH0AvUM4$GwG`vAE2(MSZjpNu%=FPMQv@)_~_}E%pI%UcY zH3L72G~BJm8OM_|4WCPJh4EBn8JgoOa=A{B`^|h+T%@xF>#M#o ze(_4f8l|4jLMDK=Qex!ED{vHn9*i)bzpW(N0c}v6b%^< z6u8Tf{XTn%{H?4`{M|c|y}$D@O6#&c)zD0WH`zlEl&HJWVDF9Ht7%3sw8ze>izXG^ zMS6@M9q&QQ-rcG@Ed1f!bj%WGVj6TY6qc6}9o_D2A7s=uVxV$6)4}cE(_tl~>(J_C zFMf=-OR6&>^?;na?G&FD3_hv!q+s!gt?fUR4kDSZyy(KW!s@fVZngz!G$r&4m`%pel=iw>EGBAGi z`<)C+7F0*x-BS_Ri&6)K4;5)w0J~^F^p>tnpm{0$4x4(AGto-oi(D1ZwNxvI+{uLS z%+YBjqOTjg+U7*rRs#!_#`m4RWB`-$=)jJcE?k`!jOR$Lh21BP9_{hU0JU*V`OIsb z1!tnGvHDP?}8d@EBaIS_Xq|Poq@h&diMYQw}vh!!m66_zlMU8NOuI)h@qUt z^ep&VZ_Q|J*o4(VwKVrcnn3sGfBq?IIdHx(q@G{M^omQRuB349*X zb?l+wb_=@;gV+-kDOo-3g z)+5_K3-!pmJ;dj_*Dc4f1=61m^~vmPz<_(BMn|lB;L3}Fu%j$3pc(k+6IFBr%0HtG zD%2wRk6ShF#zqtF!K-w|iEWLT9l)&egS`jF^<+PIlYa2)7kb5th9tK>_XVSFc{k*` zs|PEe%n>>JHHXt^{%F633R};S^fO!D-@8CpF8?U zzY%{;9q<`>*#_x1T<+9+)_~vF!YnnSKabvWa+-(u8EyKuO!rn-L9?~^M$7dERN)ZL z;>ae)y>Bm`e_sI+BIh$t`PE}A4y5tqA^c54oi6o59}iANKUhOfn9SQxGa}b zo(Pq~Q0(iwb@mhty|hU!obcVGg5Ct3%PoQ{B?4M{MBf#)GsWxG#d4UEeSXyEcOI}m zi_qIXSdDvRuZ2JMDTLP7H};EO%Z8grO7tEoR}nti(Jim8WB_C0*f;C4ba>0V>B_+5F`ZEus6s5qcSazUywcCQzCk{0ONNEeNEBJL(hdG z)vsAjVCVcOFMfmQF{PS+$H$hUNmS$CfTru$-Fbx-t7?<}B)nZtgy6LyLr`W{WrpraRT3i7~<5xl((7=MNr|P2@KD^OFHz6E{ zzW$ADUG7a7Z&G?>#XJDj#~Zv44MgDBnY<%USO_0anKLVuI|OTrGgY(1g0U*3?7{6P zt*CDCpF1;ODB2g_ax^^PiA%5Ar4H7%;a;bZ^S|@GC7jh!q+-*F+da^EqSolWJE#!vh87rX=mRm`sPDi9v3wUmf`D`r_P*VjQ?up0T{$mNEY>hK<^%8NWCe5>sFlsw2NM3#@%A)-G-?27%(+D#kY&u=A@-{;Psau-wP% zd-Gs1sP|kl?7Kql*TB}NE!>%8u9_6}nxPmX+r4CA9)9%sPUFi-pAQ$-L| zM~M?)sz!qnnM`#|hmyy_DeWO-e#fz@Q}dw${c8o+qy!of9g8{>}~O&eAfR z?R*qZwUf*T{~Wb0!a|_b-;5b2I%$?~4izg0Q{j_(Md}f`Lb!QpOmyvG0a~VN%bGD0 zeXMBC=LFI(kNYlkC*l{;T}(U|p?pXLzEAWG+iw&=Tb}h3W}9?mU7mlrdLter@_u;@ zzR!m|rqI3gPabzA8*I{p~ICOWgVuY^O@`bExmd9@x{nY zNDEBsNl3_rpT@JlX!2uFBYSC;kMuphvzdQL;4Ff-zdsDSN~GYX1%~~{`cvVT+qn~| z%481nZm;t)5#H5U@C^nhC&9HP(&z9ihX;DeDfiFj;LX7s)G>rJA?cn-A5}}ZIyBW% zjVB9m(tK1?|3@gyn=@Pe9;=47o13Ezwi10xisg{Cr3V;p{_hO;yIN2k&^~50Rf=(3 zMdv0rZi1YqrPu!cI#B7lC1xH~j%MXXzHz^w;+A)8c^yR0CscR-eI;Kdt{0kjT`~;A zjIbcJcG9;#$$m&SETRhQms0KrL?vRJ*5O@2SDRpCTjft*l6NJm$k|wl8Th&6i)!x2 zCb+5nxh!?823c&LCYW!@$B9{vGAnJuKUp`(Vk)Xd+W|}6sjd<%b16-VuWW{ogN!%5 zl_)45Z1Fx%fYb}!dk;i?X$EUEg)F;93Z68#+504?8mHopvj(jYJ*E7A2L2lq+{XUI5O~zg2tEb#mg|X;tBB=wGFSDU`PIo&0D=F$Z-1i)97iE%e)v96D-#R zvS@1EN^)TW>|XdDDCoc@y1i8TrxA8RwLa}wE$;vHq~nxL7v`}Tu+h~t0IwPAX-$$h zw%_~_$NiIpE4TSyXBulgJlNAI_xMsRrti&QV){V#;SJSoXGo5)-r}O_Fjp;hy_dxj zpJ&)Nqi7eOR|9<`+RQXOwdn1YP@R5|_@ol!WsSa7!5xdql~VOuTx0plUw&=S@pX+We2zIwT2D#m5cXuh zNpBXdLl>_vvGwvVux6}CS~7_6To}ZqlP}jJb?fa<{-ZB2k4rLg!MKR@J$$Ef14+IA zF8}0SjUnV#xI`_nkPn4lRK$xm8gY-$k+!h5A(a1gRAwSC7X}1ICj(`hkRf79PmgOD z<#a4KsKc`1%4LIvLwlN0R%1|$!(te}v0MHVAxy({b`$mT>1J$r!0Qv9&JOM@f^FEdHY3@5b{IXkj~72$I}69(JQB9AX+;^vG}jYfhp;l5d++WL zXB-oKXHCP=ib_M=>lHymxb}xdRiHf(B{}A58t;>Q+wD|af_R2d??u!xo}g&#Rt{rW zj%&ub%(9=e#U%IitKI__%M@f;+d^q>ZbHWj)qSr8UtqJUpn8H)Ch}z2pHwEcFWy6u z;daR+_jGgK8}pnz;)9XfZ+5s5BX2b9swCHm^>SkgWlsqvwlRt?N7SQMmi};})*zm9 z2ySg6`Y+Ymiilp)hd0Vl-Jh;T{58)U1XW&DV&`7jHOe6hPIg-!WgU5j*S8p_Hjw-O z^jY7hvx>Dyy*@jxCf$e6jg0o;WF1*hQaL^h*5FR(#NCk*Jt#Dpp_Dw;h+F;Er`{FU zV2Wx5xBYMz%F*-~aeZyV+U?5X8*?>CJ9B94EOjU5Wjy8_(r&?D9{1#YoVOyy}Vz*Q?&W_&v zp`hJ?0#DvY_}^*3>j{b`i@uGxO6jwVCpoF>w`{ygy(_kr z!zMJ5fCVJS{vg%^?EyeIBc}G}0GIoNrjx5bMRM0&Z4^?XhrO z&;7w6RpP^wp;UB|*Ka8lUzlZ%h4ay$K9;C;VXUE-Z|JUGyr>ecvhzR;@ID-!*nOJh zb66G7Y;^aK&TWX;?~74TGyeRe=ihdWR(bHbRHp} zyK(!gt!ZH$Au#i)@YP3XMV{QXqS=$(7;DbGqDSW9qBOlGi_OjGBsaeWt-A1oG37A* z4G++w@~*ui)`apWP12vnb)w^oT_u+roq;B;`fQ$518%+dm%FXF1D)^XI369hfRd`f z>Iqs3?x3t`Jg#gQ?Dc{NEB9cq9 zuV?H*`v2Ffi~a3~wejh zi@3XiR#b3vEM}d#O4NW2m=w%#q4|<3xb7;B{(Xq}z6`I^5NRy#tFbQFq-O#xuFWRZ z!yXuMbKGGU69xAi?#h^X`4FtMji-y=*kC1pe05A?4N6?-?4+}I0os{A$D`=3;DDFY z>0`uS>(~9w;he1}{P~w2@1>#x0pEXF*i=@b?6JJudUijcy0*Ibx$gml(P~9);h_A{L-{+_&7E^g)6)G#SL7g@D4)H~og0`*27?W-~iWCAuckN*~@C z299@wR;;G4g1L1~R?=hzYKiRj*M1cS(U)_J$INuGx3u^4Z&H^Y{yf$&ekvRaXqq*1 zsT^@#`I2`}Nd?wdP+yT0AU>|Znk>^BURa`G8ULz)=z94sv7LDq1}}}Ge47SCaA0Qr zw^LRHUb{iRb6S*quT}K*6^3Xm9tqNU7gm8%{3)ytTtY!lw8*8pF_HMDJuR*86Q2Yh zLxbr+2zL*&9ZJn6T#qPd%gSXMghj{nd*A8ql|Dd9QNj32>}P{B~yc= zC201ALH^H&5-iz1xx;3AD71;kesC%&MSA-1bNq`%xPzbRk`#X!Y)Xr14`wRIfrOkV zeE#{^@$#X3PGUI89d!KEe69kwJFnS`MQ5YwC$0Id%8}skLE(mhNF}Ch&n_?7pN^TR zTKSbP8W=Y58(x^H#4?$wr&o_BU_*b^yAOm{V5xM8_V>*yT%5XUXD1noj2<@1>dSHP zD&h6WN4F|GUM>^aJ8OqUjNPswl?m`Rl(J{sunNCv^gh4R;tXEQs-SvhVnY=oKkNmhe~Z?~+7kPuldqYz0XNp|+$d+)vH?bv&! zVMUWDl&D0%=l5ry>s-gVPS-i-^W69Q{dxrtz4BvOtAPiV`MV}flVQn8v~-I2=|rj; zqWL`Qp={?PpF)ddFqdYeUXo5n?@g3&p<#s2Ay>9flIs#_zZ-w^rr_reD@BI|(tA>| ziT-*!8TNU&xv`5SAO|(W82bwf$#cfauU$$8kHjAgUzMYfkxl3CtH>sxK0CPN$VL3J zH(Gf-$(|_d)b#~Usb;X1{JkvEmIRxZ$QyCp2R*h%`CM&ohGP&ItbIBOVy1AjIUZHam5t-pY#c(o|TFZmv!E7WZpcN!U?DER~ z1wqK%{@v>V{=o3uwBw*{D-`)GXGU^(!LhN3?D&ijFqc})PtI!vhj!BtiuFVIz;g17 zyle!VP|)$}`q~O3%hFbRe`(`HB4s5YDjF7d&nj}BZ3BbJf9-jOE~xOdu#+|=4s`i^ z6c;1fz}nBUmqt7Y>7G^01R5m51>63NaH@8~NzCVNuZ=|Q1a%hAk4caqa^7jnQ^Mz` zree$5k%)gMdnK(`lA%1i+D&$A2Lx@Cd2?tj1+P3<`P}k81-2b8c2!O6fUOD2&&Am@ zu>92N2*;vSI9ONw`G#~SB<0QX-mJ*N?nmq;3fI$sSKY5bcBT{VxUy~;Y|FuRQw`-S zD`X#Vg?hj#v7w2KLVVsxZS+XY(eY&_SxO_Emj9)ktUq1YPBXc?f1ST6azaHrWLmHudZ!%NK z-o5T1>#q!O7r9W@6x#>!%zO4xRV0ue9956_zYGu((Uag??*o(mH0SK1Fm%|H#5qGA zpXk9;WvJQ@5)qskPhPs>VMe};3o{wevu#(}_P~C4%t><~Qp6O#-Bk?L8O#9AD`UO8 zu^*UpdcP~slX;T6%)ij;4B(z9^s%1ohtY4_3wbH=prdMCESH%9E=t~gSHAW`bKUPe z3dvVcPlJsqF&Mk( z=^h)-fSaZ}I9hA_fhMuC`+#9N?6IT?%Hqg`UfS^k8Ug(<_Hp3Tskkb*>v_yH)G-s5 zT`H@EH2cYU&hc0j>1EP)nOf1(WC70vpV%-ndHrO?iVsPjl15PRBJnakV^!O>f_>nm zA@Kg^Q}X#fpsQW`G#h5lKiuYbrw?e-#BGw}DB#=KG0|d9a^F1?q92(0V43;uhr7W| zu-*5c>!3|8i0a3(s2BD^S?%q-5xr)(ZpB+EeYTKtQ)VMV~*Bat$>sRt@l*yhzgwSc(l=O=sj7Q=A|l`W5&y20zv zvsAur;!k+}a9Jdz7`6+uE!IhGMEF#2Mv;2!dR-}ibj=V{grSz(WFwO(q0 zsv$ZVS>+OlQyUAgyhQTC2{+bvtTw~V+ONB8JxYL#htm@O>xR+p@3dEj4lWHY*mQ&Nc6tT#Ny3@C$ujbaaB%bf zw4U`Ke^+O7as5rQhoKraF}$sq1@sX{!yeMzaLW8hs3qav8m3oKx+T)#MMgy94c2aO zI|=*Q?l*x+M$0PKP%~P{@UfH9h0V}=PUsVb@)!$mFTS#h?SSVquNxO$5T38O`a5aEAbfg? zt>gQ8J9x9b=3kv{CVQaz=tpN_Q2QdYur=AA1k~&@K04nFN1Q6RY-dYB(a{B^zo~67 z*Py;}aI_ho6`F_L+{2tUgn=rFlQyp$$^9@PTPaK+?|=Y~@WzO(e=`IgrV`>($L+0xVmF`8?a zykkht=37p-<6ILQU*C7gL!}ASoQHlmhgRU*p2g+;LQTNGCxOSll>%1n!1mgt3b&nP zsT{JPK)X`q47Vr+dPL-%blGe0{JArS?28Gno8`ZT9lni#iqRjG<7;tr?gqU5fe?4< z%dzfqk{30gEA$rR zj!{o(ih6i8h}iy%(jTjYH;nB}&!s5Xk@0SaSWp!VpD=6I5vu_HZZ$gUEDDZ@P071w zSHj<~xm|la%Rr@pY1Mga6Dq{;#!x;~fTNd=M(R`vSUgbH@zrm_OVJFzR&o{4@xlDT ze{#ieIP#VIRB{tO@!a`AsjD1*C8b_#x>E>`S9lB;Mw(D>Mf&Z8T{-wk-MwFCkq4fa zIkaBjMQLhsg>sJNKYO z{9`of6mp;vX+H~08Dyec=mZQi>YsAP=KKF$kAYXN7a|xZ}zIfHT|nc|1{h{H9hKt3xpHd`QF{DK}j9Mu3g<0 zD53-ktTGR|39n$Pmfhyuep6I1>$Fyhy#ou=A7~^35ZlUMOh)#cTXvy_H-lk`lcK&!9WEFpHwG%0YpscG8J?F2Zmr){Z zaRdXHT)oGr`K<`l1;lu}b(MfocAcgCtQo#!VchpoHJ|X^X~5^;eJDET!EpZ6W6Tl? z?ouXw>4Uc$^khPxL7mQmT;8NRve*jQEXk$;W4Lsgm5DcS>q;JaAmESpnLlWj)+fSB zR-hDzKn5S$b`dmv2=Wqgd5>0 zaWwdPD54SLn>F)n_}M*Ppbwe&n5X5(hx{m92zUN_!!j2VKW#4QYRke;%?6VD^y0Da zM9|J>O8H=_18NkJ9DFJ`_`EDX2}}8Ty)yn4K;w-*Rt1M#6l^!=TvAKHg{V#=HN_&h zTJWG?wC3)nuB}Z?^4bp45R6nGP`8ewHIBrfi4TA*ef9s|eLrk-C)RD#l z!oo9&x;eF;pMoNP{&D{iRH95enY7dZO%*g5q2X8HP!vaGm=zqx-gEbWCKwoa>i_g8|nH zhBp&FKv0OIrAaZ~%bquMA|D?Zo2iiZNe2+Vz`fIL0(q$xaoPK{2rW zJkDH#J5yHHCZGFapFI1IC!5Ow()7g-Un{}jo~4PN2^&;gymNiWm2z07yAa5gP=YK9 znJn`_ys`pMrKd8=fnF_AUMle=n5TWXZ8W$Tn5S>%B!yOjQ;1eZ+4d4Fcqe#|m%SV`yW}k1{3Cq?CPlw! z$zn`-&n`mcUIp6xxJCL-70elwzl$JyxN!L%^#lF2;E?e(^h0+Q%#O>+=g#KgwJ#bB z?(IcJJP+o9+F#9&i4Ww+T{>a|~zpD@4tbI-T z2>WmL>eyK0r7{jJ&o3>I`64Uh&u}%!OBTyzymo^R@q8r-KCRHT>FvZn(wn6ZVGpag z9tAr2-LGTl+klt0>h%`V2hll}#x`M_3e~&~drd6JdAa=9P^4ZpIPnW*HpJw>X)2F5 z?Uijn-{cZ}V|O)#{v4gr#v-V8pXtq9XagsaI=y-FKCn;}pYNtBgD+9#cEcR)ka2cS zo&Hf3)a_hn3)n{Xn6E@+ABnVshgx0~g{ulCYByd@6E6!_c6XtsL^~MSGzspmuY|`D z`_FP1)q(Y_-0p^>?Vu^u!2EyT%eUyh?I*GtAT0XHft@Vv@W7qD;ViiyS%0)8_Sm&X zU>=Izr8?RMzl!f$%bQiepPUU58aWE2N3Okl>`VLxbrPdgZ_9ym>(6t4*_yzaUtqJ= zfi~z$rLnrBP!4?NsnWtdq;Di0*I63b3Y#mRd=!i)UYcmZv@`db;f-&B@vo&8;+cD! z<^HY|wn+3G;V0* zww`Ey*#cpAf_EIUXab{$CeATrPrMn7_wXKUg|jsW?km|)z^~w1;U3a^`B$7{k(we*?4olN>$wu`s;f?I*<((KI2xmMxjIghqI134RJhEwO8!HJHJ$FVgVCJa=8 zdG9^Q+dVABz1{@5*N^;qwvh>PUfVb9BScZZGPUk?RTI=T3to@cB{{=LnR{EztWcU! zigv(;cse%UV%+s24c4~vPFMFl!MEZ0Q>O%*K;N8ByX$T$ocI%eXJyR|sY~Mnh<^<- zSLyz$a;88*{?cOF>!9J4*mZxGtDU9<_ z=%xTHJd;29UogT<{)J86!qG5u3n#P=`{8KH&SUFO8(`|pivnq$NH`k2>$5+bH(tB1 zm-|hp9)2gDK6Y+PIK18W@L?pG`w!kWUu-%+dp{xTd_P*=yY9;!Pu`>TkDV)>rE znFrh)*&Sy7%oMum`KE4-gc&k=qZo0<;eoB{T zezfp{J-e3uMrunT*!JS%cs(VgC@9!se{&p%lApu!w4W;bgq=FRN7T%Cs>EPxg<6*ro z6=S^FpM`x(2djptwFV!C$dkSilA*F>DP=@AbdHwEI?)!ik_r5XaB4x%(y>=EV18}*~p ziLcs#dW4Pi2^{|&@GI16#B)r)y{Wd8KxOKm_D;blFvLQN_CO=DbO%?enU#P??eytk zzBpLqP4MCsq9Bvu6YVQQB|u%hwRl=T3GR;$9*i@g;B}9rF+KTGu-^7IAZ;!M!~|dc zlyRqEs=oV2=H^lmPV8CmDN6?*PfiXEPYQk(p6W1EDTD6P9^NDQSbQ7Xxbf(QD) zao9|kk?(;j`a|8hAg{`J(n^+sOAAy~Aui>>FXVlC8%-hjP_qSI-a4jkx{l!fsk}Uy*1%LK%Nh z27I}9AAP22MC0jIoue14KvlZv!za&gFi=ALBr(dauu%m^CiorPQY%5(&wHDr zPXi9$4X(+{sRq-TJGw&r)sR+iK5g})9;Lls`B;!V>2hs=mJ8uX^hpMD%8AtD4L`4U zPsr!fnNI)j+v!@^{BMT4BcTpIi`=7op;ikmy8~-YcGtsFpi-D7>7i`DPQ4>Hw-ziJ zqh|h!5r4ov{?4TFTI|jF{=nsPEj0DSo)0GHJ@zEFh`zE~G_GuRDEn6ny`C~$-c*ec zVyGmLQ&o$Js=HcMmug{EgF@YKy%7YkqHyI)Eynp;j3270C3(=fpQ}ZUkhsNJ_mfH; zDt?R9a?-5@uIJ-3`Q%(TYEoY@G*O4mboriA{WZY&qt0kRm;!?F?ayLk>(M5ZU)OzK z4KRe`6Bn4LAxBPsgj$&5sCAUwt(6RP2vN!n=`kj$ST@Yb(kFul`Y>j`Nzb zMJNT0G<009W|o0}$-;@7N1K2yccFpjSQDz;U%xk{SPB_W)i{-mnjmu}a6quD2_d`h zmm--PPBIDq@rh{y-}r?KQ(Dcq82e&JmqigY`TTbM@U{s!+>Wda_BSJQ^3SYSgb%S1 zoMBxc)(js$#d1-T+~S!SmSF20xx~jdGBWE=ytC^(nv};a=&s^I_wsxeJas?RC;W@d zckj<=i>J2WmK9;waqo2SrkyiMv}%Dzfv)a{vs-ZLd?v^7A1Uzrfc`++j}|zrWYnhZ z(}J56*R~gWBtgYr)u9TO3kQRqN{miJ`7?%eHRHaX$QgM*J*o0n=p%tNA)V<+g4Cf zWp%Q2z{<@Oi>W#a&NieOmOBK1*E@ddsmc!Uy8Wuosl5@|>`KmVyX*rIyupSpdY!O! zfm>{c72+8IR<2w=FAzSZ_BVEw@bEu}y}!X*k8y!({a@a?gG_E~R)lvK{3}t5-&sOB)o_9k@HT!F0zj8cVM)9+{ z>IxQhXuf~B8xFDbOlHrP;NjBjv|&A0xXs*C>2ak84yzFDuwoIKR#bJrvvVb$-kH

;e8+o#S~r8EC|tEg;9_3gQcTmB#<|0)2jY zVVx`SLLN&PKDO5d%;hiG?Q`#iz7Nie`zNDOQBnH#dFa$8lY-i*0#)s~g+_&ByfQVBq z!hW~IfT{139WTi>&rB~%$oQocGz3M%8op_P?B*zEY( z1hwPgqimnu8S?+km9rrM`Ul(429>m$;%A^v)5UzW4fsj-N)1GZk~%gLGr&I{TYO%%A1#f z-(?`v z#@j*r?0yiN5Y0}4=L4NT2Y~A4`IOi>}X!R>Q=myb%`ZQdBk?-5|u?y^H_RMYQ zMu0@vpVVSFHp3$?vpAay*%6grnLs}JjA^3r)>%z z8{VubTvd#X<6D1S@2LaI_mz#}@98*vi%Q%}s}#eJf1`@5u7Pz8YwJ~oY|K(RX?tWl z$!!=P&o6JOg7+a?KBgGwVX;$_ zh~!JHVpD#+oiD=1JdrsylFv=j&P*~OUh7F(_lPx?5;VDMtnc1XhfLvRy;;Y|xptNH zW5ZU`_qYucC2bAZ8vZ+%o7_KIo7;G+jF7xZS?k4+$- zzF4!N;JM7Nb$9LZq3Bs}{GN|xs2Bcc+rpD3l=mF-!`^b_8nnUH7{52uu(lb&aSWv-&#s9qU9JR>$x72l2lRcdPeOBui@ymMi_ zvXt=C<0d;oJCOVFfi4?!lJEbQ!LCZ?Opomhwaz+-Y>O8ERrfAP!?!i+U1FC-HJn5z?WvaTKjk^x1WgcnhLAy0;zY#m~ z{W2b!yH57^=Vr6Fh|>0A?q=bsrd9HN=hm>Crk{p;etqo?I@F8&gP)%@UW)<-`&%n~ zvB?Nk0hE{ny*Rznq;o(p6gbb;FEam$$M6C>Bh$qmyp#I0JAbn;u%9k?$$umo^L@DT zzeV(*gy`n7Jx8Cyg{J#zw)0_laf=u4d-fiT5OIcEepkVZm4>2E=2eP=Vu6t<>OIE<-md*dsU5gu@(KSJ!ojWn_-^Fp@8`%`Ql`1bxgGQS@cKW-Nc1gy=)Yd= zi@7|ey8kJ*;f7bhKS8T#bh9r~KA{+dw4G0C!wL}ef4%uu67z~EiNf!jglV7eCL+J4SyVt z3cNnxM8tZRzD0f?twmnG4>xk>UGZZ2w%cb3A94BE*M0AIk@MNJylKlwGxVibzHzcI zAMNCIZUskF;r9#bj-Sq1L+lj|zfZ6FA3VZDnJsl`RL5EVifwoK-H#Km)Tvv{RQr9~j(#x>D!TXJAcpe1u zs~@+Jsv!B>nf6@~Wq4xOp1Z*nMG$fEHiMQ|1y&te{;3~XhOJju%LMnA0#%?-$6$N~ zYQ1tBd!0bI!(X>V`8k$D=F53E0g@Nnx6(CpD76eWSX z0#oWi(P))j-KGq`O*cIqW+i{uy^UFt7ona1va(xhDasBq{WC2sMM>cw9MeY{A$aP-!{dYxx}Wy~RelMU>}Y+IK>7uin>#J9E*0S_ z4{KQzT?uBcGw0fpTvtxV`E(J6BJ{c~DPeVq^fpBK#u$f4&tk`;rAs;m7`>4t%m1th zSKj$o=em>Um!$CeRpyb;Lonqr;cV7yobB)2+6aqR+%8`@or~gvTeU(%5?i(Hr6*df8A%6i&{r|-X9=5m|ej)Y^uw%P(hgWzmdz?xOn#YqvM3jlFlu) z)=`>?nPbvUYX>v2^6p|MGj%oWlo(949nHW?ylw{s=hCpNnAvSPrUC}-j{S8dzJo~Z zW0QJ0DP+&>H9tx?!E!>~WAZ-fsQYQYvdJn5J>LgSiz*fa^(TRQ=Lx@4_xc*2M`#>s zXw@x?eIk60;;RLQPtvgZX7#E~XcRszl=#o&Kqg2^e#~~6PsLp;BHu4;3CF3?AmcmQ z$q=6=b1Lk7DpJ#ImV3Ywg329^{I?(y?y49ZuQ5--Y;mrT!`XqDdT_pKUYYd6jh3X9 z4U*CK+GeijAN|lUF5SG*LkC#mBIXY=CSi=&CRv5wzWC`1kCoTrGmIIo%+vfFhbjCX z%;F1vn6>1jd7&j3<#W%(DF{WQr^B8-zsmyg!h0H1W3?Fk`r0wjb%o@dl8(BnGlt-q z#PgO`jLF#jt19HYSrB&J(w)8fDGV07oJPj${TuilEUdZCsEGF`8SLsn+`-R5cMV@bQ1*w8}>+^|t0* z1_PKIr)-bEoQyX|w@qsOEW|On;!6e`cA(I6QP8M81*Mpxysrus<36pChVUyc(3qw1 zcX&A!8Lbo?$5l#D`l;WJ?UtS}{h90cWKSCMxlJ9-zFvwGd_v6EZuvm{cvw%PVmjIw zO$ZtBwL{ViQV za&Rr3gO7sX?#Q2yP3h$RjXOWcgQXHfb}kO)k^JAjRvy>xH>ue2pC8@U)=CT)`og+y z91LccuF#)-or11ROYbcViAU~%XUF0CVA%LzxanD8GWtzfJ+ysOg}KH`jb1xK;GGq} zp}@T)d`pq8XE<4nF$J*~+3tnFg*2A`($6R0p2KV3RPU4iK!T28*>DK#SZ0u3NRP$o zsFRx*gR1d#tAuc}d?*Avm048njmF4$2IEg*)u?D`Wh2rO3Ohp7S$c9Kklly=RlR#P za#qdoowytZGbek0?lTHQ`HP{Bn@p-P$+T;_b}Qy;(VhuVFuc>-IP0&}SR9nz*ndQY#tvyz-Nr9CR%27!(@Y2iWf>gWu(5eccRk@aPHI^zMEQ(yMKIf7~z?uEbItUlS6PNL#UdB6}?+W!VlC zq^85+GU`}10Qu>D2%5_WC7=cBh#B|y`bH%u`d5<9p2b{G|QJc7dkHL zYcoCzg1^hgH%Eo*@xsj_x(TiV;Pn<$d0-O`>s-%y4cqFGl`6E*GrI_~mL1q*l43|6 zrngY&bORnt8_keWAsoQD|Jr1i65;-XB4!8s23+|0u=w6wDXcx+=>L(L0v^*3vU47g z9`?J1znYKB;jc^&^)<35q`a^a?&WDfR}>PpnXiDLl|;T5O_|U`E%58|qk3HFRNh;4 zvI>@u9xVOFmIDu72_$C{j+OQJPTjN0)!=-V^C*Qc56l>!UKXIMMaN08re}OL;GM#C zxRY=Pm0pzQN1v_6N1w-1Xe$Ya^{~!Uhtq{%_iaXhjr2GDlkF+#n@Daa?SW)Ba}k`Q z=RU3MUxqhs^M<#t6QAcCEeAiVa8%jAdjDA>~;O(9hk4>!0;ZcHd z8`Ek!Y<^rZl=RjUiubDV9{*7aj?rPe*O^jaSux!5o_aL+ZJg8&uqlCC&W9>W&c}k~ z{(YUxmqAv>9qmkmwc7A$FXgkz$# zZP_ll7FxftiG&bNqvu|`S5@65Xv`u@v!Cou4hi^MihRt2Un&RXOvwGupY*ejov+nF zoA|xN^gV?Tc>86s%&rQoeibOSL%R+nez?W*br*qNPkrjr#Y)t8mwNfl?mCFK4GT5r zDS>45eW_7mq-S;eza8hYYoY9KW0;#;Dd@tlkZ0t)rlwYr9l}%#QcR0muYW89=C<-l zt3B1E?;0@cW^OJh4}Q4N;Ta~$!HE5U?SnStq774q@# z0*8lH@X_${!QrSXaLmkg>53v8yYMzEQ_D)?1Grt0=~oR4leg?c*-1|;$D8s)uL8W- zI65jX)j+byL{`z`&bzE3S5w$f1Y78<1}*MY!;#M~z9xy0zDUNd z^7n#8Aj!*;|L{r`gdSpWGxjgXr^a56qt=ClIrhU+Zmk0Lcc(5^oh7`VJzP69he%g>00o>ENEMd%&2MZRP4t(`( zK&i(Kk7T?GK>QnS3ObPmzv|{`FL*cN#8i(@X?y|r=ojzmvHCx^`Og!Wp&&EOJ;{NX z0+>3u>uh#U5>&kuisB;u_77R|Zw}ZLz|U9mt);0k;NCBAQs7eyzA$EZFuJz@7)^?m zC;x@Q!Is>lV8=Er@+g}B7nBe5Voh5G2Av!lLs`m;H3K5VUZ_3(YnbMd;<^t%UX zzFTu74`o9`yTpzOU3VOf=oXjo>qBuqhy8Q)gp=1G?D&K56RPjeT5xO~z;DOP+yxpl zVb)M>=Fxu<=+xKfK@&irX%Bz?)~-ViO}46yuSWOA)J4gXt~sVR>eLYuF}LZjsI#k-BRc@tUKWs$?Y zJ)FZ>rE{EmhBXsP-h5jxa?C}=)zz)t&xdi&^W7^2vIkV@^b%@$S%BAHNm{nN8^(pZ z^Skw^a$t$7q(FzY7`?4nc5D}Xfd}aNIL|2M!JNd!Jg@;zbb6`zXyex`tIH;Y~17_J8Sd;69sNEZ8=y8DkrYerIXJ&aGC}& zAAf;O0cx6dTGe16SfBldxdv%9)y=>D9L5uY1-!SP*FxoXzG}VU8fJ6E>s`JM~XkF@75#iOym7^?N=>!`N(d5GdDzfX&o6!;g8bXKOKksgmUiN#7cu(E@I{e^e^GAnv2>(RS-lf0S1jC|MN3~|^ zQ0z))!)EV6^t}CGN|>b?RI(^9F0$8S{Z)o-k+g%@W13L08bmmlC&~T7#eZQM z&jxV4m-evuax+-Ycg>x@O!|2ebP89#_2ZLnAs+R!EpVinw(A^u!LHI0FT;q3u2(s( z>HVD+cw-KarQGXr>rfAma(yrUlj3Ezc5eZiu|2yrQtI(_S!+yxVh>u#3_s@#Y5`l1 ze>7*?>yi1*zLzJQyYX0jq6KG23us7cs^9!skNX;2x8Bn0LWh`?+h+q?fHt!DrHE() zcD-)Cb?!tbcBuTg((2m+{e`Eya_kzgcJXk-IDH2Wb94$Zkn7jmC6p5gN9N00O`W*$ zHgxtF3B5s{Cv8!`SK%b$#=X*Xjr>*&bFG{|5YqzN?u|2>7a%6=p;15Q)PmpMEO-v& zwt#~ULyg70M$!{qU=mbqMz-OZ8)7XjAos^*uINr9Y74v`RpxC%iVl^s(z_P;_FgD( zxV{msr4R3t{@aNC`(1=uXjwx6#}R zG`+%JLR8K86N($fmvyNo9~#G5ht#+-i8n^NqF@AVYvY=!XGdrC$x zH>1#Oi2I?@5=>&@ZsxCSg^Ylce0?{X@u7d-LK%Gt`tnh~WhbxaLoXxk2Du)6=7M>J zaWQ`U_HY9-Ex!aC*$1Gbj2J;_!vSd_*Hdod%^slwRdE4Aku~{<5+})ZVs!)V=KBfhqC!2xo z*7LtN>&W%nZ)Pn?ZqH**gJl!$ z|9m;R;Xx6C*wpLI+nb<Oj{J;8E1zc{zp=isCU)PIpUR@#CFAssYoc(@0d45%Pm3e+qGM6}-XiH&g z03Mt08*dYvuwG!_`FQhrMXq;(6DRLgmax2Cu*EfGV(rUo6-`_gv zLNh)PxEpmWr5JaParKprRY44w&m)(bW{em$-WpO-j6VyLu5xdw1nrx_pO2qw!TDIO zlmRTpuRFF<@8u~6E*V`-?LN}GUp5uZuP;W;H?geaqNNZ~m{EGenD}JP?=w4-ext|f zOE>NuD~1{UOt0U6TX8q&Z2A{fj69sbLc25zfNmmngF2uM7d$?>UU^iEV~5p$BoTh} zfT!?{UE4!xTW3S_g$#>y!JYT{gxO-m<4s?we4)o>W(p5(4TkJ8&^quP7$(|-m zg5Rsp=W}sc^67_xTM4*0xf=FKlY+(amp9L@=irRQ{Y(FCPsTTshDw}|2==HG{vD&u z!JWOT^BmbJcvSIOTjlmTG#>18=Ah5UNYnDQ_RVQ%dMlg0+NBELHyknZVaOu)yF)iTmf=1@I) zYGw0;3;61Au>|2VFNQT(nCTO*xVBl__3Ts(X>VcOe1>?1et$b}(3^?s8ey#C;?cPO z8Z+;ZMk+cP(Leajm4(Ot8yE{Y;e~uO@5&3w-01tq0p)DplUjYG1wuxF3ark_ zXyW=R^R-D9R?d~~1ukF6;z_pI<(Y)S?mw<@-pIlOPx5M>{*8hYLQ>rCmlBZwBFFtW z$U=_B&pwSkq|f=8a^!D99KL0@`(jCzg;B@9uul|cz};fikwoek%%l3Fyq2AbM$5W~ zWkhqKCo)Um)%HkKD!g-#Q8E+ngqE~^RU|y1NTrg{=E2xz8btfsyGp9YfCWyx0E(0hV= z8G^ib2c@BCq(+viKn1j0_UWKE@HOoP>Mc$uXj4 zb|)ELW~VzI-8aRE`7wCRm`X>KEY-j8bw zSw+y7o4uM95rsVk{BJcg8i7CdyuY7W5u~%7`K8|&g^?xs{Vd*%AVzuX_4`vHB+#Du z#z_~AS}tbX9G4qmXltE-Z)O1$?7O?S#UvUzet~euDuO|M*|lFs@}cjL#@W2FXp9dL z^*qLc#N$cTLG4F!ksA>$dADNllfAdj?oah#tRLuk<`dbIDO+tUuM>a!C*JMf9ZB9c z=d0;C!c*Kac-RN>VlgvPtnIF?}c_eI^6IGavvh+!nUoV1{-N`+x3Gq`;7#gyteNqvricenf%IC3{8V+HulGS zF^Oo#tF%p#s|22POWzp|OM`2)2O0mkC!y-Ug_o|vg~0RcZ%ND6bTIwF&3axx8U1~< zw2i29V8UK8)_5@;_RhNaWN4*eo&T50>7g|Ev}gauE~QNPm_GDQ)+QD2v$n~y-A;rp z+T88>jM-3}yvlH|I1SBAxU1gZ4F_)`h87pgh0PBOV}G$^VB4&N{6X}B-Q}utSsD58 z?E3dJ1y2X_kEH4gKY5+3D3H>U*o-j(p5y4(|rZ2wkmjMB?M)l_f$-I9DvIULRW zq#znY6JLF$*;fJXj#up+w-N6lkCz;6N&;5rYJ)|sq{hh&^%r|5wq z9L((TdZV0*?=Gy_O&ODXm)nsMmx=;B>|6Yw4MPfk{IgGF`_@_zpSlq58J34<+s|)1 zC7py3Z~MM+YZHIV$UBEuo7Q)Tmt8~BcA9fd*T+MuqPj7?SO;YX6mI2$ybB-1h1qX z8l*fg6qoY>!TaJpFJtpyr`c`&@cgG>y>;NujAt0}F(hzK@?}BqEm{kMmLSlq6*Vpn zj0KOjt_~lh5 zr5Hp&pqQZf5r;I$=cPYS?UDhM?2GZOZ~ef_dhub>t4!bxd~-M@ISV2y(|vxgID)e% zb$R4i4k(`z`-)^l^7*kkl+qFLrT!ag9 z3MmPAdqiZ5>|!ajR|ncoUC)JBlj5yv`;)P=?&OmF<1&cz*$BvT$N?A2hV}gP6x^rS zc64Q>3=~NkD#1P*ytis-aQ;k1Ig!6T9%kjR^m3@oZh0ey-&$BQo# z4tm}6_5rdd-!miaNH;?~Fb7R&O!d+r+p@qY$2Su_M>_}Vq$){2e1AahlT?VC|E0&! zLAX8tDeE=`RKlUZQ}VNUDInc6+I;s*CVqZ%#bbQ361sxb1X*X2p`D8@z+^2G9qEF1 zFA7&ddRga@+k(l2GpJ1cf;tP0Hm#UUJ|TQv*L$>A%#+}{L09n^#w?Wb4PEjh{Xl-& z-(qx^6X8{Y|Bl;aKC#5Ik-nF^8bnpK&n;HP!{HL;gYO78?xC^ShYXu)c&M9V?nxI1 z%eOZjt+mKP(d3nt>)q9)#}WLX^i&Mo*a1&8%d&93@_xRfU=5ikG|=Btj)JlL@H&|t z**H6`wDXI94O}i2FdmYQ0MVa2?@zjCqfA7AM#=9Qu;~20|Jc4Tc;GMjri3mBPk;WY zlWtiHZNf`_E7QTCGgD_A9F~LfRXOqIUut3P%@!G}qk$mu$@MQAUoM84KS~z0t^?x_ z3$N!Ke1Q9;%U#!O!pkW2WMuhQ2L>B=oBE18;K=iGt8lJ7WY_M%%7}V!e^syeKZ?#f zp6d4v<0+JpBuZ4iAtOpjipp(dL@K3FitLbVnb|~UcCzGIj=RD|_@=cy6W&0u)>=@2|Abx*dYBOK5Q0XG_pm&dCBvjnS8UD!_rvD3!NX&HeiFwHgMZ=H|VS|dxOeW>6Yz081;3X$C>8bS_oyHZ><_B>UWkap#%rP);GB&wjai-# z-JyZb)Pl1iH3{FPgufNz$U=_b+XF@v8g$XSu4mdu)=h>YnoO917ZYSmC4SN1U#+_S z(`V`U&{*w*!h>{7t$KZN`Cu!!mq!2ld@u`_gLL2K1*IWQC%>OFY6VWKY(w>k98`~X zG`4n4#hTxzpPY?qg`wjwzSRHB!!qyl;}d2n=pe}PKBvAFE_`yiRYH91gW~gffm4rh z`c3o2y2(~xzIphJOj9wk-VBT9oq3EKjvp>JrfY+buQj)IvXBb!dh2ubZ4|VB z!&v@=JP*tG0&os!?vD_{R0SnP~fKRI$&1-!4_Qw~ig@g~ z+ztjWlO3 z5oVhnp+{+IzS@^|uzhbI&obSDjXN$seKQz~zjFRvHv2(z5=8;WtDeLUj~4A$$$b3C z0d}YK4BPS|*+aa`CWS4ag$#bj!blj6_fL#px6snWk zVgGK6jl}4O%O$%Oee;~bZOg$~c|DRdn){S=tg02S2&g5Q9t(vMYT3)!b?tCEIf3?y z@bPK~FKsBSjfMaIHEZP(-Hh+mF?gqcOx|TBPp?CUtT+2WZ7~=x4HnH zsf^$Gy^99ZTVfjb&$gq4lV^R(&)p~7uW88reTmRHI|EYv6hBp&meQbiqne*Ms zP91nOfKQrJj{@@hulS!j-w3RpA3mNUdb(4R*|YJ~YUq2c@?d*QJ-BH!OD&Q2XHFLn zZ62tBj;U!AM)^88C2Tn)V@i1RlW!TQUk3sv&z-Pw{+#4ohkoZ9T;*~ z$9K6@gPiv$Zz*2~I#}xOVkh~nze&?7(}yT9{H`+gB>BFKFYEOJ+Zx~*=MRgH~t?WlKS!=`wvCSX0Ce59ei91@qAu2+9- z!&y=76?T#b@ICe4PUYM(c%7EnO}RsKgW|l4<8#e$voKU?n?xzd&@Bf4n{LJRjThS= zrXr}#e`Z`FJ&3LMVhzR>TG49iIN!^CEnp^Cp}O?70Bp|PxH1+>L&*d7+tlv1z{G{k zyg@yA5P5^;D-)H9BH~YS*g9LFoFd0+NBAv94WHYdy=lSsK`&?JI0&EJ`~1O^ceCIN zXG7)I*NB0?o3h&UsBqEKMqWZY10;MlwH_R8Lceya%hr#nuy9aVbm|20mCn*}r(`$a z(W-6NnFz1r{?zd@JL_a9G`%1Qx?~>4C{Q8CO#{Ee;}tqF38Xh|Qt#Xs!YeD-_PzNW z4b*u54LdByK$ClNx~o+c8dEsm?eV6;IJ?rtlj3dSl>y^X=HGic9~i5QTX&6Z@1YlWc5%aqI8 zjp40dx{P#vGAPSl)qK&|3XeKt_Wdh0h3^3xBBF#l^2}zT=GRy9IcfgI3n^A)-#?=G z53|6vVaLK&NphX*e^_dMY!5W6L=G9=TyQ;jYt?T4^mn&Ok?nh!IlxxT6$?}RecqtZJ z+z8Bs*rtubBgWl8*T8d+zatw)Xfl2>K56jiu$d6gjvkQcbH9DG61!1*ffYtETo5YawdxPE&%;ms(0H)`>Ro8NwOnbncr zO{r%eMs+G-NGD+Jtmt*<(=uT**w6>mLk?j-(@1{h@rJmgQ||cv-)Eu1|N7uq#_hI? z?`q(1DU3B1MWDmXDcdlXK6qhVQ&_Q$_z9w;_ei8A;4AG!;s)vk_jL=ZS$vHkGS-<9 z8lQ%(@BX7pBpe;~Os3hmzfDlIe=mzkDOo@4te0i>=z*BjkC!|n5Pm<%%FhVQ!>;QA zIog55Z_S-1cFU>-Vgh{kKHXe|(boH_Z`|mDPZvq)$(t5XO=sPHL%I|gs7mhddE^{u?#P<%GgLJw8Nl+K=a+>R0uj-yYCQh1s3dQd;D%o8(dCh`CPG` z3fouhD}O9i;H?Mhe>?8c!28p(f>CP=$fr2)JbGA(zmhF&V}7-OnAmPZ4#gHYvdL^C z&znlzz!AsHz1j>{k5Jc{OCSudhzEO3RpQzRFL!`uBP{8zKimGW2^8x&3@jrn(M&01 zW2#;hb|N0JP3Y2N3)@l`%;8e!S9ebh!DBQIDy)aV& z>tlQQ|H>EQZCCk{YnD}DHSesK?M(EBmN(R9>s)M9on7}LwhA;TH(_GF5X8cd-Q7)m zach3gY7ToSaFXfZ-_?;Ec+K4QhB5sy>ix1Q+_*@AwdLCaOsVN$eCOg$5xp23R$LUZ z;Hd#0Gf&3p`~={0FO(Qf2*9rkt(oC2wXmRMV1+ZGFsaO0VHKl=u@TWzqYU*B-kZm= z|NJf3F6-2@QPT(J_?<0+8yaBKM&rNt?|9*Ng@oca`qA*5Tg`tcq6v~4x%*AzqcLN# zF30-sBlzYsM*KJk(aGPf$5NBgW(=PS=RzmCVcxs&t&4hyB`(vv~$6j zZL2gx9TmR6ckSd{%th_qmrVj=h2UJZz4~$u4PqQFze&?5LN5N?*)u!JV5p_DXir%y z+>CE*iQz88uw4TszYY=~K}l#zQA!&aO#80;HBgQwP7fz32grU@ghfx$i_DGcuQRAA zlOFi%nwpDSs^PeZ>y(Uo2Yjub5%F@XLVNnLtsLa}%;xZ%pXXl(XkD32d`|k_GZo_) zCT;5=ZiDT>e{r4A^WQtFg-A6HIo=vvnXQKloAS-hkQ@|$)FInTdDSSreY1J=$wrU} z6Oz4S-Ua8GFZ|^HNnTgA-e7jC33g{j2d6#m0@KEfTp8jQ+ILUxwSYr2;k2#LO_X;* zq0^Itvuo8@?Dwsfl^l7P$B^KyB0EF3^xGyX8AVLEj%YbVJ5T|K)Imq3K{Jm`wiGq3odG=j(T` zo|B})^ip5Vuudmz3Q;7%c(k2GfeL50Pt z{~AJ$c7U<$^~Sc&a`gQBS=rTYnYX}PM$y8i?D zU9!*ojFl?J$j8b?*5a-3*6#X&Dw#ImyL=zR>-uA8Ep|G>!_7Hh1xyo;82R%Ka*+D?s{56@LCi2zNohr^2mXQ zhhEXE6%j7j=-bYL$VP}#9!U>eR|E=0CwulhXn{=SEnhe~8h|xT>W<9QGH5-v$?LRd zGbDG*DY5+|xlk?6>^WK`$?3+KbB2?=<i5DwI894si=5J#&>d{{mI2!0>}|s1QRd==rn$ zuJ{uJmkU~@E)G>d)~C6RrLJwz^l-@MNvZ>g)hH-zRxby8&LP*O*JSRzU53V#7l71z z;uAOS62H#Jos#U5op9|PFOS?GqL+p}Ntn4=1oyU!Y#+BJc|))Iy(45l_Vwomw-;vl z(BplZjxMPiG*1r&m{k^FL(sa2H;;4R?KLw==HedM)l*Zcey$7!cz5-@=FNi73;FZs z3wq(&{Ho&eR0ZO<>qA=>(m}|1A)za}527Xu-sW$jAmx|8>D-|-&}^-$Trls4#1TII zI3)gdsg}yOb&o-s^<-JL*Z@fX=Dxp!z7{`}o8S8S?Ga>-l~{e49DrE$7rI{0NFQak zbcX4268P51+1?8rgfE9iS|ya~@We~iw#~F87~=W(#+H2ua<5Ckj&pS=JX)KbE$|4g zevjP!PiF{T=bAL^W~@VB<(S2je;&afQ8~+Zi9^sHZ{vN|jT~Rbdl&oG$M9!f*}neC z5SX!WS<~ukP{)h&=?;|?I4-&6cnI?_OxJ`y8-H4j>;>KrxNTBlA?wxXC+T4*Jl`wE z`i6quS~Ii9rP82u)2iDBy)+-0O2LnQR)51 zhhVF*LsA2ouNOXepFHp+1s=XvY&{wz=^^juJfc$ZOz1#v?fUY_gxOvLCc%pXuuu6eI7c z_)UirlR(;%Guu+L4}v4D{&E(P-i%r3m0Mq=T2wPiYGn3)lq+}JK?rOx?B8(0{oGZu)O%5a4>r58eQ_* zAydzB{Vt*_(I=dhVc!!2=i%x`9pWGGq^*y2yO)Oy!drseoJra767ksU?> z>+Id2D%b24JLzSW?-QHrIgpL-zy8_mzefuWp3?YqUbcpC7k}ytW@h0(gR@H}Jx-YK zxTjb$tO`_Ca{PLgv(QF0qHt#TKHj}L);qbM^q<>k$@Xw(;cc!xFZg9+@zK~lcSY_p zDD2VDwByY}%7L$fs`4p#2AQ(u3Fm;VWT{2(Ocn;4W%7!?%fxn(D|Kz-`Jj4hyHIUX z7Ami%&I|SAVT7}3duMtsuxo40Nit+(w_(WLn9^dj5gq<{fi(x-zWOk(pMuEoX66c(1fIqrm6lY^fR2Bs~4Yru0%5jT_aieO=%(z~HYIauttpV4n? zBUW$wv5yB!z%bihqT+N8o){4uJG|C_r3!ovD=uZAu-V$_`D@Z+ET{9RnMRH;Ve2ZC zR1ViO`d8;Iv(cX-%|B?|fW2M64!>@#0NM{`H{*|Fj?S|p((s`klX<5)5{Tc|s^ml7 z3vH4Ek(qK&*Q&=udUcHy5em4sl^p(9l!@y!cR_1<9bVu%SCD5!^oo+0<8+@hFd}ws z?!WO`^byP#NlL4MnNY!X8`uaB+lhTR=Ti;dIoWed`b{mkCP^hVv85wp9Lwvj=fwYW z^Xwg8{(3kRHf(i#JQWMCW){Uhrl9TTGa-668zAViz2rYd!s8O@vOaQ%!FMIy_&y9=S-d3Y{gx489I3yg19m+#gH#%14M z2BjvMcy2yYTVk*U;#}V){9*LQ;imCvc9P@Z$a)|nD?o*FxB7EEqi&lXu3^pW^Z z#=$_tlnM?fuGH8Hoq_IfTYK@c+sNx5FkT%?IFkJWdP&7ju+{c)YvMm2*rD<;{}Y7@ z7RM$>@0$JHC|zdpyplOR<$i!LfqLwo2uPlrQNz233Yw&`HoXVH{3L4BbE}G z7|8jM+^}yn7o0AZR=*n|ygb)LSp&~RNLmX#c7~w@WIDu`m`E;F<-dFTTfV1&9QQHt zlYfYhm2X1l)N?9WryU+1*UW%UR7-x_Pz4nyXNoF6kk7BG)yhC}jTYXS@+~TaOZQ*S zubqUGS{-(1kG@tOZ2S_h?HW-Bjoxcbj*>KZ66IyQ(T{LeMEdajZ*oVxBbYRU&?2Tz+>WnYdm@3;X&dz4lLPof$)}gTrd`& zm+OF9arGg)`3BG(vA63c$EOb+ax!|-0ghuedhRhzpv^kxPwheQ3L4*fL6>k&qxVN- z@E|N)IO6;6eKX|0@;}Pm(g{YHgFV3~T8OV+b?QJr;V*jad3Beu3u-;3wv7$7K%3Io z{g9wW(2I2WKojbM)Q*+N?lYt(r_)eNiuj|Cu+upj?&$(QSrf(DOwvy{zHQ@DbRFb* zmMV9D?t~{>A~@F(o$Jm~-kP0132)1-@oDVCP7tf_rt*{70*mG!~UPFt@+NmAbwHo z)B89o)N68FGxTbLf6vZa4x46!J^L=&oFg5V4gx#efu2TQ}!Cv~pwaNFycW$*{ z$8Jq}G5t33y&AWLC8M*Ki$qBNW0v*WSFcJ~_+)qLfW0AF`bTbP94Lcdl0j<9)Jmw| z=`+(2=Z&vlh`IhSCjO>VcNw`TO_lFp@0(gXSCqMGmK>j%y!6P1N_>;q8U&GEy zSQTJm3nG4|5B4tfLSdQsu)=caxJ4z1iAwCzH>ro5K$Goz(sEFaOYg_S(n{zV{-rcW z=9t&~gllDM^YN{o$fK1XmGJr30NbsmW^hp*c&qlj2&?u9{&PD@_B)ojUgGI3Ai{ZP zqGv-HK5(~pIZEc=nnK^>Czhx%e;_H6l1cLXU%bo@wN=5^NB;_oOk2UrTW_%JTqSPO z3USciP609HLn`(!+Q9#ly2vUc1v#H;_~bcIU_)o(O+ziBPyD1mRXtFRNxBNusn^6e zskc;kj7B(mYn^=lxwV)}KR-&nS`FjjfpHaN{n^!{$k!Q7`ggbUzL}k^2HmwmLz-<5 zI2}96$Q9Lyn#0`dev>(OHFb2?L`pBD^-iZ-W;El-I*qCgXKR6>g<(*S@J}S)`LsPF zyrVBs_qvDp>tI&Alqox?AMEych?sj&(Zl)YyFjwvbh>z%!|M0|#IV*iODEHid$@Q@ z`d-4R6*%eDSTg`dNfnITEv;zcY~|i@rV$9}n0Gh*ApE#}b4cKQ8}5iuiFpv(1hkPZ zG56hrpkya-=+njy^l-b}8%a2e3qQTC^DqoTxF~;+tzaiox7#Q8iI9FT&yejdO@z1J zuwUeobQe~fDSoi~1If+iXYbghJ^;Q4G?eIMy3v=XpfkRJ3M?BgX}S@vdQ4D4e3ozz z?%M9&a>|wlE7^sf0YCbHMI-lJ(rOQ;ur>URkZJ|m71LvB+wn-`EP;VEEpMPMAOs%3L6tvcd9gb^$l6;*YSZu$uEVT_7oOC#T=94@| z1*QLrS|>2g&i6VJZl2(oL-wTy`%s=CriE9t6QY(rPJghc!OmBLcqg(KT{CBdxx_kQ zbumlN(u@k}AiB|EqzB_B<~($!I)Glluuj;B=&oirAD{c%jiVhg%`;XVpm$bkqsTxr zII5Noj5Bnj)ZuF#mi_H;<7SbO#pg!&z<0-C`J-tk?R2UEm~yo9j9PJyyHi-xx&@5$w6hcbR>8%)Nq$peG&FC~`7QFL3D{nn zB&yd{LV>Q)Z}Fdm-}Q01xqhr3_|@+4wkB0T2g|8LOzwy|8zux@V{1Up1ciMbm&2UO zQ~v>uCcL95>Tyc83beL~y|_v(18x?fOVsju{3AUl#@}BC(>6ARDGX(B>L?F`fnF^} z+5b|AFC{sdYpsVXhD%^Hz-%CZxf)+w@BE?Fl?j2n0(Ml66vNo}yvd>VN@Vz(zj}8* z5f*wR?DUw5p)q@5;Cm?PPh|?JN|C$|M>XX$_-%`zw8N&ytDywHF6vviwn^ftxs{HCI_i<`tKxJ7q;b|y5yfS?y2mQFO*KItPfCCh}BAt*zupPTA zS#&i6w+IFtnj(CNQ@0oN)tw6=l5;wceb;0BnmVR>mgEdC{b}akOL`rPSPyhG{*6Wb zvLj~Z(uEj1l(L_}w-7$CQ%wK#hofv)<`ow8QpCd-lKBz~;mO+N{ZX6zFyX%^A-k;0 z@#{k)6Y(0-8+m+#$)*-NJnU=z~|7>ATEii3f#)uL`V;h%7xbS z^~8tN&|2PFXa=&2C0BHKC@7N^V>xuF2(o{14pXd5SOExb8&p!9# zAAOx6dDpp3twf*IYzeQr3XiLjX6Thn4sbIGu3E#OunpSeKF{dWCx1ISc8k> zI<{cZYQk-r7AbWgz0vRd-S5S#L5SL;w)2BT2dd=}cVR36!4#oubKfn{Sgq77M4p17 zyB&HMT1z0}t{4mZ#67I+KDPb@;S#vhWnKJMRtjpSW6R?ZiYfLSXE$Y3VjbUGij7qn z$Rv4pQRW}w%AYm$*z^kAqx5|I&#rQ4eB{sXQ<;PZwplB-gp{MxW96SYU&`Uk0SkZe z=``#JIV|+ngya#r?-%wFE_>$2pDxecvT$YZ`;mLMOOXDAiHSFPUOAh--z&Z~4>!`j z^yae`;l?|A{}d9x{huHo#@n%lXg1LLx}co!0U}+Rr!1@Cn&hZU)=~*RT?q4OH6eTv zC6V9L-8Il_w0D@oTTXhxb#AwaXJd2l{F?|FqJvxIhgoG*V4d5)wNGrMFG%G-6|Jgz z*wB;wX^pK41)^9kER%iSA641YH>4Ut-+Ys8zX1iU+>kbIn1XZ}=Q4UKNl)ds3ppnq zR^z?1gRHfmlCbhls^Z222xiAc!xwXF@b+-Mg(=2kYIOOAWX%@X^daWA1&y{g! zn2y07_u{3kt1TcNa8OmprVfp^z?ALfXsoAWw$>)=X6?6cai%PdD5FrBH0DKFR`T|7@nzSC+0uJhybe_8*} z`v`mOyWor6`Eflyoo#UEd%3Q3T|GXjpEJJN?1NqpBLBTQ*$$rf8=2xy)}u4)OD4qu zZ*;L`md&BGL#je1gZ863R6otrZLq-`SsE|jEF`-78f_!r;g_}8!P2;Wz{3lxrk0y+ zTRPykzq~zZcW*n9TUOTv87`i`!sSR$`Il$h%&m?%DOQ=H?@Rh2ruXvK>s8^` zt@BS$P1vGO+n~_~y&kxK;9#IiKqVfTouk*TvOxMz|GnlRbH&xu^5?H~R$#b6RMoZ% z*YR4L)72I-w|sfG$+JqZ0=ca+m|vC2q1)E2OYa!_!R)h&&Oll@KIbuWF&NSWy4VMe z4e$G*L|8O(@KiZE7fL2p`PbN2MW%9g&(lLRXGQ zBF#@Yzx0CmdvRqMRzom*d0^86g>v-nS>G>T?E|o^c6i2P2>d3t1;(Y2K5DM6os~U) zz$RtW>FqQG!yzka{@W{X>FI8P)0qL#?QSWPGBW(XXoYwErf+<_6I|ZJYV}B*1mMUi*7;rG1-l9%L&ohkv z^j*Q@X;_*UzmDM(+BfgHVMfqRX`+oJeOFep%*X9M5S&ZwtegD zIB8S@)-Q~b)L*t@)qcr4BMBjxxzLqzuPYDCHHPH)o7(W^KfQ-C9bqW&=;@WlcEU|# z&rk||+>T5K&1}3MN1)g0>!jF@6!3ig^#Ye`2fp?>l-@WQfl-+dqox@T=B6%-YG*s~ zUJvI6X}xg#b;$kb-F;Eua_i;U#BE(DsYiXGG#P@mVfF{^r3XWKqf1y*Zx^~>h6gvb z0xtoElwA5gW2%n`e8d^gE7sd&O2ImBX)PF`_?xSJyPjW+b4i@Bbd=lUDuPN_Pl z7U>Ke%%VI#UOlMcD0$Mz-4?!V3D*d0bb$(PbEbE1dhmjl^C-PiAoN-Ue-W+l1Vuql z#^2(-=(+j(@l}q8@O1Nmit~H?!CYp@x6z;%rMSB4BgP+rXZHB@(_x_?&{-)n?$(R6 z>vxv|2#4WuXNI?*hlq<-%qK`=fLF5+J&+nc3=2FS1YUX2`28 z0-Hy>a)**rfGeV2?&aBDwE10IoBM_EgB&%6Z@tZcwYV8cHJ)C~rLw)Lb*zMci+M|D zs5xLQ!TdS-MGtyOuy5;mMS-)%$3I$+lXX`0-^ss`Jt)_7=c4h>TDU&IMq^_yg@A5{ zM-SwCus4!J|MQM|;N`o)K`kx^*_6W~wV%7udY^$qNpAzZbv>IdF(|$+y@!ey0MLikMo5{Gd!$1!9BWE1L`L}RvNB$k)BSgkvr{# zznoq}S@)$5{$4VDdAp$tz0AIw9sAb|IiF;9kJB0;>*#K?EB;+5+jv6z$&+TVKYLZz z!m$YkMjDvn^ty1Umv2G-B3V!GyC%rK)(po&t**?U=)ybY-(Tn?#CjiC9TwRlW#3rM@HeqnGesM>q3@)O+q7^ zt6`(4!}unm<8fKu@TMAfVI!YF!eRL;=v?`1##KuL^AFdzpLOoS`yTV3xa=z6f$|F( z;qNris(GGY;M;}C*~w=W3Fkw!boh6uKr7UT$B9S-BMDn)Gc^;dNmUQ4ZT7Sv`{Y2nq)E>S@ zbg*+^X0Ej#lyeMirG`=+u`m{jvF7X+VN?3-rH}>vEZ1cJ=2)q4jlmv z-G_?WkmW#LigQXV^pv}{sWElHWU$l7yJsXX`NuJH*Zw%zrozu9f4c)7mwi@9`a#3w zGab(hQ{u^edG;|I(IJmC#oG-oQt{MmOv&8uL{K{NJNq4U!a5ztJm#-0xbxbxFiGLZ zAbU^!b#qZCFb0{-^<^V=X)3;PiAaN*OD9ysc)CFT#_d+KvrTCF=u-bXa=mFTO+Qi$ zB))@|&UTxzdQ3HwD~#~VhCMCc)jYp+flC&>!BvG?oM5t0J8wYlkA-?3Z_jtbdG>un ztO*ok>eb*mNOY{n8Fy3P<#dBWTkp@J*A=)ozV>ft2;nTadC!h~?S}7sT~_tG%Frly z3-_*9gj0QzlEfrT{8OLJWg;jAxbfIVL2ic%xbrIN?%p#!;Nfgu)T5M*`c*%juCA+s zj&hHO>X&-pTbi!jbrOlXO7o`)LY6R<1p#9N=;o-m%N4MijHentm>fm<|Vo$n{LRS-4f() z=m-YFUq}AB*MnDrui*6eF1Y97lrO#eKCDis@8vWnI`QJn8+ZLK*yg%-v_kqJoT*R$ zdrPzt*85-meW$DwT%Y?e_pv8}w?ae36gEQUz?JnMzjnZU*54Bw`BOl2Nb=xtMzzl>=URJTls8mP6w z%)XS4*Fjk@vEffz+VLi!PN;;j5#9CD&*KHg_1TcGPZ2hLLH@41y#5(^8t|2tr1<9L zz>c35yC0lwgpdl_`)M&M^qS5IzShl!sTY%xmeCE6{@=uVpUo}c&6l*EdpH*yGdEOo+gOTZU~m!o(E%xY&SO))xngw09}h&1F&XwA z-R?^*9H`@3X6DWV3$y(f^ojmjvSF86p&{Y7)H;8QdYKFMz78ytBoB3;J~elN=#cYz z8|6*iazV^)!ldbW6}X09yqH7yGQBq%OiupE0oV16Ji`fv*2m=hvG`& zC(_-he)YxjLr|2qpL83|gzaYq8_yA5k#U>{pT#G4@M*zT+S3f+?Hr)*mns5%`;R$) zbzM=(%|VYw{E$<{#)q$xyo-vnWABgG57DB}?h<`p8i?%C&D0_Dzb}J@&UToF*veTS8|Ob3)gbD$wp!|#AZ3GyC#Pwf{@2KDt- zdpd~kFc(X%JD#t=h&-*+H8V*-r@N8M-yj<7rF}7$bJ9D(CLH-=kcOY6xYe}Gvw=${NBF3HEy%pG z-}X_i6$5M3WIxs9fPh1GiT>^eXbBqKFJIh>JNNNx-aztw=p=%tDzG$cD4QIA)5&~@4LzhnA$J$hJeFjkoo?tRB4GT+Lw877d1J zo3*K{ZE(CNZGoM+7vbBz^;f+k;79}cjf%+gvT))Omwqp5`Dbi<-xdO=2D>dzoN0sW z5zLAmk9zUhSm4i;pdhf?75QpC*$>xk`MBprPcO*{H5bNxCVjB<63GGoD$+@Z2NzwJ;?CZk)ZJ&ZbnAs%vvm*IF8!mWXW$VMGGq#$h zp`j2)nF~uK`t7ghg0n}q_o3GFA+8ylNa7<_{HM-B=2vz13bT0o@F8v5L+<@Us8-k; z_Q#auf2`;(?cUpmfAXKvdF)7l5v~No_bv#M##%W=B7Hb!v!`?a_hhiVP@$o^yBTh$ z>^xdBr^B`B2angcGy=Uwf#+w%KCHbN{lS4J3$9mh2{tonfZ3Zm>WNqS zP-UqrXZT1iB(=$Z(%(`Kp$Gjxi`w+zP<~-l;4+Sy| zCB=})!5g*|Rs%L?`)7o*2#@6TE`>v`WzfP?`E53 z$!-%0*w^wJ<&XDagmvF`Rl@7FH>}_0L*@hX)QewPU(M{z?BoS`&nD2-Wf{S3q!9Llx~=H!ApbEOwLmYd|lt$9a-`<9CTIoqM~{kj>Mf zIAUQx1UHILv2St*GOS+<)%e>0yY_MBIGw134+^9V1IUV=Au@0h1Qu^f0N(h&4KcW)bis4=lBqlX#q58-B!b$Ra3^$!8iwg~1 zGRlm2a;t%%R!pV(N+ry_V18ai_PxyY8&(}gt01qXWh+&_5<(pdDC^i;@JPg4&cbnW zo}~ED^7mH4cIyC-%&;abjgH}rt0@Dmjp0YGFIT{M!=Z8E*Y(KH@oC%M1W-zOF6wH7i(_? zSTR@!f@R`NM8ft8*pHH20ejL>V)$_wr|L~upBwpv^q<4XWV7X=Coy=9r36*nx( zzr>urtpcVlK8bZB{X7K)TD);HVHkRF#AuWpfA_j=r?XAnV1D>m{ej6i+#aVbrgekN zX?NdUav+~W!#Y_v@=OYzb1I~L%dG%3fLmsV(?Lx9y!L<5894mu^rzjMD}kB*2rvDP zJg{Y?1iUsZ5-caHSKcNF-V-&JDzwFs}R?!D{&f&w26^^bMFs)dN$gS@)YB^Yw- zE@SXiHEjC#OKLQ+0qRC?iWPU4;_8`nVSmP2c;YUX-NW1rauXt(8Hlg;Kk4KBV`u7M z6yFTmZEb#^SoKLhCMF-k zf^;ef-w8V}eS`{o4wg2QXyl^N?Sd`hhiQgO+hp&H*H_9yp18u{96LC>7 z@L}h<=LNKfQ2O8plgo-9a1GuPo~v|&7YjkAm%c>6Ht%r5p*atDB5fv=cG(r5@V(aH z8x4l1{lC3pPT0Y(n=!VwC!(<(xsH7n^o0pS4@B!q=jL=23fO&i zXZn(aDt1ybZ^Mhw@W;b5RZ=nNu6vzZhbskf-20$ZbpdYs$EY3T9ET~p4f0Nwr{P*a zO3=7V9u9ptrMEvn0TY9oq|I(+;FDL;Wm~4R@khqNn~eiWXgvjb|0J^TnD*d$;SHI1 zqtWFK|L0`Xyt_Y2d|eLid(++hYLxWauO2OH*_etfc(RatEEkWiI57I0NyJI_-A{RA z({TDks`~q^d=$I<@F`tDG%hP#2(%&m-7w~#+r>zq#Ea(_WJ*+mkcF`#zT;U2-WxL> zyUACKjq?X?wbDDFeq{OE&>dO$oj?58)A|yG!+{p@M-3rg=d>HuE*m#6JBIe~mJyEs zNmX}g9~iFIJL*55gBM?m2fKBZ;aMh^y^Gyp;At7YTRkEVGuyuFFWf9gn=kK*+XrJH zV#_6U(Q5^mytZ$k`a?O|{jp{Eb|wjAma9L1xmbjDv7Mc=S1T}p=e*J`2S3>6O1}rgV$2a@!69D z4FOujkCD5e-eH*ywZqKj=e|^+LT#bh@$gDy_7mZM+n58_J;O{#HL7suo%TIC9hI0P zCZLhtoD0R;0xR=X6f|(H7Fk)X#7k8>IoO^Va&uWFGvu|BT+1@cY^&>IC#?RVa6f`R_F0L)38`dB^J2 zfCqdtT<>vG&`I9vxF~r(wc5u#wtU}+il;=cBFU-zYoe1MQOJdp{nA4E3eEVXYwN8R zlK=Q~u-DpLkoZ<#iCq$nKr|~el~y7g%pyLS)CbfoXs->1+h#2oFf;z_znp4(tp z$o|+&!`C({t~Up3koB5`cBywFBwyjz&ACs*_@4!=?{?RslCM!koJ|az(XeZn)J@i`*3Jpf`M~yzh)hlN)>}5NKyyCKyim5>s-x;CwA8BZ=VEW%ywNlKIVP_IN6p8pR|q%u zsnU$!ZQ=)SqLcZUJ=uY$I`YP}oJpUNfS>r;e}%~WYxU;4&7H`1`?rt+IZrTtud^_j z|Ax8GUppe%iT49v*}hz=#ML$V!R$yLruru2#&%U>F3pNJcDe&&<)eW~G6%bk%U?D0sllor zcArI?I#B3Z=+aLAOspzMI{E%!EwUN%UdT@9z$INM`ZYj!^sUXVcEqQx68>rv)wzS{ zdOAGnhX_a1wTko7tvbx&NIvSJ+kv-wGVMe=_r zWt5bWifl?mwj$Yk@9o%o9S5Itj=lFPWTZ$Xi4gU>fB&A>^Exl%dG6;kuIqipaN@kQ zOKN?KbN=OZPQ|qWy0!D+ZHp7@7?AZ7p$I!J3xEmbsqC&g? zrgNmjzw#8LfHGUI)BR=OV>mw8J4=A@uqmdu1x1LD$2;ziVk!J__DyPRN`s7s464OY zA^M~0CC!+L^L-LCTz=KXLzR&vJERmK+0b*pr^X8)=mo1dzjYWsKZX^4?8Y4I;ncG_ zD!Gtqs2dx8-xEgDRmxQM=AyFHL;J+yvq0>qe^-RsJ$L})+p!b^qGj;zKm%zwCuCLQ z_;&|X@Vm0`DpMvh?|bty;&&qGU4G>sGwX-c$ZMt^KT?rNE#ZC8#VBZ95?tPKIRcf? zji@{PNpywH`dgE;hI%qMWCMoQP zPJBOKYxzwY9ejPGHYx=#IZd~#hi9yj?k+QSYfV>F9jD;HSD%HH+e+L0d|p6(?5J=e z#UDwI5_uLDa}e|I-HW3=f$()T^1t+{aI{lTD~T$N^-gUvlfSoPK*jD?^HbSaG-((1 z=H=~T^pGLrtXM`W*m)l>w-`%AYx*813lEkejh$qb#K9~$v|Dat$3O}iwh+6%x&!Au zo?HtNpv}j58As*XuBV|Mr`zije=Cr|($dXGfyF?zS-fp{H64ZDu)1+|Pc^E@T;(Xj zIVp9AtnZ7F(~+T_&{zQ0h3ijdB<#ZP(_1mOAMB|~N2bJe(F&bfls^+`|FxXGzeXsvmOBI|ZF| znmxd1i}n9<2Lw~ebujVxk#Ws<0z;)#VCINHA{t-*cgnD z4+7fBTVu=mEhtLrLpoA#fKA0!??#PSIQmf0=-Frs3QWx0!AW`Pi}vohW{f|7KD-zptKJANmHw7l$d*I2Bu7w(O)DA(A^w1ijlla< zF&|+)%g~OckT{uE)FNH^{s&Vd-2NAz;qn9PWsaHJ+RnD1qg-DmyfC+9jNW;6tF#vG z%JQ5sv1>sJb|$KKWE$Wa!|}Q-9e{yTUcQSzn$dz&$4|ddDmaiWix%-d&AR{3eEa=o zBzQVgX}A{WSDgtsG0sl~}!ct7~F$|hx) z1|YGxhm8f-C8PsAi*mA!Xwzwdi*y3lYq4JU(>R+TnC)1qoP7gwP>6MUiTUh0pGmqV zqfKBhq+oTsh>E&>3w0^R6|k~HS~J`O*8x8qx&^*aP?On%M`f=|AhJbNZH1!+R@R#QIupy)FkXQVsA5-CcsoIFkrxy70w2boE7m#a| z*%P*mPyj+fc!6Xq*iUe@$|=<&)7SqAn{O+j&pm}dvyECIWww65;vu}JT9eZfJRXjI z&3He2<<|;(o&*f;VU4doY)tJo1t7or3Zwh8`B2Z^pSM&yD*1 z3la64zPcjz|Bh#my>c3A0!9X>X66%lh;aSf57jFaq;oFoZMk(5l;)ZQs=g)Q-?RGg z(JC@Bo8nTPU~K|*y5mbHMA332CiT$?VcM}J=) z&Dejx5v(G=^tfn7A(L(gva(PeY96c;RAFue%MLgh-{yy0JDjbH-(tQ@;lja}t(Y@k zFmdS6x;3i!;v*0_PekNI{nV}q{M-!13;lQU1qj+c3_6Yd#VuR4UMkNUpi@F#xTQM) zuuh}*SZ5{Tl27#Te%JsU(UTVY8>7KRUoMmVK?OQJc>a3dqXxL5S>Z9}mjZ$lK`pPD z%28`t^E+C5%ys@yX2C0x2|nhp?4}1w(e}MWy4>Uj=q{^{yh6-@N8IPQ%xg;!1B2YD z^$DC)+S>5?$@xN%iZ8VzlZ#RH(FmRHlZ_y8{hHqa%@Vkxqs+=rEJCb0mG4TU8==yZ z#&6yOb0Yd5xwdc?;(RLKHy=2fAZzWWiA)Bk9=xam2JjcxG*aZeC{)Ml!@&;n}e)r3fEN^n&G@$mn$Fk^L4-7Eo6O< zfc^!u1W#nNz^J$GAEiyq8UIx2WqLXjSst|Mp|Qfx-G_kRc7FlbQ@Vm^Fel;qb1N2F z`8IgHWU#LOmkh*DR=X3zlhJ{@*Da6!*A84<(<*wK6p(HYpZwb#g9LjbwzB`V1M`pZ zRhbnkJdicsc()va_6cqj)XaC_94OI_==lclzIDGwc>gQpHGWm_?NBFtbG#tU{H_s7 z4;^^jzgHim>VLqQ#x9(rq%%2%>(aE_->+&1_=4U*_uF5k-9WfqHll#_5K?DY_d33c zf$TeZ$rH&v@NwLoV?7Ah|Bs2BU*4#DL)Wvt6rO!#@6n+UFZ8{(#~U|xOf&K-_J9q_iL zl7;C#2{wANTO~sJp`?BAU4UXIFmA>F4b-WJKbKNE+4}mizD!imFs>8qDvr=hT_Hox zB~W|0V*va4h%B;QomlTudI^b8Kw^!X87F6eY~o9m`uBK075Hms^*Db28rg|@oEZQS z`J`V1)J{m+>tnJ@7w5?d$jI_Z4!{Aa+p||+bwXLz+x$oARG4KGu~*_6zzp|g`2kDEVUU!??AWTUl%K|7&!SdXQPuD{z)ykm$=T+* zJbh60-1_zz`xba0Rba8LPKLM5ETUmXz2KMjZ0Re1Gh}Z?T4r_B!|INcGy?KH;I^E^ zxRi(Yq?~F8Hz+tvw?$L^c~BQzq7SYTJc^%7eVRM;AvN&cHk>Vw)B$yWOQW;HC~&## zUdN_IUfxk7uXO*urnmj(Xj{9$#?vmyd{y`_5TiDRA;r-4DXr70|`GUzPrNJRbJbDg0a!AMQ~L;NYn z=iqVLKF;S{8d|9}9dc9;NAFE8YkEyO!26HBKTo)3qUHX~)1q|INK{5;f{f8zL^#G*J(Nk^s;}B-UX04G7`XGCBB1G`IX5q#iUU&WlPfGO#YjaXsN}V74*E~Un!I;B z0lw;8c8sOL`R>(HC4ymj=y=rO0`C*aP*PyGu(huQ$;gGuoA(u<`exIZhdwEww>`%# z&4cxV9*-SMn2OOUA%*LgFQmd;^yLq9zlu@#nSc*n$4k(i&epoGnW@mPtP$6T_iU;a zkt}XkN|DZ)Y_G5u%rRt5*l2rPjMf|(Ob^{DL%aMto~$IL0&O_=KO4+{&S76Yar9m} zqNR3bdPta87~Xr_)vkG7FHHEz)}@j`zbmZdZrz zO@@Gh6Z>kF@=>F#=|S_2N@OUm?tO0{0rUDpJ9l^FBCR6%DXF3=bnRUHS$>%~Fl+pL zGFmDJsqma&9>;z!O;wHKep=D+Ao%`IOAnlnQs?mLVP7>O^Tb`2l8u0}tsB$n4Vh?3 z;NZZ9ED?43&$^+d5U>rTRlD&g9eMLu+4T7n(Y`zD>P+AKKxZq+nNBhd=j1f~>M;K377vts&+gpXG?zDeQv22vfR0 z-Uvq|P3f_(zpD|a*mq`&kKX9|r4#+tcS2BE>*}>;W32y@P!%*g7K&`o!Nqhrf8^() zsOnf)g%oG{F2$roA-h0VZ+-i>=rqGKf3EII^m= zzJ8A~m5Fv;bhUapi|fz=RqN1PUo@4z-&sdG4TYPXUQB;cf?AB5^}ikqL3-{@>Ie2E zBD&&dqJO%v50j*A#mNc^ZpYTEkT-^ zPSzJLXJ8JuUEm9nDcIi9I3pT@b%Em_y*{2NpcGSOWiu^znD{rkU`HrI6N7rcOq6qx zu-U1d$P)t`znRW?uNI&Wp1+nH%nDF4OGH7{+d!x)nZ2pNlaFGmfA1;3UW}}kKaZF; zhrqWuaosEIxroU6(Xr$m=6GM9n!Q2_h0*6P<*$Dypz^!Sp;HG)YGf^PCJSohwo0HDTv+z5vja`ZYehGZk%U z$o$v6QH7i`&#qZN^@7&>+Qy#+5)uF5A|ZLqk$QG9+Lz<45avn2drh{rjsm7=`X_ zT@1M&wmW52TB)cDtaDbF2Jqvpr6N65o6)%z*ntE zVD|a;E@_2=;+dRfxpgdZ$O#d*zX;il2DPZ|+pGE7d75)h$$ z^3sxCCG5G~oyp`~69f zQE+K23-h98uJkv_OJ|@_z3|clf9t?3<52bb=|+_Hbyf07UK;wrFZ`ZGm<$4;e=|v4 z4Je#i?>Qopikcr=n!k{w03{`j>(9joWNCASJ3KKNQ5cSj+xKxzu}oB_6fdlH!jB;65tVQ^e1KjNe1&ra2$PqmR?h z!UR0u(9zt%t@*GXEtNkOwr`0?XD2_%80$BJEdTS9X?7&U^24|Jn_?n5#g^K6)~^u` z(@mCf%3|G7rNX^e)5%C!k33!%*a!+I85=5yv{^)>m67T*-6qo^(7YK(xG%Zn=3=fjBhh;zfLpct?k)sn`ccyuhM+ zqm2UlEGATXro7x3Nm{#0zhw6qef+xb{pnbpFX-R$c$zY9St zyX{R_XBFa#5+^vmssS-ky_&}Q67ckW@Ma;g8g;rq=(9?~IeACltd)n90j+e;;YofX zvR^DXcCWJ%Qk2w2mA{rl4v`hc6^TeVA?J%2C-w(^ZtiEmK0!h>X(tyi5hYhX8c)aE znQEHBA3idbAStxRz0vw8-Y2VO|vycFNz(EhvWnzW@HP zGaK*g%-dem;d2GrltXVbVI9aQ8uhF!2jz`2gWw$%=w!uoZDf&&QDH| z@2i&~8hwGC#VUEQadnO3V`>TRD-NeTds>1%4IUj{@5=!N?wbj^f<+)J))VMCT8QT2 z&o-|FWJBYVt*_?{bFqH~890^XA|I{@e)3ZS?D1TsbP8oc_iJA@1*~hVQu+9X$utYr zjGI*oz9xa}L&pPt&+vO*yM&I_EE6{S*A;pf!$4!vZLOX?5&d~&%X8Tv1L}>;LtWY( z;gH1agURMdl$b&ue5;TSai2miMqP149ML;}iCqjrlKfXBVj0pfNB65J;bb^EGo4Jo zsOo{vg?+p3oR9)v=M;w8X;RP(%V(b4tIrTKgxXi`NP_q;gL+vvvykz}S{pC#YY^Nj zXkud?2izZqLwd0<^wdk0u*NesaQ9M6++*7)xEpPw`Vw=_rVRDgtJB@VUc35UsCXFY zREUHSK9r&UgxbeH2wuP~v^*Jk-yax8#fT+Xk7q0D##cSz2lIws{+rqF0S0?xCXz@v zm!XG4j)xcw)93cCn!|HgE|Ij?ZLL8KZ%G;lE{8$IN#(hCMJ9CfgjAhkKrN!F&!NqN z2pC~&_Vp8bjvUWs?U3A2kGRJ~{#80ggNgS?=a=fQke!q34LUJE?*|kJL4k2#&?Y$0 zfa~`kO4lQZv}80PUeB||odnke&INwm9f-Li?QvJGlhL1vPtp^dsSrIYJ(uS7Z0AYO-WOSmD!zhG!9I?45{Hxgr_a z+mMbJ{L2Qmaj#ZoLL`chNNt&BA*1Bn+M8{1`4Fw_?d4Y#g)YRLO*VT0XmfauA%|Q9 zo}7wJSw+$4`qQL4d-CcLdX~oCN-BXr+SabNeKF`YeO~bl*6Wo<961l!IM?f{=(BVb zha&v!r%q6@F8z(7?01}#_u9d~F8@#hau&JEC|gKE!p;f54ScG=Uu{n7YFrYksC>u5 z>|cY1*Ed9NJ|w~^VUv69(KUjB5$v`#X4{f4m+7qLifwg{7#$qULcETQRzs!Cx24To0Y|V|&zIV7|@F?#wq* z1?WjR-&vX#oS#>JYLqIBISzNG=mk#YqPykinoReTfW-JEG#uCUyOhM&jfDs(_VegJ zRZb#Y91+a=CZgFcoXpB0M8{nU*%C~&hEnJ`KbG`8$U2ViFCk*?FtEb zkhKjeQUj0%!@B*iv24im;q|;QQ-dZBiZ8#^cSob{i^h)+Wx$yA+*%ZW4GQ_Z^Rroo z7IM1$`FY+{GK3UpjxVoOBhfSSCGRkgpIdK}>tkOGTze`raOp)A3W~Y3xADo8Ru3K6KcLlrJ;AXhUrCcenfvHU4K3HACpS=pBp?Jixybyc2Prf zVS6vPGmBgth(=2vY{p#Gi_&jsf8-Uw&9+N2ks2vbvu)CHhRGDA4ejt&d{zv`cRBa4 zFQ>zv6dkXh!nhO?vq4{YN+IO9HKl)!0Qn*XJp$gLkON1<9=DZYu2|14^L?0uDkc+K z{w@xfH5xiiyenW#abuuO7Qa7yx`S_2rov5c3iDr;Dp-;;;vcau1skI_j?u_WIG=li zc!`4uw{>6HPE?cw({${N!LA&rwa;yx?x}&%BlRilKd~S9R6^Q4rhI5(7VdiPUJD1V z)Q-P6LWKJ&5`(FUg-}g$cO&xFgV6QI{`*x(Fe3Z;u{ZXm_tJh0yB`2>ReJw=yM7&% z@$RV!xPjk8KX~@RfFVIyuZ@Z_5c_KLVE7{i+I%`>w#OPEeyRUU7AnPWT=6;g@HfqQD@GEW zs=4NNi?#)>5AhGb4XK82P9KBk`HApk#e8FQcME89a!zhG5+O{1Q{lKk7089(>vzQ0 zcScULcOD_Z<30@?V-CF6CjQL&G=X)?Urdc-OKQPjcT0}%zf#!XYIr%8(hM^z`BElE z^$@RgSbb!v7&I#`akm@o2d0vf(TAl>#SU zt_PM`V?KXf_*@x;z!EEoak`HT>ofgzhFGs%8h$_g?G7&>E=q;_Tms0obX5Eu&GaE64x-m7+a;K(c2$^Q!3 zrv?c+(o{jt*5gM$1|4AiJ>TU7b0E@LwOl^7iur=|3XX?Pc7l^r2LHz8NE9t&*vQdQ z3_c+`jTh!RfqVQPZRYI+q*nf#S(7afSUa9trMY&2T#Cas{bVY#_`~?w8P`cFELT<( zSG!>48{4=?Z6=D1J+fAMDIVCjEG3kcx`Br|rS(x=4idP*N4{{^A9&r|k6YMwgG~IN zdhNji%uoC{_C;J2ZVok@-FwjuGk$;Kc-M=O_^bM-!4T@ zX*I^C(_+!0gt@BzN*C}AY{_^om1BSG{(r&kX(;5BU9GlF7c3X&uMPvw*EvrO`K6eR zHoxcH>ul|WNbg7N=O0%iNfV_se&GW2^_c8d)J6v+4+!1#ZYH9qk1yIuB^RSU@kb;3 z7(2k=JAuVwwgxS~ni}huDMiHRCzp!xykBtm^wZD+%-xJn1#S8ITR3xcv>QqpM>hpr%4T<9XN1-I&)psN$ z{`rnm$4n`zzWu{)h}a1F7J2&Xq9pX&Sfl!hc?sGskK>Ju|FpM)J#z& zn5|b8j&u3JGSOw(-60w2yLRUtyhwsOrpCAR2q%y(Ck^o$IR=^T^;`QL2*5x6_Rtj{ zU!*8AGBNfv41IIAY4Gc!0MApa=}qexl<#nX@iwC`y5kI`Y_jNuvCZBV*-%9x8=p+M97=`q=;3qF=TYPm>Pj*54=g{b(3LQklqaQyCWV3RjG7|m0T7?)?V zMew|{#5(%Uhxl%|aIElvC+-vW{;LgFeh>tYwv!1wyge}RLS;tgaT!uur>`G+>;nq; zC{J+hfq)}7uNo$lqPHwff3>{bVS6Fxj^1DobnvzjM#4(au>V&jmWant_TPD<4c1;T za0#YvDHfwUQ5I$)v9{=FF$&5P?S;UB{uYUs1<0kI@&4&CKcuxH`^Hi;&N?1 z2eA;p7>4LZqg{ald%V?pA$)F*YhWQ0RhsdA*}9X8lqD{UKf2cowO9OVBD_*jWIzJ5 zYZ3u{e*5%MF#bF>a`+WjP%J9`=ON(XR){`g36U=T9#mpQI|}uJ@2%?S{oW4XaHjP~+{YT!#ki|dY`q79 zKVJJ3{3H~@X!!zGnE}PQ#a=!Z(F4*F4|nx+B>+nm|B=Q73QATVllj8e1Epn@9TyH} zz+oQkh3TROwD2Txk=e5wKK@|rDeu7gZ$ga>rLqZSPu1GKc(VJ z4(9E)@sYSVx*);k@-YE}QXo4?C#PbL$$O?ShPktypvJh~l)O<6daPYduCg7-mNqbMH?cz7-cD3}k?Hl}Ti7@E`TOg&8X}z3c{u-Dt{b^X*k58)XoH4v zd;OR(5)>3+Avoqcdq)n^jZ0&lg87KPXmcHW82SB3;7%{9-=@*i6m9|Q9Reb9t^oJG zUa$}C?L~(ezWut)(+pwj9VQ3d$heN1J5_(N57qNNzj7Y$`Sb6WE#?T~{nqQh@>a2Z zXkO;)h3D*zAhoa(*p`X&TP@*T^n4%6@Z(Dh5o!R5+tX~Pu?|;8>Y9+Yct2X+=6)Be zNCg$HI~kv~sL)qf_kpt9lVs@UId&xUH5GozAC~N2>PM|^G{dr50RCy(=M6NeaD7xy zE{$gZT`%GreP>?}gDpj$qM4|`q|x*8@c99hx*3zLL#f053UMWiR0=G-7g6cc89>Hk zqx)sC-mseVic|GJ3e?!IoSAbPKnz>$|FN~#Lep7YZf0jPh^se$mWdre*473R@}9M@ zT9*259{)YBhz#=BR16>^p39;ny;^Yj_nkI-pbnbN`L@=&2TbiPJX|f7Vtak|N z(hVZR35$gHKWkw=m*e3*LIvzwnZAmjOjtJg$&_5S0q$ zJS)K5lkNArZrk(V{AvFD|1#GH(EC#T!TS~UaE0xB-KDq!D3`B)s4z2tPA~E?J4ONs zD1Z0%7s`QC+ijOD$OA~x$n55vDj5vd_bmqxW?&wW_lHwq1L!`t?6L08WSHpx);U?9 z0t!$4tp>CP(6y@cQ|XZuD7Fv^y!I{@iVt0QLuDO6f@~oijM#6>Ph4ke>YcW&J)RqyLDjlcgDW2Skc!tV|F^)GmA1Krb38KTPfB#QK`H zqNWEC&dB9_%dwTO z$qv+FG_(4tp#zRAHQ$=)j6|_l7CdS?+E8U_n+f;xPGEmA+`EC_Yd^0Rxf0A;(Q4?O zm8Q*3NVVy#TE!f84mG_1de#;sf8^eke|lZ;HSvd}`BEZ!&H5`jiP(g6^fI@-DmmMQ4)OJWe0Z6mTB`|^z;wnn z9sOa~JsppIR^p4Z_nw{Uf@%J1UqZMu(ZyJ5V)d>x( zpLa<3S=X?HJ+W*D04ccG6^YO^aN6MTc)5qUqKHgmM9?om6 zpwBuZ>NZz^njOv^cz(PFz3enSD#6eKG#YwCm$wQL?LPO}T{T2>Ebnpojxy|z4omhE zoh?EZD_6BNFdw-7vHWVhY9nw~rnNHMC`SL3_EDs>h$v>4K(qD)6%ucl7Nou^Mv86E z<9=)s(akR-QSS{YAi}vr{%i!!@7%3@Rnw;iu~xhLvvdOlWg0!E!PnPG``Q;=C!r$a z?%eSaT+dJ3tW}oBd)n_shZ&@5k(|iwg!m;QoQ^{O)Y6NPTFj{pD_NX#^M3OZ@n99K zGcawJU=C1HLTI?cgL>3>=&)3@O*z!DwH~Rd$wwR?^kqW=aBljY#TRTpab9(kyuoP{G9bqfdB-Lvps@KpFK@U|QSa9w z=XtC*n7uCk+%q-;nP(n6Z!k$k+(klm(>TB9I0M7WlSsdp*aXwp{<4K0# zjGi#+Yh$EZ=bmbAi2do-%z~xrNf1b{zb3)x4C9iLGXkCsNL2ie)WmoayfrovnoAD> z$z5eR5`LJ^QbP&;cRvN3HBu>F#5j<+xk=rA*?@}fA6Gj&oeKLmj!%x;romprBl`t! zHXz58YVWP>bm$DBKk~+p043iBWgHk95dHAAm9_LNP@xZ4&yUOpw!p;|J^~d*->*D$ zqbUbOX4$?mHDk`di*=By1Qq?aq;U24?E<*|Cq~@rbQu8UjYlD_2Yh>D$}c1o!%~R* zosN(SIQzS5zs3p~ozpusf3~y~98@k;Z;V%gONpFV$!Rj`x$e4kW~v+FE{&YE%F`9lXBJ~0t?MW7Z=@nkf{?H9cLvW z!xkM+EpHN3(S%)dKTQT^i{0oe2j*0k4@EAe;`fwViXY(=1;qb;Pu{~^g#^RTwO7Ui z?7L|FZ5Z<>b6*iw7yp$b$)YhrKSN7dd_f<^?Nss)^-!Vez)J3rSNf$q;fiw%cD^lZsd_hLI0`-RL@qTV&Zfe{w{ z@*{c3PvW8a+@%IsI6}*(P~8mHkFM?_pUXxrcVfNIhBm;;)n>no!7UI^kgZCmW+M0Q z?j=HF1H|4{M=$kTfxhovve9TdBHwCp^u%)#BU6jP0%6=2>(to9`J^E)c4N&p+^3t% zwlbSdwZZ6j^ZKd}xSm`%pTdOw0$h^9dGCYUp)hk4Iebb*CFbFSDlZ#Ak0;NcQK|zb zK&zXSf_2f4o*iEn#n&GcKi@*Zys2v%XSG=~P=M}Xb(d}`#8?T7P!Q&tHXg`DN3xLo zuL#}}_WC#7PA0uis&DDwE6ems;)+Z7E5BQ~$*-xY2jP++pO_ zBT$W)Cdi50*Xu#rS@6Y3RVN5C3^CmQi~Cw<1r1-)}i6__ID|@HDE;d zLbi3R9iDyrwfyyEJvx2pTzKyw5#9|AI4|J(H0&m`Ax5*JS3YEpz=diM@V^;oMs0%; z^9vUfuhgSzw+AsX+f~5LbGV-7LL1Z+YOY!N)S;%d?46f+tKfiU_wm0Kt>C&-eEFYz>m%Rz> zu4P&`eJDZQ_jOHQRh7eTLH7C)%SM$s6^H|o%FI<&R6EWBFBI9q(5@cp= zQB217t*94!YHmywq-@`QwQsfrbv~yksNlNU=~KaPI@(ICmvs|l$DF0Nn<2(O$MHV3 zrafa0=N|qdjt%6~Vf_PH?}yhJ3S?)SuMIhU=3-cd>8A zG3BmC_JMNral-O+XgdW$f8LJZ$6-g-I^7r8GH|Y0pcePh-Bdhx6Wid{$p;(pGoDQ% z70C2s-L8xqRCpwFXwz9S2W*V%BTp7oAkTlf`ju~}kk=!VZg@TmSeG7j2S`*R3vHjZ z`Fbj>-B~NKK9dgYYX|l-6jovm+y2kF8&o(e<6?IEd1OE;Qs-))Zok)7`iMUZx>sp6Uj$J|oL+DIElT z4h4>{BdSsJPn*ezzYVbCmsI0xdQZr^+L4`#_bL){Bv!5)jS%6cJNt9_88i<24ktau zIn9K55nHS;zWJBNF~H;=g2KYykG(`xQMY&5aG?>;X}hg*{hg7vYn{($ks9>&Y2_Ua zxhA;&vByC&$p`tRyA@8qtU(!E$3?>;JI!vk3$gkK`Qnc zB}q&1<2l$U~ zX@y3ytj{~}{Ll2Or=9T58q`8qJZkRH3OT;ge>b&C@lw0q`>QPxE&u2=5U*?nvqxpV zg?Qd_+Gyg+T0Pzi@tsU+`qm1|B-c-)BRD5qgwR8ptwIs*;jg|6w88z79rQD?IB(?d zRg=@0pHO6a#P;=#HV6sS4*qnHh^jgFnwOViKfg(YgSJ&06wR6I3hyDI7~unX_jRyN zt7S$))2|K2U9z_?5o?j%H`*T+!=hcfsz;Nob4}7%=NI~_t?Ec_1E6bLd98gbUzC5_wQL=qGQ83qfH0D8)6;CN0;qSJCZSHaN%b2d2wo_V+)Un(jz2Y6A`PpU#ET4M@LzGZ@7wy>snKISiCjsU00VmMY1fTL@ObQf|>q3VoeD_RAQDL>{pprkri2h&(mA*_PDVk8U8Vh{x3yDvw z(5hMEdCxlgzenEy%#~KzgOX93_Rt;LWS}g z>vx*#^>Bvwh=9&e7edSrer1p;pe1F-FG8rta}bu9{PHezZt8PNy%`0j-+X-&Zd(se zq(@SieY^0vulUq}nF50Hxr^5N^>Aa#$|LSh7a|`O-JzI8hJf-#o+^`i7~88;EyvS^ z{ChP%@?pPdB#)K$gP?k_=(E=w>+VFds(0o;*8=XlhHr-S;-6>5;os`3PRx_jn>XG8 zfPT|6-4FxNyJhsCSF96-C3#&<#C82`ngYUB901?m%U7IxI?%7(liwrS>p+d*zTwSE zhTDF>d9nEbX|%7*T+*xqsfns~wL4@We9pAIO@r@;d)afhvF}y=p-k@S1TuW9{kyv+ zpdB4Pr%Mo})B?q3_DA3x8GM2|5682&qhHlc-F2C@z>!;}JSR?pS+#OSl7Aa=|MZMB zOQ;10jTbX4))W{!u|Rj=Z!0=7JEy+CsTQ6nG(Y4ipg?uCYAmNI<__xay0*Dd3tx^U zu}0$i#be)W#m#oi<$dEAVR@wv*0?HO#IjK#{mJ^Z8wkn$RB||HKcE>%rrsgVcYIs4(ABfBn>< zCL}E2rShq@9!ea4-#lkVg~HeMZ|d+|BW`JN-#Kvr-nH&;Qsz|XP9E$(--h!zj}{*~ z>;teVU#sM3NQL(F>@!7&8*uI`UrWOnZs-1^x%}cT6^xjEmW;olqL&43?V4<4@Ju@p za#NlPwQ7bpWw1|*!9nS4iYOV>kAeU9!}vKk!k12XL_x}B?oF5F$ndVMYBwzn6`pD- zQ$xmaJ`AnZ%Ek>cM2Wq-_GN$q+j6+Oc#Qp*mY;W&-6F#|KQou2Bs}N57gKZS1D1_W z=Y=@q>lIjhV?-WOz^QF$=^zuJh?lvaO)in)Olq&_9&QRaoPC{Ic&Q#47Kqfo79qpt zXaCZE67~hI$Xf1n`2QS%_fiqQZ&oskIlpR>;j_j5vG&qhbO7z63mw37ieH<=JQBdr zt|#8K^Ca}ggEC$01Yp>CV0%2@8@7ggo{`8AF_?4yk(Ot9# zjrxS7mxk0sF)}GrW?LiyU^HLx6^u6v%l8d;Yxc3jb@ zgQmc_Vi{cjpNM$9{9HyI)#@$ z^)}!+j2R>Gf_F6xRY*oi;5nxJcgt3dPk0}gR94KYS_Q`i7X(s{=D@z!Q~#`Za#7T? zL~)UwmB6LSZ5>vU0sA9f>d^6LA*Uz2CmT!3fptPja_~k9pveb!CU>SGA*KW`UY#Mz-He8N$40L2FNsH5Z0nYr^tk_5-_}=q91K78nY^D}2uJ*%>?Wp&nD-$Up(-fi z4)K4u=dM5XLRYgGG+k(lfQ?&#^srMJ$_y>px-%Xl;yaIYoBDhx7=0;gY2$=Eu8BFZ z|8)TQfh*;eq+B=|lc?Xw>4y#(TyD5?Di9`rxn^hW$N`3_y|P@3VQ6{%wDojn6r7*g z@n2{%0oGQZ$8Dk*6tpiPOTRY>R2U3~ha$7!Lf3n0%C1E8u;qPq#?5qiIbydNu#gD^ z>9*c?sVPX$jQ>Ud9s)$Qb4|O&WrA^7Yv;OC8sfLH^*)iC3pMoM6`zp_cUWvLUSiKc z|0O0ay6rCn2@RJi2h4r3>- zSyc|O5IOb?NM)lG--Rj1la;VrY(`@3doC>g&5Hh^mW}L*mt9S6Re}4?jLKI>^I_pj zL^{pcY}EKwq{v6L8l>)Tx)rDw0NwAHEv8QdD^@`(8b#oE!X_^wCky?I>N?*?sDZC59L-I;iy`^3f|pu7&L>Nc4t|U| z{Qlq8^R;z~!RsIwZC-K)5IO5@i?;n9%`Tg`eQjmZ`UHqBjweWG<%aR5EU5SlN z)Md^D)Mm~+`GK_-SdU)YatX#^ zD;ue4yk83;)zkV$jhi;g-yxLUZbgJpda)<{dkbM^qD$mqp)I_$a80)Ls)qk;Zk5J} z6afGB=AxB@H}G?&KmF=i1tOv>42uWy;q%>7Gr=uk@b8XNswDPNu{mEjTK6><7KYa7 zcK?orTYr~Hg31-}PqFyBTucrKwW(9~#ijs#1RdLHfpW;ZCY~a@KO3G}DV=1;9HORU z)5`idFWcYiaN{T@| zIXO|;Jq=#hwGCW6TL@m-ce!Tn6+!CjRgIBzDPY7%49vp+w^)V?8;`KhYj>!1eY#yd zq_i9>ygpR|GdgwW1ZVQ#)8=NT4tEp?wm7ZW;r!9dKP`X0^vZ>soIj5@-3|f1a|^N$ z*UO+!$1?Lj3%pNZwji9fe*=r}WAFV}T@LcP8cqcngMozd-=E zf4j0BUWcGD@q;^ezryEgwDeMg7y;@6E~x+VibiyNbNhsZD!^|`9a$V90AIvUPMOFg z^nBvM<)OfG(DW~mAV?CRVej&h@BKK}jOWBq3g!*5=)1gPQ6RwkYbWx@?q#6^-`9s8 z_Lah64hQx}h6EgAEBDiB2>YF)PJ9$EF9Csjyjd@?UhT}|g24w$1;~}{8yB;EF;oVg z(Ik*@PUYyRp`unX3N*X+-)^}=ST}ZlLCb{oo?G=LNB@dU^4@p65BAbC2tK zU%moQewdqNVmIUGqN7G>Xe@5IfMWP?F#*2@UHO3M>-efNKSQC5hdQAXx*K?ursel@VY zamOg-0&VXn#n_db+1(&Oa-xSqtpAm}<7Yk7h-ZWsq!=c0^Px5k66Bi375O~zD8JT& z+TCTi<-eq5PhY}Q{+%m$uEiVI!grN?<*z`8XQ%!iqL93*+V{*ybo_A-pWbjgnG4Ns z9bJhazKk~O^;Rdo1mfR3*Hy*!H0(2`IB7T2pqD3g2i<50c8pO(b`za^F+ogkh zOwZ77Ci&Nzw;Q+{2C8wia#b%igYe?rF8mUwkH$aW*8S;BuR(#W8_VfEX>fs!E?(R` z4ja!KPs-jQ^N*O(K@EKxjMJFZj@cw&KE{pJuaJ4ktBhJc36i(>!SRHrQxb+X4($py zt3#X8m4{uw5g0`d(ll&Rkb5{)>T_!yKH2svslkWTSv?Ol-)p7evn_N?S%2$L>gye5 zs{;teSMDVYab@5cCim`-O!c^(T7D>ng^vHxc6LVvr%Ccs#gq}tdMzte0B4*7=1b_3U`nGv?9;F@R{N7bJdW^xT|Kd zC`E=v{x>yR>l%gmLk|vmPUfS1`_yJO!XKvH_<3qfH59$P<{Tc`l06GU zj&JOnI*3fovHd9IkAGMfdiaiK;ZzFkxU~<-ZQol&ySUE zbBOrwir0OO5Y&iKt32?p5jI`%dHmlt7g%@T;FbDQURdWIadl9?32qn^TIuZe0=DcF z@u(M;C}nxRQ9QW`B2PZnP|@;-=O6l|$0Vg8_SqvJpQa}G!^k`)bUzSY%I8fOM_Pf> z5An!@%}u~%+VkjQUJwifnswamb_c^n%Rdtxv z;sU^Q11qC#R1Cb_q8s?WqyeazH5Qx3ePJDY&A13dJZ!gXoSOSic*}=%`FHAhfPrRq z=xK)pV0?O4eH&{%Y~G->8dv880z%q1d|MMCTKJTW&nA)&)Xn&}^ubHmY@3nk`85d& zG8F<2uB(NG^_F*fRMlWE`=h)2yJR@Fm~!#VbTv?H85?46J;K*A{w+^pQlM1Zq$jk4 z22QHY;~Q8UkfO9*A^Kb@tZbJUskx7^%6n)2$U#rs)h=AOy)+eEDqgqOl6~mrH)g!I zuLPpb@HsJ;jcM@f`ts*lqL(`nwR3!bP#ALb3~-H|OoMIre?(-RFNN|RQ~C9uqHxPZ z#84cm?|vUijlbtkg^?;jtD24RXyL2T7Q2=Td6{=^=WZw_c@uR5aWNz(Y8kIBcoJQ` zhKP;VTcUGMIh5Qfkb)uw2uCtUXxSFXJ_X(-V+Z}^VrAeBaxhbmM_ zK4ah|&BGNL$kN%lwee~a*hxGN1nvU3)HB*=-b?n2UEe8&#E-IIcGdIf{sOq~efsv{ zsvHd3wX8S2Jq|pMr?)0}7l7Z(AHvlqNxgPylwUqJ0?waqd}(o^5FV~vdh~ama0#~- z@z$&b!PXmA7dd5$U^1GA*~){0f2EC{rWd(`zfbw=Zu?@e_8z~KN_2NQ-0`Jj1;!w} zdrn$}%2STVe#wc}kbx-FlY3f@u;Bh1cx7a4QW&whf} zc`YB;n5(a!YN>`IFQc=q`B^BXA?MJ=Ky-p}hZHXx)<6|)%JC0N26}wy;Sl&*f_LVI z_FsNq1C)$%T0eIx`hD2D=WBF1nvXF)ZxyK}pWp1SGQ)&JsdnIb{njcRXI45}s7!ot z^Q>Yr4srNI$x&59n1=Raudefx`Q>db)r61q5h%^<`R*9e58E@oeUK|y3q6nNl(@bI zqP}!ej^n3llzYW)VqRSX{@I2We2H$j^TJ|$?28&K5Ptt<^lS}i&<83jx;)2ut{11S zy{|!)So8CBAtXn(=lD1CQf;uo!Le|TTGZj$&p**l1N8^fiTn}{aL8vNk)D_E1-}%k zZ0<*BW9Z%~`PK_$nfdtP2idRQ5}2r(u7vjQ{Y9l>L9mH+%y%)q2B}lYo;~B`VE=Su z`q8d1U{lZ;uPx6eM4-_uu6+yD~Q}x&NaqvQfhb#XG4dcWHXm5)OAj*k$v_2;uzCEDnve#7M z_X}N#W8DBkw#MmT+RaUJwqW{QEsq|BHd*wbmW0^(4pr z@%)1NL@>NO9wIupJsPs^dPF4nlKN1Hu2}4kAGq60-k6?^gmgboU9K0YxMh?};Y!{s zP>?`{#E;b1xxu<4WhYkXws{*tQTiR0To*a*jmgZQp7 zj?jHUsM|E7N4Gf`BNPbM`5*Cn#6Pt9_QV_GQM4~qJ`$D3`LZYCBH)^Fw0F}_C*0ma z*PWvokC(RbZXa=sgych00;+GGW1vCszQi4*e{WPH;g(Ub&sW`D>&qn+oczyX(@+{3 zJ^DpGJ{b)WxwqNN_dfyOhPJ5=pDc{_?-^w`h=mIrl5f7m+Q1rpFx@rwJY2Z`gmPV0M!E3{)rC>&j9=id@gf}SUjO>eGF18MD$nP>{h%h7#v@ExrLU7IKO9$ia^ z!@TVyd`-cyC6(_~O;rhAcbvK}p_mDj@!7JSCP6T>U|MhFOLFk0OiWesvf#Zy!-;Ha z07%5|TYG%01d9TDT3v*5pz|!d@6{)MP%k4aSU{nYy7o-(nW9|i7xl@iT=N8N<3ozY z8>yJ-p<2I`l?Tp;%3~6BT)|zbtCrGAkelvz-}YG%EtmV^X&a2C8eOaawXDVGoC;Aa@D{6_VF9Eps?OfmGKFwCwr7_}KHfEhO=(BT-syJR zg1mIXeYn-|Dt^f(A0JE#D2UuDg4?THQ-$BuU@bfPtJzZue(;^Ve)W1W4DZseZJIa> zItNwa{dMwC)wO2thx1f8cvpp9P;{h<~M=Iy|k zLl%lCnYzu|j_o}tTA-&E`?GG=?A?uad6RMgI ztl9irFEkU4dWI60#E7r#=g&havZn)qPUT*WvT6jHPg{tq4VJ;9L6bhGpCOQVD>|LM zJrqM0t8??^%OFJh`2M%m;h-_squ;F=gw^TKCT_cwLXIC8rG`a=$;VFSN6h}1$?74- z_PPYBzrE#6DvX1hHgD=2%RKOu+E#{8Qor2P5dJn4mHeONMd-u{_r z#Yy}LX=`UfOrL{bz3s{CGKmm(`uv6KiiN;89M64f(hTB*#A1Dy<6wV<=$)4MB6!8| zU*Jn)3m6=^a>>#u8fH$)6#v{n1=)tmi-C;R(2~bD_x(UPbSEiVEclhc-54YNSIM?e zcI%tdfyrR-dT{yNXR`k;zPeTr&FcVC9%H|y8vKEl^iAeVKdFb@{O&gsUNo<*`;pUL z9#EC`NO8ZUZ_AyaZaQY$nNG4zJ10F&bxEg zKpYLc94E?8r#V5B*o6Dv&$>`H!*e^xry4r0ZQEmT&W(zU1#10VBgnb`uG!qBi`gecLhKpbvDb3$tKNwwNVV2a z&zFCQv(K?Mr@$4f;=-&ZNdL3$ppfT_P!r6{JKy11>w?Ryu`%TjnxJW!PDQfJ6fNJC z=`ct;q22hlUo_<=I2L}qxJAGWseU&5zaO>317^!Y_qI2|iGlI{E>Uwl$GYEmvh5|7 ztY6&a-r5NJ9*DJ7fh8)em}t~F7~!0@MwpvUBh=Mu%Lb=fA-$9_5GYR2FmVGD!dUU)H;xA0$^s-E~)$S|DoAuQ|%`zlPV@ zdp`7kr-35-Nav+3A!x7|=E_qZ1zZc)*JSDuo>vH(#m-eL=-t8vAVJ|mvBD3748u}QCnl(E%Eq7yf<0x>=u#-W?V+L z@^`aglG(V5_fsNj9XkJx&5;7dOidd9CiEGmkfdX zWX!CdCt{V5?O)9$lE?Bz+&Y&2UEu)5sRgl1C!8y7`Rez_9^&E5ln``(f~ zhk>=esD7d|dU@crt8+*4+%z9X&xI8&y0 z=ND|?S9@b@phFG(}`Bz`aTU-l$_rh;e1eZBoUoO)5qro3!~g(p8|sT-{$<2LBB8~{?PdH zd-8h{j8!GiHnAo_3p2~tR{a2Ml)A@I<&_F-V>D})j09+Cr0<(=4aVkZUiaYDbm-cf zzouXo5Bx`!9&iM_M%$h9=kG~pfsJymMukxve6f&`l?so-4t~p;S6y8!K>%{87oYZ zun#y=DH0S=d>eL3u00aWEv`(9oJhf;NRg5bUkW@J=FO%FM*>w=Ve@ZFDmvtOGYS}&FF$zt={3~+*fg||nT87YHx%0PQXragB0qgR3~WEg zRv(m4McxLXin7E!__s04>Umfw2yNZv{c=|_Mt_Uk-o7&rcD$i(aTp3F$MnL^<5I-$ z`r`1%IH6oP{}89&76*cYSnl2%ywRAn*rfRIPc~egykg|D)gK=D*4KLI2b0_h)%nX^ zgk$tog^p>rC#-SoE!{Eaf;Vl}F}))>B7cQhORwrXgFF-0!{gUa!jTo9P`~&Lm`uOy z>#l48?yYkzpNieUO-HJ$IVl~aR4vprxeTGa!E|d;co&}H7mHalnjTNt`v06yJCIBQL7@^eE59$ZhP#D zWH32)YjjVnI|`fUTK~iXIALbc!?uG?cx(^q^>7`0RkWK`?E~jM=7d8B}XeDrSLm|ZY z&&g;{BtZF`;Qq1Scferh=P<9|`M^GA*ag5P2tH+&z~9Wx9n=`A;VR zTg=cmn`LKsnzwDN0*L>%p}qYG$)PYfknkXm;st3>@2fbF^Y(V*m(3$4@!*wtfr^0v zP#^iWAbUp!9A{^3<6DV?!LCIHJAn|m5iBahT%H0xw71+3t>a)*NAw<_2d^P$XYTsu z3yH9u`IS-Da4h)k8kAHwkA!C$|3n{|$HJqKb0-$4F%Xz&y0`jz42Z}cR8&!Z4dKVq zUvgVV!=9^NEoN465IBg>h_NsX3h`6*P=|5*!zM9=N*B$}1 ziqCthmlNPq45!$&);pkV74XAUHylp8q%HQIB6*7M-Wraym|^Re1kb^bVL+42ANcD| zp8tOTr4L!2c!M)|%||wrChJFl>P z93#=lrkav;sxlCs-sg&r+nWK>v%CWu3W>N*LO?92%pXGdGQC;;Wx~+XpjJECXDvm3 zau=lYffIUEnV$?Kr^#5BC+=1jN}jHld&uApeq##dfBEttBA*yl$vph6+G(3J_nbgV zc{{HdP#{J6uU<`0KK_z4+O+S01t<&)p5-C^UG!z`pbPtou$t!+1?lbr-4kY}hZzM> zWS6RO{Sg&~C0uE|^J*C9;V|1bR0!Q{kEi@YOOg8xvt}8)Io=BWDABjE7(D+wVwyqr z(cdV_S()Ela8mc}@9~3FSl`(4XUwe>@2da>w>Zr%C0!eWHW$Nbhj=rm%BRp4Lu z`e3x9+H=$Ml){ELAxmo7M0fIa#X(*s0=K2+&YXQ;3Ia+~Ww%#pn4)l*p?Dw`w>pHy z+_ffsoatrnIQwe6?7uz_D#*FZ6Z;E)mjUPHO6LZmCo@W{X=8CfWr3U*56uzbWd z|ClhDv-Ro>q?}Ge_DH!Q7WZ;6YdgMg9nlS?p4E%59mqhdhb1q>6UyP4v%tniqHFuE ze7aCsBO9%bd9|b@l0MG*;;%^+U#sjZ&_Z!s~U;rx@pT~3=NSBEE3p5d)M1G^l56?nuyEYPST1|3XL)Pmv zDAJI&Ug|^1xgr#_(f#u{vJ4W9OZC`-5vR0oiyZ!3gkf*U#+2N*+uMl2l<*pIKgcDk z7!~6d&I_J-24zs~yS<&JPWTp=1$&mq2v=of{eORNl!17QF1zo+3OqRTiFM>E6}wL- zcwD(q24)lfcl&;lytUKMhOR_Y@mp@Vf7^*Ncs%&6?S4rq{{C>{tQW~CP+F89I7|5R z$K(nm%PmUqXn*cZ$r=^uKlJPn-b0>ak&JGK6cugtSXP)hO0e$hMXT4`Wx&BRCg}R3 z2s>Do(mI()4#I)-q?*5_@M$EUl9XPE+nHysnT=C%hPr6e_MsF)n*;y*M*N9ioMx-b zv#EIecun1goKnb49yZev$j9d&Z1j?~srWI6%EbPx6q0$H?w;=@dWD~h4&gsZKFrDF zKD*tekp2F_TixBcs3zlcMC*Am8mqIo`O!+iv6(ZcJS7VuO!^$xU=c39k&iCBTmo(n z)_tx#m4Oeth8Km7lIwL1D_yFfLIcZPfA7&$JRiF)<@}36RBjI0T)dSEDqIcEGBT2} zgl%yYE^(p;ruNVsLgYC=pZt3EZ-2By;mS*4?81Z@+e#jc@|wbblZA4@bkwc^@OrJHRAK(Rp^?5#H{;ph%|>$-Pp+ILd;!5VhzP@1o!^q5ocD(eD^A6C z`6eU>R^7LjCltB%Uf%BVDHu$Bg?+V1zvvew6S`$rFy3RIFf}3h-3Ehd{Y^ezxMcFr zqr4&jEBwa|1Tv$cz4%UGgklihBRA7&)CW&KkK;K!NcuOnL&{fG!cp)Lt@l=l8-7r} zK-OhMkCh_P!TBi`qs-S|*ck7CM-=qN_@5?0#ZjRv-z*Z*h~0Q4Q`Qs>Em?QP5&!+G z_A;qFxm2ur6TF&p>mq);$Y;cQC>37))Nq%&m5GKsRug_5G6MVUmpKkfq=Dg;&I2V8 zxtKIPV0d($J*huF{CN3?(w;RhmSX3><`wFXA zc+(%)$0_|!Cey(^LhfB?ZZRHXF+Op{FBrbbuHaJ5CgDDn&v2-*Y46Ia~hy zelqKH2HXuYZT)Igj#sU1&KxO@0+r@Dkx0VZwBMVUK3Pk+ScM;TrR3s3@4E{}jZOvx zXc=ziVy2;PX3_eWdJ#tmsYdp(CSNnM-(2l`a_;N<42ZhJ!~Q|C z1|?1l+BfPY!zH#9{>Vp}z%2U7a9Fw)pMqJ~Kz9mg%7$JQmCb_HrqA>;BtPMV_}fLB zy=m}i?A&mYO*Y7dOa*ca)Z@i#v?XrUbST;uuh}b@3kKmQ+*5zn<5#7Uz{2|(P!VLe zS3fKdC^@=8CY23%OUQxuymlspsHgBzK2X5A$msS8;b7|*<+*5{%7Sa*_1}xN3PAB= zt{in|6P}3On0B2h8=TZNnCW%$mxavHK>!KLQ09Rn2(-&U8ob*33@ z8d}=wopPXbt>j0rAn^&N*2h;9o&TvFyE`6U$c5EAvUmS!ltbE)Lx(drw&1be-!s`v zgctnO`>u3mCBzGu3f$Ld!8I<1Q}@jBfKidj$BBUkbBPaiDZVZEvh!14;t#?*KC$lC z(?iwJ-k2+8p4Wn`Nr!IyvZBB%HiHy*g&GJ@5@eIFYC)$YL*aA0`EZDmwwdQxZ`vp2}p!Q_?+rKE%w)Q}Ilf77{u@I-W8YjD)Vxpxk+%{DFg z=Z zu%3Stj-K;4KC-?7o@^-l{$ZjXcv`bIF72_ag>k+@oveWd{PptsDQTe_@Rc;Wdf5N-^{&Nq8thJ|vBKzg$g3V>DwdnAdmo7!F z1>DW2Q)~aLfZqw1n;S!FQ0U&1FUrI}e_A};WPTIzCz>uU6q0?X+bR0?yDP0Am8-K1 zGv&a0Y_Mkdef9s($F2Q|ZNO$PyUl~E0=o2k?SsP!Ps={JUtxDUc(N=zPuNxfV?>Ls zrBO8&_UvCh^sF5u_YXdgk*I`wo>km-H>-(%hfzS-yB&0jCS<=Jr~>Yd-b+migum4k z?|$gNb~yds>uZ()0#nG4=I<-jnB4BpS-h>Io~Xp%08C^EZ0PFk>~kKI8|-0M+NFU=#FodXxXLGg!H{TDAl~<*Nlm3S_eH{hPrl(F(2p5HJrAUA3EfqQX zXhO|5Gr@MIhIfMeT=aKqsRvszCPeoiEM1oj7U>7>uyVD+H`k~Cq=X7_OMLTr!J9Eq z#m`p#rm6+p^zI9*Y|BUQT0yPG$RO}}m-=7Z#TMB0JG;i>XD+VE)GBQqcZP!FzI3R{MoVEt$_Pe*?WnzSVRJ7ZyiuE2W4lCB9f6ctmm zITO&xnEml@9uHKFa;e_V)Cdc{Z)05_MIeuM8*O4P0L88PDPI=J`9Obv;bk(>L4CJx z*k%xl7o~qWGWXX3N7Q%Q18dgk!1s>!-}i6~Idh_89pTUDQlwludJRCzbfx)iS`^N> z{~I%PtO3SCHaPdf6-r#?GB0GrAoHTym+!Z#Av^H#QI@AcpnZJxn&$dAw9Huh^iPZi zHq%oZ#v3DmebxM_uyGt-6uz`3B~k?)M@;vc`o@7uUpBilnTL+`i%Hh=S3rnS_Ql(K z6G770e_1z_FrV3}zpm zE9CuK2)>Rq-lp~zR>L?iX3pMjSP*WE(+vd>_V*Ch$IdS|zW6W!TG-S7P0i4U}N z&xx{KMhOt{SZ?nY+eoa{=R3T6Zy}U#kMK};jfJ!ezmN7?`H?i(00^zZ{y-Q005SJ=^yQ}CmuGdmJS;ABdY5`e%?MyC^T;ZR; zf&MklW{jFxjV*7RY-$3ht#)U5>X zu=f&4z42I~{q=F1Vi+#ntfLGwTWGIjcN8btMOrTXjYa6T@-m^-G5~5WYdwua=U9I~3gYM8>f2 zV+1;G)3fl{PyvtqmAQ# z4nC?iP;%eW;A>bBu4fx^x5$dcH>LvmCcA3jF@u`Y#z(~O%r}_i(-DV0QL8uV)2m^I z)iuk0q8P6jOow0i9FIxHdWP;li0(ACNp6hz!QK>k3Pdss5$&c2DhRMjeOy9fnAr-&SnLiw! z_eU;Xz2~;EiI|jXx3qOX;l-&%jZCNq;ST5d#P^Hw_@KOKrlhz81H8X#2Kff#`j`VI zB}Q>5{zx_P7=I~-Tc6ceYz)T2YS{~SSYxo~U&t%ltEE^eZ5ml56^v|;HuBwm6^Yu6 z9QgmdMEZ?!iCq2_2oYdz^}@NLn(4n z>sTf|{ZRW_V$9q^2-4^FEc_@dL0!6nk&$ID9PL!tdblANo$DUPjTo2UPM2Fh_+s4A z?p?E(@i@`VNS=#v5+?ew1fBNS%vWd-+;xxddJvwDq2;gsq@s6Nfasaa&RG9`>S+8- zAl~6tiTX}BOSfCS*;&0E@%ZXv!Ktc1d_Q-Yw?{8Fz5M}lyU z&AZ`vJPo_VPREZq*yBQhYVq&e!T6{+K|HsC`2SWctBQTeKGgKJ^5{Rph2Ckm!;WwX zda|OmSJ4bBPYIVrnDm=2rX@ps7A5wDY!f?ciEx5V39$zo`^g91i zMi0$h|5X2bjr6iA^`b(J*qqj&RDhZganYwz@kj(Zg#?u_l6rZ={j;4(ho6J*h^MaY zr6_#A-gmpezh*qY!K-eYf&*0e&JOXU#GvO7ky?ZMtr&Rj^e?s}Zs7R2z=1C{4ozNs zvD#bLhEiu&KMQQ~1=Z(&;!F97CULs*Iy3hh+~Je)vR^R}B!6T-dKpLbfgW#%C2n*e z=b!2(gBv06zQ^nFj^oL=W&H1<*QYwMs(T~-_vtVg4T#^s(v^Y?rpjlwRd=H5{)yK* znQ_6CqNbU@W zm$F$Vx+;3$^wUI@s&1i-?T``8@5SJ-3Lz=Yg5#P-i#R zGE02Oi0qQSgvA1AYHcH+rNQQ}xfj zhV21@yVHq}ZIe$18&h95p7fOstbRs(B3)+QD`EL~BX9oU(aLU|J?5UdCJ+V0>x2xA}_T5#CZDT8M+B3Uw z*~GtNIv@^uZmhiRhx zISh@Zm>E6QtXIo_V1pDmm!)RLW+iDQNbjfao40agFF)j5)L-PpsS!mpHs+YgKuyT-M{ zgQwS%`_zb!{^!85|Cb2-@lWGk9b*SXe~RcU)~zSG$sZ+-x_Kk->6W4d@lKf9$Nnox zr5-O0XgKt)e}F=~c^2}0o$y8X?}1;(>oLAy_bIXii2U$OjUkm;nNM);whO1o^@#bbdQ7dmS_mE zI+nGEr3Z97YuI~F*I|aup1$8bWKVYg%<$^-9{4LhV>CNni+2O7kFB#x0D48!{wp0l zz@N(Mc*d7-O7A{f7<`ooqX#GUpXTp{-PuhmzmC=7rl7xE;q*zcUg+QNP1k!Ns!l^p zoal*vzA=w@zLW^8g}G0;jCx_l?iZYsr!|bXw97s^*aA^XZCfIIK_D=Ah=Qv9tyvNG{-`8gE z+u*j5U3%a7-hkLG%Lm28x6SooXXecxUZ^I-t$O4~E4(Rg*ikxy_*U}$?-Gs>q&|u` zgrslI8upJ!N=Hn%;c{tEH45i4Y)96gX@raF-m5oFNk6-gy;MQ!&l0-Y_+6ECz&0tb z5OWGq@^G-CbzCyZcjNRN7O#ON>d1V{S`|Jnx2E^GpNC{Y2qIt@IKAgV)zZX@wq|V1Z@+=S6D5bw8nTrVbZeWL{U=`7Csy-9Dl#ghC zs^m1uO``JL5$nt+{_A{yp+KfWy!lVmd!#J|Hbu$zOAsz4!+?1T;fbJ&nJvSFai-e5>=?XaovwHDR|!5oTJ`2t zc{xgQ$OYH+Bw^~lhoVa*RNSR{B`(KIr zU2)mSIlMWtdz$2jtR7FLSXUtbqnXR14tXfm({t|GLz1`mC}-iYa0Q0c+HzkQreN|N zZOhI93gMQ6b&6*>=DPoyFIdhe`R9So{+IJm#GNlyJd0efN^qo3Zvi%1#B>EaW|Q0^ zn(c6KDfY4-DK&Xnhno4P&UU9_1e+iI%ycpF zXmEO%?govl%$+1Y}Vpq@= z3(iC>jh)Z57Yp$tbgG;0jzrI?J*ksr>3CA*RlVFh!m&!9(SMm6iT^egTAkUHhHDQ) zU0N&2{&9E84~C{F^pNAfcGo3^_%&AD)w2q*dDBv>zFG{HYNe^{+LDZa|EawFom7bN zN@-8mgyL{f(4~-xnur#PL*|>v9?za7C9nTXJXY476)Jg@fC1d8LP@3Me&nXKX#SUg zj}*=Nu879t%p7;(u^>%9rN9y2%M&5*C{JzbX zec3Mq&3eNh*b7DAM@^nMzU@?u)jF#b_#_jry*HGT+8>GWbXw?_OvOK<0rm=F#7C|< zyXnT;C<4@Ph>|Bh%d=OGUkVw>!tdvgoH`~Ni$BeRI;ICpP(NS`uaZeNc8&>MF5!qr z&N3h2*WRVbTPyNRZl3tg8AP8LzDYoqN%p(_vSr9xWL@^~UJiCed>Z-Ll!Ucqj~P6f z%dx_89n+WA98BBs^rH7d3jSmKoR>}f++KAve|rz)B2&cK!2NRR*nV3j+$)UC*Tg61 zUfJj39uL8N+X^y~{$%{?-#V4}-ZE=6u{#$(f0l03J(`1lp@*`sY_Gz(P$3z0t~}Hq z*8O)`H;?S~51*XwBsX_4V}l6W;T@|*E$~JV5T8Pe6BS) zO8f+EaYHXPN|AZ*NvaoxhSOIiW>pj^BsU_GK{v4sM|LY3&E(MV^n2|$hI$mdFZH3v zd$t_UcJr2x5FX7*m8T(nWWJGeMf>8*GnE*2sNs%;I}QEy&#g08COllLRk}&{DtsZX z@i6Ni4FyzIHhwxt!NslfM?wilb(?U^4YPkdjEf?f1)4Jt-%Pq1OCLTB;pcQOeXxNgs*TU?}$ zIMrRw-EUcmR-uOiQh3s^(r{7qx?mk%U*_5)_M-wTRo@@DvXl5cw0;g55x=Tia`f&k z#ua$!6iE-ncw|xC!g@o3a8kPiEc}0#V^vS_l-+zJvYUy_&rs{JC-__rIq)4z^jBV$r{?0qBpm5-e2k}pGFzJa~6WIm}z*Lw8Ky(Zk; z)Oc%^y$r8ymd<6^76X0hqeoBwAi3R2toZ>QWG>us<aGYY+4RA0PfCocxJBAL|JIO7 z!F&+hyw8h|@OqD(^OsuCD#7M;4YEJ|3&Hk9U>76lH<|YzX|t%J;!81$m94|YFt1X2 zldFmJp(j~gY*≫z7bW3S%h*f84uGd3zg1wNd|SY%0bB%!e}9h`z<02dOpp+Ax;? z{h0!rtBf8&11<}>RMKthx@G!JP@C`;!YRXV7iH~>ZR{7J;G`Q`o=Gl(vuIc-Kp~aejaGbN-e=6H8<#^X@LPFMa-iDwRR%(z|LZ`NV&5^V-Yv zE?ro1_THqWLoV#+U^sg5aS60E+AXq=cA|N#Y-+)a5j5bd&yFWLddCnf$-E z$rCB{1yEABkXpmkgVMCDD=)^&;qRWK##`(1VGB$SUpm->_F|5iM>bT!QrPbHybcP? zzb!#DksfTwX`FgNR}HGSq+cCg$%Vkq za@UR&=-;Au&gcQTpAJ<>KLu zAltXUH#?C(=Gn8k8x63%z?3E~NBl6XYgM1kJ23m)u8MnU4RGLwQ8iz67_|IJ$Ww(k z$ns;khH<6=PTZ0<0lg1>SLoVt!{8Innq7^cx)`<2($O7EAuM?>;kZil3ao~n zC%k=eHYbL1OQ?v7J)h{@f^^+HJ6>IHgsvNN54q{(fO((m!obyLjNd2J7%txk7iN^r z$Gx6o8p9SXAHgPEQSS{{5Njm!mQzMsAG%}|_0N(3*>=_BeoT{_xn*FtC zT)Op14qpR^d4$w-xJKfshI$_UZ#Ag->5x!QYCXK%r=9SX)ZITSDaos>HRv(?gircl zJsj9%VVRy4hriob7E(@Bjhxk8= z&O4s!_YLDEqtH^3lBQi&vKlwaNXabvCYxjxMbRQMQubcidmN6vZjNK`QBtCzj3knT z%J2F8`+0Gk<8waGb3gZeUGM8n&((ZVpEXykA0p=)zgya3FU=cZ$Hj*mZdj$@&V8BB zzH`;$u;hbnDwQ-C5_H-0aWMrq)Y$%t?W;zKro%nOtTYfv8S(SCNk#rGPnc4Ys&H%V zwNxg3;`=_x#QM206%S`+>^|aEiQgDiUT;dO14&bfoT4phC}VCJo$gwJe~0gS6bumG z_iNj3A5BtMtM9=@k8*6&=XAVkT?^k@T*oS(q@m)|`a%t&OLO@%Va&N&4ULOq92L|w z+#JrlhP{L29#-fZam7@DO_^#&(qI}^S!}Xd`q8H575_3Y@2&RZ=ppZCyVHz?PBHRU>~u{! zSqger?5aASreTLrtB%V!6-UFrvI{H}gR$Nwajk9S^*3?W%mh-g&+x;ZmLe(~+nTuF z&^Q$<`<$q<>QsF2&oT#Hihz5I?6wd~;y1q}?D7HZk&@OoN!A`}b~LeuO)C4i2@SEW$0P&VS4hPXPu&g)*ll zJv{o0S+00f5$4d$IvNF%V9h~}%gx*_;B{@;aO2BDJlv`8bo+P$td*>*?-ld|mQpS0 z?jSNp`fw*yXm<=eakoEHPY;FPUlIm{P8Z^X1X)4#FX5nEV^b!@Nc8iYE1k7xD7Z7W z+4D?9Fg#UXWKZ0e1pmBsojt=TnCp7J^_%8Xa1wI+xLQg$&GBZ&xhE)C81P+$RmKA( zUuk-4Kqg!@cb<9KQ-IdhTW_N~91srLr6qa109B{bG&Xdo;Yq&DVfh>d z5O(_WI#XIcI`R86O^UhTAL`8M9^pb@a6Rw${RZ*tbNsl)pW=lbZ0;(H)kUz5;fI{X z`FvDzQs26FR{)mhLuU8MV%ToUO<6U{N8f4lblZ|pJSE{5u$o;0*EbxeUeC)%7U8$0 zx6VYNe88q{-`17^d%bD4J$XOwmPM-H%i=JbB4=j=xh7R_k$l5-`O`4fwyt*JOW>h^U-whC@_ zOc(U66r!aTCp~B)9p}UZ6*UR>t;*noxc+bvp8nYT*K1}KrII+1bk1*l~jYW^tp8Z(PH#iWQdW9%){p7aml}EAf8=kBCg0QSGiiTR zGO8feH)7TDRs~KON!-&~rIH-BzeP*kl@Jkc*_{wmiRwc_&&`}l&~fLg*UNgMBRwwH zIZ{zY;z%3K1LjJ}`LSkp)uS9XJ*!|l(^-vFXANO_w{p~)xcF*}vkbBdtUVoiYw+0Z z(;l`PD)H3T-D8tJB)3m(x;Uhv79%WJR#syPAL}CfaNaN#I$9sS)=5J2@RoGs7OTPI zIvX?7Nqs0$5XE6HMe~<8^qkSk1XhHVftyog)@G>rvyFXH-7Fvv_OY!{piHntBgLzmux={ zY&cSnA#19;J$oC`!k0nyU1<;+3-CAoTd2b<)$y2Uh9)euki95YP3A!dk5{Rd5Pi7q zC&dV!CNy`L(K~WA0bi9)(Ut7$Fp0M3ROj9%ocg2STqs9;T9W4sKkTc+W?9*$s~ek; zg;`m5YBCj_+Z$yD-)|xd!8JO(%>F^8(qMOM1;E;kwv{_kxWHOeC zQrT-P);}kCCT2YMGOjmb-d3g$^~~8Qu;fuSN6x)(7X)omb~a+%+!KKak8E6Y$X0yP zS%dM`CI;h3M@80A7Aul(HJEa1;BYeOhr2w82{fZ4z_rCA#GjKDx#!}$#2S3JXU(n0 z>*%=Qb_Kt9UIv!?o}Aa{sKHWkmG2wV8qjL`^p0YUG>nb-eBb|2Ey-Im3E6nI0slmt z+RlC^8E5TZy%8b2(!b9=>K+r`!+D1D>slZlJxwMOK@(AqAxe2ZmWJgYiu=8$!q7~# z<$5n`9Ul6$&R_i;$}DWMs;?9aDfFfa&RJ8WOFItRGnqCfzqo%4-s?2KTGD<$RLsnEb3FYq=K7Z~RcNCi!nq z_K7}rCFk^-Cwo%{jmh^ej^X;g%xZYk+O{Kd2Mr|+7#YOOC9VA>=F|~JY)zuIrcuaR26Um!=Oi5a@ zs>d6hzj*27ypvRWrsYt29WM3>yWV4=;Rh?@3w3@~z|N5``$)A8g$6~}-6*D!=iyj? zc4Q?8vnDsl4n}8%w1%S4P(nc76U84uH7OBc`l^a ztd5cT*R{y=g4%W}(YeSOERp;o#@?^%)fJo2nDrvWf5yzt4poxZi}6 zYld3wwe#UOyPa9Y-YU#IJfF13pY#vrS}vRw$%Y3qLC%5BmB<&tVQ|N$2{*=1Ef`Ft z!2wVCYhsN=Z(vK!XWQ9?R6YMI+ai|cJn zFhj!*-%^UlIeEx0OKvK?UxF_zgS+|2{WR6H3E}I0gw{tm*e+ZxMuKdMXd->By$&+3 zH!TICc5aQzD$$8>)1IC&-&l*U2XFic42Z;6?Y|N-YYQ=Iu0frh=-$rO?~C~Co`7R@ z%sL@*6r8hhiAZED#|6{eYv*;6QR1wB?c}aJjAuV$=rU4_f=VL{JReh0YR#R1xtm$Y zO6U9+mreR}`qf`q`_l;zQuy0fr!-_dnk{qj4QrPMIBO@ii@mfCRQmMyGS=3^WK#_LvE7Yub!`6n>@wl>>23bR!bO7` zo{e{hpEW@XSL2qK%=Pg1)dr9Gb2Lbxb4^iNn_<16y@uyd9b_groQO4|0jq@59-PhE=!B0ZyjH8WeGrnhB3vE6`L+{D%Q`)N?3ma_4%RvUQ6y8B&BU1gG~0&x~kl}BCe za9^2M-kCiU^xbB*9hR+ttrOvzUxwR3B;zFnGA6@bjluMu!(~u+?4$+jOglKgz9h-J zHVT@K`~Mx}D}mc8-4o*LI-q)~BJrAxFBH7?syls*3J;stvFP!1fbq??+`QJ~AUT=I zwb8y1V#e+Tf@}w{IE_(6#-89lzIW_4)dj#h+jn_JuLE?W-VYZnhNInp!LWyD9$b%3 z^?iS%1D4c@lJG3ai(jr|V^GV11VgRQSG+qQ**GA+{l7H)Flt-xy)zr`eK>ULWq1dS zUOrXeESQaV_xo;*&By|8xtCmQaUIYXf5A93JD=$KrUGpjvY^V7=gYOo4zM~EqO4$7 zi2to!_1M0g4Zn@%Sm(&==d^C`^46o`*7n&e4H>yGxuVM`XVU@Bbn8QM8%l6Pp4p5ns_I%Vp@@Ca-g@4-@!8Yx1 z`jyUhIAe2XTm=aSr^SfV<8U$f-Q$c&dfW~I488ZNNIkzgbZ(c?`ckm`_%F=la69qE z78)cESD^aYX{YAJGT0Tr(_XN(4LH|Cxo`bdftG%?owYy6eU$ATOuf_weJ#qn-Kr~4 ze{r+^uK6k${P6RJS8pq@dE}NRA13@LJ+^tzpEWS+?mCcstQA@{UKC`UChPp#48PCw z2zw6;7#BTk0Y$&H&o``=V$cohyyapYc>22tw`Dei+1=-X^JJcPxhwD%%+af|nTdOgerzmHjW?FBln zJr+|Y*aYh@E+_?@tb=M{j&b9;Agpf^Eln+Hf;R^%_U@>tfrDF9Pydv-f+=?*UywbeRZxGUVW@Cc# z@l`3XDW^oOTS$j~lReSYUF7}oK-D6DjTOU8 zH27+)wy@DE7uG+|9&&c2ll+BSabqGhI2+DiRppiq?{LIp>uox;md6NY=+j_KT}>nH zVJ5Ui_HXOBK!@R{;)9+$G{!Q0d`9sY>0$(U}S!%#Q7TW*b*<=tDq|$jobWf* zjnt14+vsxwHNeHX`PusZ2&h>)#<>1UA;=x_-@`3l1z(QF7fK9AK%t8Hdw$~UAE@oK z$k&C1J4M1V^Pv5IWXZg!ar&QCNHMT2 zw&s8N76~@?@8<-r#z>@<`<;D`x zaBRcR|2Wy*5xSEiVz%ZGj^k3dz;ZMQea-D*YYatS+aVJPmvo@dDCy*UjDgz`K{wXa zB%rn|OZBmpB*@>ty*}wjEa>{xvA39|q9j$sD@{KZ#J=4My(Se8x6M{oS%)*RQ)A18 zwTD6>)ucgBvN!?W$iFpUEziXw8^w;?H{Q@H&GYygB!a<{m4EDC3edvHis1;mBh2y* zs3>SBK^XV9QFW0*WIh;qhy9uv?)jNsA{&tmv6SjfM*j*i??vOmRU3DVc_x}WyFC?N z*)!9+t%^{=car+|w4H{9`RW;TW;+d^G)oQOtq2H!+e;O-t;oxrm5j8@_g`((c85H}=dT?jrd$t9ov%Rtv}=VSJ!#o`5a zMiFnq%iR5QW=>ry8IdOB$w+kQOx71Z?^<61p(%d#6~$3_;Aqw-r@hhGFyeByd_x&n z*Zgv*^zp&-R`dFyjuCjSF2}EnpZL?61XS4jP2s`%Yj+ffLh$Z~o{j#OtKg!z2zT3- zU|_V5le3~d!g!``i2qlj$>}u7%@jQ0@$Kki)M_u=H2x8xb(f z)~3(^yxU7l1{umhdgDWT5%&=2i=GnuqCkhtk2m*n_Ey38fxs}!&=|09^zsQ3X#^=V zeSsMl1eqGivaha5(A&@X!TwJpNNe7-s&=jica=QWvF0?$A3pQ3u%HQY&fiU>Y-@lp zm;dJW9nOa5n+!J^Dm8=m12O-s5IS7f(Zfl?e_?--a_?jj;WTL{8t2S50)?lH_c`I2 zJlGzxwD7kX%3bc-JRrUxZr)z5-Q83e-5L?g$kzhQibGEfm0KWFI6_@%Qz;zvo!t{5 zK(23isqs&~6?oT|G&rc0!@>!#@2<>b|J|nIaeZSOB$Naw>bO>d_LRc?WuhNUQ1f3$ zt!@K@nNO#F#8yLM&^P{Wqh|PhW%GOKv+dxPJ-Ej>yA~EcXj8o<`jl&s=N1If;hwJCapl!&jxE%5V{bMk$%pXlBZ{cmYc85{s=NAHhjVB$5b7d}KM92NUM zuWMvZ&GP7z!)z184m`V%K_xjS17V|UQVYR|GSm@0*a&ZCecxZ_Z-A&4Pbr=JJcx|g zt!AE0hb_|euj%eI7$0=CJiQ?kj*hw33X#w6cq#B}2houVKGONKVv-ESe9V0cJTx#V z-9MnUmiRcD%aX^}aZ`wq~pGr8lQf!4&&>}qN)Tt90#@~)*8 z)|8dnS(w;B=;aM&{ex8?7-_OA;utwU4RQa2FAqrWTF0;CALX#8cln)8MHO)0_<5ps zmhgbml>~TMOQG}Xg-Hd{?|#Ls-8;(?hhv#6-yIK8q4=Yodyqs0M3&rKx&JB|ml+IS zv#Jr^3+<0hwJh;*Ze73mlT`*z9#)#o`IQX`$KJx}du7n4w(H)m+#GbgqGbNZFAY8% zvN+KBw-mGvP6w~V6=3$4Q)_ti6G?p*X*@wIg`fQY1sO#ZqUnjgFTH~iKs&y6fxVsN zd<8pcn~G6!i?-fs!$p6Pa^u-1y`v0j*s=rd0tuhA)_49bvok@u?BrHVC_2j@+E&yWMD%1)-OA&=kV=@wDqum4io zu}i)N9@x=>=!A>uHp;v@K;{r@)+i4u*VICYw$(XL;WCsv%Bh}kAR70bA9Cs!sDsM$ zk7Y;ilp-7F)|-4SQ7FmRvi{4@I$#lbGj_p~a1=62VxOFdL+k%{Ygg7+TuDzJAY999+`PIfbiSY zz31$x@hHZ8CL?icIJ_Pzi|{4BJi*PpX(kcj7y?^Yb++^TSfq|_TvowX9;ctD< z>&%D2FrzZ++{aJ|%EqC(t&vS|B)8Q0x?M1A4UqaPB1yPZqpA+iMjOFU?uq)!o*L`Jnnqo8p&U4?ODYJH7MYpYrp+$1Ty21HL|w)8717 z2Y7Sr0=Sb)z1=jVP%)0ua*OizQv%Ttl(4pxDz!Q1Zg zhERMb*JRCu=(0?!o@hvG1~4N2bIQocg>wkAlYmsjA308Ryqzh zopT9;ZZ$PouA(By<~tr+?3RkO-<7N4NxqQRCBPH1fdZ`$sfl8(8N`Rgk{8%}6E1R! z9y4Oe0kL%#bBji^F*NFr$6Z%@-2N>n8+)$KnHipKsh{$GWi?`#n^h+DL9EG43S@h{%HMh{`V(B6z}e=2S;uqtR*-|9gbb*R1{a`otIUAL#; z#a=s>pRDm{e`0l*PIz+)xlD8$nG|gAUD57v48??Qpz?(on9j8`>)kivU)ij!wd!35oO<0B6<;H;AR}2og(nA&*ewNj71V=w>OF`1G9k$O z?0#*~77B11l=*Kjpusbro1QD2p?dLhUR)Zu;1KBd<69}ryEZ2RK_rBEx;4@{P)-gf6Cv&6-ei;4^IPOpnr(bs-YbEPc z_FE_4!hS00D{s=VaUp*F>(|d)u_6Q<*74W7QUc%o{ivGe_2BjN?=>xx8hCWZ<>_lI zg@Mx_10Ni#hlFVlC)4UGptC1%F8wV7i<@pw8wjt{(R*Isc7G)(_4>Uzy{!VGmoB)R zdR_;Qg5Df|Px!R;6lKNZB(M3TrCRuj9i%TjnfmuAa~X`BJNQJQ_W!?^XzR5J;p_*m znWG*hFtIewRH#e*!WsfLK5aGdW#`qWm;O*8AhPQgL`%f{IbsnH052ag_zE;7ZDMeP7rV_X-Vm#A)E(40`zuct~s^Ga-9)>n%mNoqk9EFvKQ+l!ilwP{KWkcWD5^Wz1dw5P$ z;^#Lnhjp>kdpMmAIWY!}^0If(v`1>#`F0sR2dg2^uPJbNGu*nH9Dqqolf8#;mxAvD z-r#obBp4Xcd=yj_g>+7N#SzOAD0-hK5k4CSH|qNa)8-TL5=C0=wnj0So>Q(y_9&3H zSee;jkcNH@h5o~$RC3N*IVtft6l|>TnRvQo;f|f+!?hcWz%4-6?M6@lNO9#ea%$w^ z_)?;3+&2ou*LZiX%k+k8_WKPC%qZA@okL<{N&z&RQl5V`c?k5uVY|HPLNcc;yuI~q z9)xYlJN9zVO?W-PJ9+dp6&LuQMcW(Y5Nd0ANxqR1D7#7uOj;DcwHtsgDblu z)T6C1ZCyXE*C|1rURAaQ+YFfIp`=NEx{F-P!)uGPS&Hr4_6GzwF zPZ$p=MJ=O~TM|c8V7kh8-plGKitOl#VVo+({`OWUhcn5Lo_5-5|GOZx`Jy>q!cm4D z8%J5IoIu?f}Ts2kdKBc(#`%FcGR1Ea5T(k^KPsE1Jb8iX!3O&Buk$2RHf)k?w+HwoY z7&J&z9X2L;Rztr13I!4HargEuvRBiPwT?UKN*M7QB!1#fyBrQjgxT9Rz9apG2>zjj zbSe&>Seulp9tP1ln+?}HWh3=xUgoXnB794;`10yuD745Nj+ES)hlBga-s;>e#Hs;< zHKwy6@MW{=>|k2~vd0Qa?G&S++(WML4-rI!v{P=g2BgQE@($vIjWTiYx+4wW74dbQ*K)j>xJoYlpEhnS)skkw^Ja>sxA=N`!jqiQ}A?YNUWlJQAcs0bme@o`ddKoWcIsM@uwdiBT z9>TZSTYbvHf?UrE;hSR)0?(MIiT~{*zLsBp7lepDJ*=V7D!?)X29=fWy?>aEr%t(h zs_v`AWs8eDQYd8KI{!59&Q_9B6nf*_&P%FTs*?WvusY%P^U?=Q@``EIe`vj2~|=Ml*gkZG5;>6Wx!)m zYvI8=4X8L-uPQ4Tfs5aNwsJ&e5?|b<`bgqC)tJfY){c0NOUJc5*+R4666fWIj~rK2*0NE>nG1A zp|>D0=8~-0ms}8^3Tx`TkLWX4H>i`~1%uiX!=~c-&}^gPcz1sd`iLB{$=VPAIK^hf zA5j2Ga+kVxgjS-xtaN0=QV0ZErX92(^8udBR<9R?e|YPL;i2dJ5zzi)HnfQJrOOX? zZE9R8Mn$dIlg&>_-K_>l@kw$wWQrW~_7f!?w zzw!rm*9_ogtEl22&+#1aEV5(C~3J4@k+lkrF1;k$U}(4jTo>Z73Im2Cn` zN*Nfdk1i-Zcm&iQN9C+zk?_Y*+~_pf7rktc^GWZHfXTePjmBQ#pdM57QD}VyoUUE} ztMqU(>93ureb5^U@e>Nle$OfZ#(O0=q_ZIIs_xQp#Sob3r=%`@CHd%@nbq^;{P)>T zb@s|)5WKzD(s7sYAl25KnZBe>g$Fd{r>#4J;71a}$*U5T(8)9!Dz8@xJi1@%4mpz$ zgv+7M$;1!oFui$SC8>XAY8cb;Zy>x%d(hR~TLE{u1yxG#R>2R3-%kG)g1~fo$Dul#1)I9OiDQ*+EM1%2@~oIkbdU~J;C zKy64OSd`QFYWquIF|tA9=*~LGv6-@>sHMQt!0+9si4OS6d!y}Z)d+_~Xy1y2UOIde zpFiNTqZnxHujM#?kUlblpK*F|7P!~#h?kO~LT&21UuWd2!Mgdh=`Y(n5M0Nx{j6aT zB;WO_VJ4i-GbJy1{Ez~S2^AeLy$S)hKMfTcE`x*%f9)hz$h?frDci1q0!`L3{ZC0g zhwFS$ftf=IG`BS$b}K4?S0bCfUe723y9=K~p6)G&B`K={&p&yvuH@DB#b2}mMH8BhkyPrxmjlE;8>TO+8Uk$ z3#A8ZB<2X8VYMmY!U59nwOW6(axM|1Cce;A zvc;|M%lAh#wZmXo=^JI)2sqjF{o;e=$GEuhPFwB%E{HPHlYO}u2vbHY^8C}!(9kPI zNJh2?hAf!&geZ6d+p$~Y{Q4ni?Z12Wm3A*^%N;cClCc5HBG-#IM8om-zTI0NUFrh? z)v&TRuGcV9vYqn+*+)$4QcWq)5AD?}+1HvqFv3{n&M(d={OxOF%fEgAdY&JX;9hx# zS@n%)J{U(Kt$OU8Q0@R6wlTP)m>r6Nl3WX?*rISXQBJN|=p|$f?meYIer}iU8Y>O? zND{SPoL%hx5@cDWF2qE|p|fsC!mUjaD5lWhCRy|noJZKDw;xVKXH)Tx{h5Tjp-1T| zu6qeRdHMy=n}kd=nv#tCq1bzE!-uefmmq#|^OZ;-eoW)vf80}paSQb=Q_bU-5K8yb zav*&U&&k)E&L@H}Hfw#7_^Frh!CPlv9O3H922FOWFpzz|tXKWb=K)aaPJZ{tI32&7 zs@Kb2^~dCn*lU^(2B4z-*)Y#W!ZT-D-rf7?DUSW#^*M%x_|DnR7Do7IV5O=;9ILw@ zrgV5Wob>63z_FHs_ir-L+Rbft;JYvOi0v<1`>zjL*yv5oOBuM^_V)O6fiK#w)eGUY z?}HFwmZ^sE42-9rO-T&%#jGFB<62?%vc4^!7GB?{(dma5rc71WWhAOBd6F zijo=Vlz9b2fB9f>;PgR};2v<3fzEPF z`8dq6QxaMYa)+O@%E_jJ4P*}WNiCXy)x@$7JdFC_3u2o^&%V7$&Zj~|hFKnk$0hFG zHOLEsdrPFO0f>&f!di_Vo!n>`X`= z!D7{3t>g&YsOH=EJ~0Ud4qk5Z&dZ0OU4m)0iIJ!TXN`_7B*XlLcMBqYnJ_@f{%O1| z8n5>m2^n&vLb-zQ!NZ~{uvSc8vwSWFAGo;>bS$O9WSf0N)cshvPr26@B^r+x6D`-B zDjSG#fe1UgviC>YEO^3htYd=s$@4*p?Fym)RN!WO#uRJF<9S%+N zc545&M%}P9HOE?_BlfNNxcfsod}1#A*OcOiYR8g4kEx~N%IL)nx3^?~X9UYixIqN! ze0vcW^Ck@sJms&>lpr~TOHvF+t6!jdmr`h`eFn;|Y%5ecp8+i1;+p??q+;{NPwpmv zGqJcLb{p@t4A4y}IAp+;g}3UeUPt<5ZmCH9kpU4&%z{1&RB~b;({*DlK%Uh9Jb9Ee;bL8t z@|)`=ST%M-t3`!^LY_&n-jq!E-t97;>s^LyOL12tHxd;1o}KgeiN5??*!&j7@Cpp6 z-t6r5j?9HMGc-QE&jQh#_FMWwt1zWV;%jJS5t_M*+t}q1{%Xv7_qXmfxNEPv?=tZp zvhRrD;!e&1tv7!q4_-msJHyBIA(!w6I&XR{(sJQ;!(PYcpgLqvcF^3~R)P{G!|s#Y z@?nkJ1HRbn_4t~BMZS3*d0!S&gR4;m5V0w#HbaI+^4`93BpH@t-nr=6kJ$wM%~qWM zY?<)D);uxQBRN$YggUmnG~qver6bf-8r~gKI+gl| z)JORbkMHbh!kO}plSdi|H$}CCzktlAgjAdjvOEzWf;D1pEu|;;ATxXkcKK;KY zbKMraBgM&<5Ks^GaaSAJ_c!Be>?6%=+g4lr7+H&Q3LknnJt9HG7fcODUy{OpL*^MVMmS!2RwZhlXLl3-&o_>)oc9CnP8?&1~ zTIsN~flPs$-oclZ_}c2TyaaO(>Pz42d70h@loKu6M#jr9U6nC+&)ObhOqZn#sxqQ+NH?|@a2U|OwF4i^nh=(%LVVWsvO7Mx8z26D&q#~zfWr$qq~(-{ ztghzv=d`<#g@tARON~zW@kc|E`A#}YH;Xr3o9;rR&J%eX*t+0soX*Ciuovhp#c=kW za~E#@&MTeK+XbWTi$m(0LeOTHXs+4!PBhMM;O0&0Cb}KDP4%&k$P;v4gOB)dKkDbc zSvuYW?<<{L7BU}$#|4F*3#A?Cn=`-reO3>Qx;+25zA^sO#)4F|dkw2W0$43Rn)3YYGs4aMY->>N}`F$|b6-~tC*B2wyb5YWk$+hq zPCE62M4GnbXc);)zHw=e*@}*`S1;b22z5OEjx?Z~+;fR@N&WDI z!~Sf~y?S_Yn?3EqWIf3%VpiK2PwEND_NVWOj`cwKi-!_%b@(}$7U}BU4~kB_#WqC$ z!aG z6X}C^;%nr!qr-<910AKtLVUm5P2q7vFG%06XWJt~hjPVft+i|ggyX`imap3j!rfg% z-`+NWq$dOav$1T<7QQP;eb)oW6ScaT3>)C+k=K8V4rbtp21u5f^}u$`FBu{gG;n58 zJ)%wOkaQs>53%NMaJJi3e0QN9LPRT8_x(x46Xk~vPS$q;y4UbrBKi|bmfkdzdOQ}+ zzyEf#v=aikIMd5W-on6k;AtH9^3ZAx7&MJ!6_R@Q==C`3@c^RN zG>lnuE~g3-OCnE-1cYN9+d1L5TWzqM#&JVfx&n^LY}sqe6OP(W&*YYLTVbLjSw$0d^D>^)Gc9Aygcs5{FrEFL=wc+R zxID|(g+s*7mTGa`EYxzn?mz8Fa@bOyj3!e3phUmnQ$%tu-su1Rl4-dXN;e*#t9juJ z86PU%O|X*Ob||M%C2Qb-tDBk8bv+b+6(=y)S%`gC!$tT>ZbTESanFgu`=mc~N2xHF zipQJMdyTj%;oKB2OZ{_S+*3Z?Q$~1Zlr6hf6B^09f)UY^5=^y5ZjH<(#JBYBfDx2A4}mcmQ%bot$c`+1dry=cO}3Op)0y?%Xe3B2y? zsd&mCjj=7y%XQVNkmY;OO`*|ZnB1qPb0{qaKi+?zAZ1pKlIaOSndpt+A(togNCObdMQur0n2=7mD@F1tmeGkvM+)X`eJ@@r4= zzTXru5Qr8@&5A^$(i)kj+#2k$xZ}22odP3g7L+{n!|~|V*QEwM)p%lhw8;Hn0WhpR zKH>2s1hYpbSwv#1Q00yOi39O@AR>QdvfefTtL2&*3<(cHpzl*S^V(dP3L8@Y{@NRt zTE}*T?<+?EUKBi|l?~R*)vBNC?qj4%&{W^s5{!FY%Tn?z6Il7yo4hr$z@eZuc~d~e zU$=OAACW%R-SvXQ6M^P1c4Oy}c5MotEC_5WeVGay!@}}64n2hTd>ie4kv`dTZ7$Wm z&%{@->Lp=$@hKE zGF@e&;Fv}6$hez3KFYf!l9Lb(e(YU8cSOWP;y1aB@H-Eo#c{WnxKTJ9KWDw-emM!Y z7T3%?%!~vcF5XLgYlGpR-FB|ziWKnw9pVt$OLBw4pS5#r@B?Yu$Gay+(}4B4$;6?| z9LQDj;NBAU2psy#E}pEO}6Dmax8+CO{H7wse6 zTt4dNf?aOD(+B@rNPT{2YQi)aU3@Jq^ys;eY-b_x!M6@<_a_H(HbfvJ^Zso!%enA6 zLQaDzr5++(%Gy2)#G#@!%R8BMc@VvJ{oROA8cgyrG@i#qoa*e1Xq_ZJ%H?+wC;w}J ziC*4?oXaU_7O(60q&gR9yb2Oq7aJh`eMvk(-kA%Y{nL2^Tfb$k(YFMd@zC6KsFb>rMq7l zozDeJ-I^BNPC5iUws_Sun1^ZVe(^>3b3xXv-Dx}V+w++m+E7RMJ709wN4AgT!pYAz zbzP+1+8KYs{uSZrJheD$H{y~9Ki>VDRv>!gLOq4H0K(0Q+Wo+k=UhJQ7%KL`$-00`6mZ~VzAb894`Xu6u|@h6 zH1mlu@!=_ipi_-RTx)Y|&rZ&l3&ujomO__t|z?l`SitF8jvl%_o6-=zaZ%bKnSgyXB) zkvY;<2_9zaH$`VBfkWc=o2QzS@%P6ABROQAdf~V)L)HCgc+e&y>FJq-kUTcXEg`M*SUd|SMe~NIgHN0uUF^czaYTUSgQTqjM%SaxtF{=d=$4hfJ-uq#DPR-v2 zxkOa`E7>D|o6PAiGX>FS$)y@#-(OLJf9`d~E0XWc$*gonw{J;UASTTo>qc~D?p~a~ z|5QPILblvj74m+PGWJYzSD-=HyL~A#)ljnTlXB&MiTFfIH{!i_B?cZXSS^dJhSz#O z#t&#FAi;Rpl^0fFh1;ZA6L$?LS&SSNHHby$2QfFO{?(Ydb*SY~Sq<>k&rH{K5xrSq z@S0?n8Vn71XZhHw7V26~yjP-z;(~|ilc8NT7_)}$Cm#=j6tA%^A%~)&v6yyEO*Nj? zX506o4Ph64zPUHe6ZM<-nrcs1AuH5i zAmlr=CfHvt#zXGg?%gZ_V_W4Eox{Yvc9<=UDZd*uASO zpd=>SNn5}X&H3r5t(!N(y=4A@Z-9FZ;da=JyAP=J5tao8>S03p=XfV)6?{z8GS;O@ zfJmbUypK-TL7=sE)aCcpuzRaa_LeK|Ulfk9f0bDSF%K1YI&mIEzxKjc>gqz+yYS%E z(AjFB*W&*DQK%l$GgEm?%F4m;mbv=GR}yd>4x|#zZh+#5d*APs5n-l$ud4bd+$SI2 zWP0@n&f`{88I!cJZ@;0{hu4sNA6mJayW2QgDAs6g>~?zSLG|9-ugcz3D(} z)IO=xMS#aa_OizG2;diUp!q;6kSrASs+EZ_w9d{bA%ozVrB_hVkv0ft4xPS7g?%FS z2hxP(5O{u>R(n>{hW*eP7j(vPF3N&8nu`Si?;4H4zB6RF#n_(`h`Ast7GWQc7q`NP zhx1G=VL0DMyC=syv>Kv##Iu|Zw1V&8`M4W{*e^o)K%Z6-@Ad!I1?AyfVbF&4sroNu z2rnTn(7djJo1BRrTGq|5{BqL89Q#?2`%zhI@mk1Pkgok|+5}WNhT^#LMVl+Q zC;Bs*a#d`E8yjnfdJ!3tNW4RbH)B$QD8u(1}vU+g7 z4tA$+4Y!El`MKo#$8PazP$TRf_s9Ckq+v6`ZJ-T=wOJa=8c4uu!$V>Avt-eqNZHmN@xQJHRfy_Cs ze}$kG>r_M%C&8L>o`0)h3utcB`K}1&K%9C^x0?(R*i8AYI&kiA`o=MC-{*<2=_3~6 zk2m!WiwBEee{Y2KEvHh!0YA8IK*2e8vJzgi?O7(E1~?wfQvW&69(^R|3?9e6%B^yT zfdBVx|FP~^trv(zhx90EzloKB?w|3R0RK9m9Ig8GnJycd%+GS3X(<8U(J^Mhuv!qz z*cZs>QiP~11IEu^Ery@$MQ^*SYrv)Wr(<|~CHicgxuJk{Pj@K!7*P2lrW;Y%yUSGSM&C=fsl^bnxrWu?H8-U^SKT{pElfxc+STbj4rH zr`_$Va{A8sGIQ-?91?oDISNTM+A&oUKk zF~dHebnW{hj88k!dARhqTsIj#dXs%5_f#XO?!0wV6YWHeoks2_iK(diUQEr8Q%yj> zld}2}@9A!)Ru>bvu`YdX+W*hhX7D-D=0cRiy-uAiN~dstgwf|CU-ivfAZtv#NTIA9 z$r_d>+0vw=SU_X` zlZ*^5a;wPT{H`hQsr?5q2V}s)^lMOdJnH?xuwoZEOr|5o1NRx`T)*3f4!`96n62&trQO2I|HXE}uP}`^N}oE^ z+((Z06bS+Gp>L8)4{)#br(D-3nA;*1sorX38wb)8n~$9^M?bl|E%i+WjlI_ zgVJT_kwleoI_{mf8KPAFwAu%rEnzB$Bufy3T>AM-pK)H{>0JQ^s(#QHcDpQZR)iKk z&4al5Dq&E+(*4^`AJ{gW&S9G_Kup|SDf*km#=#$%@Xov%2jsl$?% zaT)t-Pl^|CiIU)chvCGERS#IJhqvd3dp}sV;cq_cfZzFCSecrWpzbVgDZ2 z^SS_S+}ETsP;%Y60Oh>29KByw2~SggMP7Z=2|?#C1pa4P= zC_!QiZ8sg$ihzM6M?=Td0h}@>PjX(CB1Od)JPA1kV7c$z*#LZ=<1dq&Q2kkk`Kpzf zlm&U9SFrckE=N0TT%X+d#94uqz6e+TSDAzTk)jG}ab&po>AACyIPO0b=oen^%!1lo zw`nEp<2b42ORd@Gp3+8*YcjVK}N7!18)jGZ)Jb|U8R-+UX@Gq%VP+x zbMt(9PfJA9NuFofe_`K4)2T7O(pKoPX*sWr`Ja8+eLbTCv5;uN?q25K0!KbLneFBi z@#o~b`)eQynn<^nolKj7S?f&(1*(uQcKU24B3-qRud)HAo~D$$(t z?Qz{nJ5)KU?BH)*3$^sOF7HF-h}EkzZ$rlw?bEXAw7pRaYevN%((acbqKMF)@kTFn z$v3LY_ChWE`jw--j?aHQai-7v{QOWT%XiQ3c+O~C$;=tj#r)ZHPP0ydAhdI5zs9y! zEqs8R3!T-4$m#jfseqPH)I;Dq@W!_ms@+FE%4}d=*7l~%ynF=m`5Tp{PsX30AzHl( zU;m;-Pu;b~qtIu*eAka%(H3=PhehJHIp<#In0+2ncO zn8ki{r_b${KR?$&n*V?*wKndRctA9H{Von=#J)Z??^X{)`xHClfjD%W9InKk9*^b= z1)UeT8lcL^m?_L499cd{liym3M`;ePx5>i|FmlO-Z)npCRpA);;qrK-Rrl0oIld7b zo5tM^?OsQke+(BiaBt>`z2Ve%Y@6T%oy0%JN6&!j&<8@XZ7i~*uC=?b(+n3JPXz1s zL_m<+Yu*y0Xhii>^zVjR3yd5+r?`9|38L0SeJH%bQA=SM_eHH%ATwI2oDa-`ru-{2 z-}!^khgLJ&1w(}Q6rGMIIP!soUt`9n(+kl&D!1FZi04n*go!E43HWj)wo32E%RT=D&ro|EXkZSI<)nXe~c9_}wI9U%0U7ziUJ|WhJqfR>c9NhbOE&`pB?v zE0_0>ZWX9&7VVf#`oIT9g{dmJb_jk{Cy}FC1AopN*VY+?!q*+{pCQC{kkQ{QY2?Md zs8mNj_ur0&6v79=ApHDl?4XaG#`B)n>O}G zL`eAmo_Uvk^Hd(>9CQrPp6r0r(cWEDvc{YjHh@XWJl-r$& zm%+O7;kl{-18bbaep~!4|1jo!Oudr5TwVxVmkjErkK?`c#HcDY=2+ajSW?HGT?Cv) zJ~twU+aY0qsmD^U74J3u`j0yl!>)?UYNkET6SjKhtQE8Xmru{3)7&NSpKH>o{kV^B z04=?2z`V6@_Rn6MCzin5lJUJk`PiRMXHbL!nm}!9fi7gO1pa#6kWjoxhK_TI$wxRE zp}Hbvp!rt`bZo0Q3HP^w#-G*VezSVe+qIY6o-6@}bN8NwYq!B!F&diJ9<`9(K#*B= zD}jSg_wt!zr7?GOph8sSYazVk7j_VZuTloYTBF_3l$64BxIOzEPM7(eG0kc(GqGbL|M_o%ao}P2xJZ7K``x z{xh|2bF-j+ZOc#T73ShSpd-8=34+QV-iu}j(m+g%ueSOH&eMrGKEHU?6k1pHe<#T& zz?a|4sXF7eFlYRRD`3zWd7P38_kR@$4zvGm2G7?(YfSayh|N$mEhgr5=%z2sljD5X z=xV_KhS-7B&^V;doW8-4^$@1L1qtWmG4CqI| zHbx^0>3(_S(R4EyIdfRh+&oeR+IQ4TC0BBg^L47=?{8v|`W?=)daPg9c5}5pxR#GH zY>KwuGbSVNh3P}N5hU2Z^(EcZq7Zc*in<%^nt^zD(F=nh5)^;g8D23iMoYU2s^2`a zQDnUtbw~*bPI?IYGUFbox)T16zwrJ!WTC2y<_8HP*uND1*}~7+GpU|jnA15xSW~Dm z!M=1oksqPa704q{n|p#D-*@Tmv+sPbf}~f5P1SUmAN+4$ohNrbx_kIXjahOvP&{%> zTdKu=^xJ+HqRR5nl?Qd%V#+m8fAUD*p1VYJ_)}p2yMbK9R{qM^ho%;;kz6#R-V>4i zsj$R9VL51|E##VXeJxnb-`=CDO+v?29)0Yh%|>(XUX6l!b+EV@#OB{bLIx>}`wDV0 zkcq4Ma27syPCSVIe2uXR_aucZOfjUQ5HO`Ua=RXs(qB*lO=6!s?g^lciP51ap=-b@$=rP^$_^c%snos3LQ9g-!O7H3SDBFUA*gF4}S~B z@H~Qhrju;0gn5RcOm&_85yJIA_cZ+D$#~r7{Bgl_-{oMW_p3RnyRZ(P{~ijyf%%>f z&3-BAi3Ol5&ackj-L8cLQf^J>{j1QMSQk@I8$a}e_&ULjzZSlPv4p;KszQn7QS4u+ z{g4*r@mxRA8gOnVexfj`LXM8I-ZWqQ(1~YNmyRC6=YM+Y`dGCplx-dLR#Y$$O~&GnB`4~B5UwkOpA{DR2Yqp` zyhMeP#`h$&rW!?Clvx6&FP0`*3z3l0VsAV1F75|Vk=D*36#+z03y`ab$a*JN)h;g! zjTHqGZu}^K%gJdiiAVAEK>IP_?fV?0duLL34c|wkfC6e7{!hSq0$a9__OMzMN|a>P?*c$&Yk7(Kka%Wriw2Nb_k z?{cKze(n~E7m*#MXf$^Hua0##n7*F#SHOOLiTB>TPBrD|tVNHc?qU{v|FV}&doT|L z2T5E$Xj6&CM90k&g0SDvqI#*tDjRK+S?BlL63|mMk{?pcg5U*?_80!Cs8O|5*5Wq- zokY`((pm>7%pe_*Pl#Mk>CS3e2)gIO?ifp$OJd?2d7-KlcQiHNQ#S^8dK z&Vshzyd}IFrsyQc`59gSB9b;D@R$ed{*@>a$^7K0=WNm&Qsf zgnPr`SzO#c*&768c1W&wej*btn7E{@ze$8&-@6VQw}|G0G1XJ(??%f%!Ovj87?xp@+i3-{(O- zl6>&@Sj~lWSYR<|qv9wBZlAEvwP&zziX2*O`Y{!zHE5)a-3idaedL@lYci4{=(?<5 zPJyWfbHXtd5{MRLC>G6xqvNd1A*bY%;Gg#Hem06~cwMHE6dh=XXy1Nf9NLM8T`udX zpoki1P(RuCU&J$58Tjab-y{}TqF^)UEw zcr9Np14bVxsG6*W!l>A;$qS7JsJH$S^lB^*o;|uK!fEUed|yMI>*X8aKmIX|OIYX2 zP2aV56my5PGek>-d0c-FIFR|CR{p=obRSQQC7443>n7%lDmVN&<8hb-D@wC>7-ml( ziOVHYR-BkCoN}q`9^P+#PTu!vX3H9#`?g>3w0<*i{MrBCwr_^o_+61ut9U-Y4AEm+B3p%ZqhfeFo6rd<4Ye*S!= zdjE7acxm*{3*tRxV3PARi8mQxjIs0;p(7B$$3Un!q`F&JOY{WDcRG?H^Kdx z>BvZM3ewRci1&$l0d3b6Bii66D4&^WHH$GD`D>o}asBOcP)Q+ozDo2*B;{3-lVTpq zD;~0a^gIshi}W2AG{Vu9>qC@|xTj-(>Zkmw*i=}~Y2^GY7K2P)$0TXe6eA?3HtGB< z8xAw@IF?SwAqvYrjbx7!q3vtZ??v@m494(f(bo<6RBEOAI)|R^w2s)1Un2trB#U znD_aBb}g_E46&;3i$#kbHjmdjO3=hnP5*UHoM)wD3D;hWLVhQyUbDX_K`aHg#ryEy zb>p{d{mBdAC|F~Bqu@*_N@7iR98+onbJuUPnGkHI>*PliTmKan2YT3VTDznc z`^upKeU?ye`DoMv>>Fg-0ofW9%~F3saj710{FO5wYi)urXIzuJ+v?B@9;JX7>3Sq| z*S2+#t`W-om#PklHlkwV&_AU(Uv;k{D!uDQJ>+tbu30>7M(45<$#YL@kqgJ!qbpdi z=9{9hc%0da+zkg-I*n`4-uk|WPA{rqNiYH(#5t-Zmwiv2MXQlB@30)dLfQwIw9nc&p(tO$`( zzw>873A~Wd{U=(B^Hq<({d4KgLt`sO1=0VC;C%{P#G47+$49ME-L#X1tOg$Ifck-V z2l6`856c%Tx*XbaBtmz8g!4KK)5Re1+=)WB3c$gM<^=~~~=e0u#iH&IUkBY1R zOb&FFKV3gF*$5Tw8&1*K7bw+kB3^nU7v$eg#fwxm!_xuXaITFybbjO3QEuN{kURQa zCNi=WGG{1-rV?t=GR@l0_lddiR9bChRlE%(6I)bj#B0!8jt!{;zy5KLc;{J8%)t;( z)o4LgXb5FdyK&HM)uQySsPlIxmn=6miyx6qgI@eGH|`U6>oC92(h|L_qN& zn0{E93wntx?9ss;VB970u)Ve%=_;r>^?k_&cQ=i=v5TD`JZ=1+=yoxRtE={W{4fuW z2w6}UC)y2E-zhMsSsd$?Z#(emc^oK!EzYF-!p1fL@nT-Ui#f6`3V($MfA5oW{ zF5u$Wd*bL0_LbR@2>QpcKi=6|c7wee0$k|$g$_iay~+0nW}@+VKxr%Zwn8^}4`ygu zia4W_8F}5x*DzOS=l52kMmHRlQG-EeXSf$Ebtdvm8I*{tdB#CEEM57{wrCU$U&@Yf z{KMSe{t@AzZ2E5axc4_(X=gfI_0%^wtV+N+wLFfYiY|D0>Si~~{e0N%=_ULZK!lhv zjXX+;E}&6;7SwpW3}|j^bHsI#;C6Cz$KQlb5NfaOF~fWFBsxjHXhy6*T9rQ3eS*8vS*}YD9DdZrvpSlTrkBF}R#J-BBdCVn;Z+AoXx~>5AuO?9S-za2# z*8oyC9u(b|>;)Q%=C_Nlo1r}6MXcpi9XPHOj$C5shZF4?Om&AQO1>{Zf=cKbb1xa(L_EwAON&9t&SD@X^#zDW z0e5(8ifcmJ;j$j5Yh!H@xU}6+@AG~E(wpSXyw!GCOmk*9ms{6-giQQSm}|L(NcKizZQ7Dd=NNa z{T{kC-wDc}t~hLA|J-x-5HsQE0XQ8=|8=(?=YeD=uKKl=0i~YaK)!81d}H0Hsfy|Z z?ziNnc9wEj6yIhqxYY+KFCN7Yp6!GoiabX0rE(ZN_uI zt4;`0>M-AXkPMdnQ>%g4C--_*^Srx8resd0rMJ!@^7yV?pb!bgjk%_`ucyo3>zSpgUf zefZas*aGe=+LcGL3ZT3;KB@j{KAcZ~ueoE^4Avyt;d6fJ(CxZ&oeJ-L+l#3A{B`l3 znb+~L+{kknA}FB|sa&X;++$T|-3Y64Hp4Vq8fa2~=I9NV9MJ2gaO6#G0F9fC`=~EP zqUMN%`KTY+;P>x{Xw!#!NYR^BnVL&O*U|}dRPEUi^3WyH;4GdR_=cODvjkb9pMIUO81XTRlOSOZa z0DhPH52?MZf~e^UMa`IUq||%#uz(QeOFcYV-sV*WM)r5!`QZKpbEG7%x}OA7Z_L8h z@SHWK+afMpP=G9yfPZC*1Yu7ULu95&@E4-JM!R#+?&Kr+OHZmWf2rq^mIn#cJci6x zBhpcu()jTHw^i@}u`>v;V?9-7Ao{#dJaRR4-&|&^1~3fpkxnJTNb{Lz=3LLw@4s}J z%X_QgIki=QAR`gZjofQvQg%Uc$BOne4^_c;rt8Yv`UJS)Cpf)zT?g+SgxZ`mtAHc! zNT~syU%pD7>k~QW1NzK`ekM622svnS6G@kY$!2KL`Nt7p>0wct+dzaJ{lVQ@hElkn zAec^X77s>80=78Q36Prd+=MNp2x1=0H}aiHg$3<$Lzk=y+-I$bjI{EY)Gzd}w@gZsqb! z9%TQrI+j3@2*)(Q0pxSgs(qJ2>eOt+%W3Q(oM#%rtm z&OCQWZ}L`6qb~!)eqme3=h4u6tZb??SQpKDGqM`WR^Z$TF<1ISs$wRI^l0u}*D{DjUtT8h+glPr;I?ER?*%{fCZMV|;(8iV{i`JPGo1v> zEai|Pdezy(Ca0X zi=tnJe*80r`#2(M1iSDYFP#*@zDrqz+9S5UUrDGy%*n+XCSUO$nIF|@&XyrK>FFW8 zOF%Jt0#;_m4ZypXxQBX*fNXBcJl^k2LW7nxJ;omzq2oj1(vK@uXqWT2MN(-MnvcB^ zYhc_AiD7P03F$SsN8Co66>~%0cezOQEVn?&BX61Y%{rvRAJo%%vIgMqrVo zC`>EYh|IDVzOCuipczV$XjA7l@C@kX>h^6$eZ6N{4NupgO||3Gd}qn*`k2 z_f+NNr-W*>IGFi~Yk>^X)6zK=vq4AO~zB%lz*LQR;@JUSY$R@-R#>l&D#Y} zCk0$nYPyidbeKpYN{B$vacOg*QOx6XBh73_^q}MJ7CoOj zGeKg17GG6+7nrr!oHS|bK_iWMRQ=@zFuK^XX_3|izUm3htvx;HmsI~6^Tl$|pp;Zo zyWa($^Nbbvt9#JW%t6_#8X|l(wcUT0p$o?Q2=%ExJ*b^acdvX>HAtAK=PhP*f^~Du zn2vZ4Y7C{e@w>N1k`0Czd(MEm(hhwwQD<;7c3qKTDaf@Evn7q)z*L|G>VXqnTHZ z$Y8zJJJ9i3Z0xM@H{T=%pe~cfyKtBGc%{1_%+b;e2$LjQ$l4S+DwZ0%5*e&E;PM zJWI+^a=M4#mqTRCZ@d%k(fpH`&}oFj?rM<}24s|JOl@N?&;=`1IRyW&jW8FIe8tn4 zj8^wv(KE2?g1k6};CFa0aDKgOzS)e7gj4#m;%mF0JE-mrp|u%QT=?Xi@z+1(ym?S< zs|&vDWR0Kt)B-P`l^y(y-`7pae_!;eZeZhD<(Ux2bFV~PsF(~H?TNo~&rGu$7}Yj6 zdzIRNCcoIClN+C7*$*XC*>{82`XicIYBJpEOZnWj+=h&%kAKec?1n3`WC7PUGWNMX zPRcHBLn?`}_Zr>1q1fb=(fqS^kn&fSJ+9Y=k{r!PMohaQXFRK&`g{kNS@EVu{XuBF z=1EZTRowe`=-hpSY)_o^rl*f{}XOO>p%0JQ{KeCANFTk{v%zmbT&VFo2D5V$Oc;F^>%^_kM+oX z>>n}<%6!E)(1`M_l%=ilycopy+J^2;H{8B9<|_0I=izFCUyS?U&v((hNBvF@%$@yX zPI;srG4Iv7QKG;enl;MNVhQ-J4J??e34V}m}{Ax#G2YERf8m% zpMJJ}hyBlmeV(q0y>Nl@jMJ@_D)hSDouH9{K)+l#Wa~*Uu+#4(B{gTH5b_u~9tQp~+i6)1Ib|MIIl^>Dz3{!Ox8 zF9`d%?6bLBh6LNoqu?K4C$RZR! zv9JE^Pxpsc2$0GCGG-KWGo@xY8mbiw(7);{h2Qx~f$bFe%OBrvc+8@CDTF2;5e@{n zNaJ&IziJ2N)21%4xZo6Mb3PAw{W&%^(sC6bt?O^a}w4TKE&aw^6wBK`ky)Q&T#|~ZFzJ3?oQ~2iF_ox+S$1HAD z@RcCN*30QBVo#9K#CqWx_UZpfDKB&%E)(juIA04* z^6XkY3%Hl zm_oYZAmWa!d5$<4mDH>EW*Npn8K>%hCQ8xp@{>E)=KwO2KT;^p;1>s#ug^aHLmLJy z#i=a2h>ZGk=ts|TB*0q9@6^*}0WkYgHR;29GD;8WVZB0|h@W#6LUY-kU_+7c_5CL@ zs{YeWb51T16jN0#86xe0IKgw+cZ!UHITSmTTN1!{?PRKwlM2*a%qYK3zEI~1w)1Hs ztv&!nuyPLTRAPQq=BCX(rcj6|pJ?>1j6jrPSB*Nv+K?z~&f%%oKH!mce3z3Y4tcu& z*0Z>T&~DV+cga|LpkaJ+_9X5JV*7YcHTOpgl9#ZRxyp746~!i9EH0`&g8QB5UdQp=xa5yq>$Et1r*l!PJ*R|4GWM;iB{jY} z6^?9vpACD=Uw|Ag{&Qtys7H2%2GXZPV^H}qF`Cq?MQG(em$$S}YLUI+URKeU@#r1t zPvI5b5_JD(yJ_LuYIHVp`b~=p=C5$DJ#(NZH5*de7#7af6 z9F15>y{*FEHG3hLJaVuSW$ejl85AwSeJOjzC~jb#t(#Xy;9@2Ed#LK5D|I1~dOYp9 zaXSIMxL~SG60AgAaWNrE-MMI?)+xVdBNoNbM=_GtDv&4*J>QOP7ScYt$7@P88qZnO zD-CfKNIvWW|I^)Mlw_?aG5G znn4khx0Y6{7V3|k=4JFML*+4d3bi%;;eznn_ zk^1Rt{ci~QaC%(J!L&6KHX_E$>?Dhk$NsK!!90b);TyriT9pImPE+5zg0B-=xqYJ% zY(?O=!TZHLG#?b|-W>;~LbPVJaU}-lKvP+$3aoUBK;5wHD~iSav8@*aq+*L;C0T?^yIv9$bUs3o=_r@TU8FB#_T4(o!N-}R@lHQ<|yW~M5bAA;GEmB zK>EzF3}jvD`?g%a0DcrkUhum@gt_cJucbq=p88Ix;VOGR@N~3uKT;+EG3Ji)PF*Z= zB#O6El;?tR^dHMR3RRG%S))2Q9g5C~6>?Hs$pH_cdE*7V&r3G?PquT%4Y40uc~ki| z3odj`vfTYz4M9gQ?b)*^3XT_#25@L)LJMu_qtJpHP!*w_;c@c-t<`0>j}GaONk#wB zR;d-P3h9eDK# z9&GVU11~zaxD(20@O{96qjs_mcyHaVqQ?23DxRfeW30*G3F(ndd>= zkR|2fo-Fv6sbF9cj(wL4(p4G13*g^_Y?0P?y@P7#{tTCveYEh#HRm;#|T5o-=fY#b9-Uu_)&u5pMs{s8!{vg&xVlW57}f7hD`8 zw!BDS5VqQI>O(b@s_af)IDok}dD}9tpH;!hZ>}M8HdP@0tMm<^#A4ok zw)9hndZaMPP?Jno4cdo__`Ck5Af<$qZ-+6LG2NERZa?>*A?s+V6Qt@a};Pn!Z-FNJCCi`9y+YMaM14jw1ADg%`1kv>~6VdAi4W zB=DX;;I>v%hQv~0Soid`Ascd6{-8q z=zI6yr(2xuDCJPYfv|V2sQdHLTrTWa)a9)h*S*_;X2NIBo7%OYa9bYE{FZ9abTgm* zPFiE zR-}nC%+N)V5HmO5#ox?z$eX}peV(Zfx*zW|I>*q9)=n$5#Jbj? z#W#$BPg?6B)xKOXIJy^!Fp>SFzvI4a1NkFO-nbvcNX@$9TQ6D}k4kI9el%uXBR@Iy z2F&N#cSzxMAG)+}Zf-%Ch_~99umav*4rapANUX!OwtrV#b&!{UgwgC0JzOVPYdr{y} z+Jo{d#VAkgb=qNyR^Z$EFU8QR7tN<;d=Zx{L{+AvcH?V!?@Spz?enh(W#sqZf4|DBZAO+&($p8q^P+XmBLJGokSyAXZINjB4&1mv-;_EwRO47Gf7 z{nAgnkXPhVOY^HJq_%JS9VHJLstw<=PyOgb;a`=s?v(hWaQ|P`_S~3r?RIRe&AAiF zu=HH8r?WyoRKgO2smMUDO-s=Fg>~l#5lo_vwvd)bGk0PPbN#lpxURZ&pf_aOp3C0@ zVMj4{cLwKLJ=qyPC1NfU!y}q$7VcPR_9#BTD1~1alnWGdX-8&5Q|Wt4Q{dyPDvMV* ze*JcX=~wMK8SU1yy2?{zgVUax(|;RU@t&WJhCv_q8Nb$}?Rkp#*Zr5(j9Xj4HCHj& zp{)&pMrdzcWg*P;@;F?=zUP+;*C}5f#&f7}z|M`B5{SDb%T1k!&oNJ)z9<=KMPj!l zUtT*{4)?g+_oqfS!V8+6C26e|q$bE+=pa%FI&u$b2izOr&p!py;eO1geK6CQXHJ0M zveoTcRyc?H=bz&*u|{-6D&sdlB@r_HN6Iff#62L+-k+%>>QRyNfX9soL~!$9Z}HNr zh5dYXgJ!F>Na?3*dkf|<3NSTYSvIHvt~|rCDOJ4RiT&&);Qd?U&(IVS6fydVx_l)dHBLL9 z3TXncT$<~p>Lo&~|LlMA7M18+%fjUQs~26(B?1S1+3D3Zd&_vARuc1xSp%lnHjr zNAvHKMmXIIVDKfAXVM#`rrtNiD3K|_-Mxaw6RXs}BPvzcchQae|5zhy4O1oSI1 z^N^tZk+-mAXF5{bRIgg&&xP6Ij zv;zsK#cyAiBzG=gF#g5cqt$TUiFKlCB?d)n9PRseCl|gJ{nz^xKW889>Fh0P2}ewJ zsf{^>xnPtO|CfHd2Ix{}XioS9pj$ub_VIJ&LA8Wu<`ULj7%aKGCF=1Urkeh1BPS1h zsN)1H|JFdS^O-r3i>8=k)$Y1*DIcy6?gA6e#cE6aQ21V<1a*gntEJ!O!?0zb;$mDi z{#d*$En;?1%fv!b@+kmwDK_EmdsWcf5aB3u)E$oMk3D?HT?m#j%2JoH@7IIEp^f{u z4}5*ldYPD82#dOza)+4+aIE2IBCA#aRJL0M)G!x8;^%?aJGaU}bn??bX;Ki_rkx!) zt&00oc~=AF9E#wj`ku-Hi4gdze&DqC{UQiYH%va!ng{6yq>U%^p&)5gd}s^%OCnBs zTC?F?g-6)jsmrFJaB`Nem2RLAH2L&8eZ zynA_)LZ3Mg0#X8uIbKA8jGJp7JO6X&ecQ09KZ|`DYiC2>Wk=$El$B3}$mj5oOgGHd zfX@#(0!P_cBjCUr<~M&}}0;f>}2BnK(;B9g0ZNG0Alxz&Fs8eRax8&ig zk3B+g&s_fB((hsL=&t~cz{yOArS|ZH76@F~e!{vD;43UTk#3j;fB6RbHl-9%om3gKu3#jD zFxWp(xseSQkZg?G*{7HbWvMG976ojVcQ?Nq05zXE zB7FXJ8d%32gDITXaI!PJx5iwIHhewZQ+=~wFkZGPYbGD4%UpH$+%HAdo57an7jvLu z?frR%uspa?HS&b{W;t3+V(N>H%?Eud>Gu^mIUvdT?$UH`1uAy=+=qOMK-9!RBwZj2 z=hL}#IzCilUBJkLBfk_%_#+oHWK*C&<>eip+XOTb#qw|Ca|Hx7G-YeukA;oRvoC0$ z5s;mP+R$M^B5bdghrMqN0y?{RH`f3HGLTZ-Gxv%FtwCiaHR^USuaeH%iT&N{;zFPI zdQ}7W3b)3F#A9^$k(^W+o?Dg7E|?3l)x!L_tk6d@0q7;Q;{7~I0!mn3ZKZUA{&157# zSY8##T7lHTkIfZ&L!>rxspDGwc68b2bNTnyK&tnBl5F+X`;>7OXhsf=H8I@vRs2lPi& zJiVgoVEMlp9X|CuwEDxZ_xsySP&#sR@%3Bmk9qc_J=iG^olxw5rZ5%{@qusN@5g&i z!Ldcr(a}8A)Vp<>@k|gn^?z+2E5|*}QW1I%y7|a8<{Mi0rvWw(X2v7&{-3npV%M9x z0G-Kd^>LE&MQz%h8={xnz$N;{qCNh3^YesXU(kz1-=wV~ncCVQB;BJn$%^;PU&!nZzvh4@C%ZgW6W#V zCo75e7a-cNR=>sX6H&}qomtucC_3+WD&IGbi%{7~86_%-N>YUA7DYzGDxpIpsj**d>gpx{9R+Qp*|Niyzs&hO%=ee)z^L~GLT2MFI78F#-hP*n3 z8>Ea1kjf(04CUiqm}Y@tx3&zh@YXUPiYLO~+>d73oFuezs`D^WJOwt!bW;-*D?!Qn z(6w(>&8S|v(niuF24a6joU%=?gh!Vj_^<42LT}lf&ucLTLbLwLKuuL8h=2Ui9?9E) z_M7t_{4dHF8bo@7>HI5U<_zyQdz`D=Qs$JuHt&h{9W`vf$Xf{+>HT}hYpW66ar@kZ zr(@87(w5B$p$$xP|AKh{wmUXIrb=(_8l;5Kcyda?;p8YaHHwVRe^;r&czo=ECtM<0;X`t)r=I1NPiHNL3|rXZai-tl8*PatZ# zeb<6VCj3-AzG0criE6yMUYq*sqj9%9@v+5hu=3!md*eezA9hzu{9AsGzM968j*sR7 zDZ8;S?|K(Xt9Fa#v+={d&taz-rStKgZ0V8jD(>@+{g6icJ`{Ous+3jkD*)3EUUToB zccUBPPdQ$VL?8(bU-@R|0w{H})S3Lyjn4kqPZ61mLYmUXP6ajvz}lT;U~;AhNpCAR zT|OLx^pfoKn^_CsNqPFpn}ChPTTj1m1ltVteyM0&uwRaDiNH*b2P>exr zn!~2n^?6|I$<=c{st4spSl>CK7men2CTQo=1(>KviW<-pnC?B^|y zdr+}RSD(6HATs9^Rhkpc1@+h0%GLFIP})4F-_j=^)WNWLr{Ya6RL#VP+`EkXw#Al$ z$m$;Gv%Y81+nGF2NV3$KI^KiYp0}*}7Cc4U3ZcfuH!=6DkQpMny9X_NE&8+n>SH9T zvA%qWqX@n$3+3{D?nX&FG=-`p?;?Lx`|>;X`*c3tUwIn3(U$SLaisGx5HY#-cIIjs zEVG+YvtM>!M%F@zafD03g@%x`ds7>(u#bb=~WYVMT zwn5&otNT@fUP~p!h;{ueS*9X&j|rNSQURc&7e6>-R0U0`r&svwsc1%bGUK65DC}p} zcI+irL96idqY6`#L~`D%((&OwE~o zm29}na*Ip$909mL?XU>*!M(|16Y;yQ=E7y$)=W?NGSFqrkg%6+LBCBe#Ru@^!?~K} zrm5FOPX5HMhosyF<}ok$8NTXIhd)~?`OIASyl^_Mpw}IHpDTMl|H1ud;?lp*QGF{A z#az|9HKZ7Bu#>&Mq(s5ryVmTf*iRF8%JKR`{$eQm$6n*+5(M&xK4rb!m5aW8dT-Hi z2LJoF{5|x%+;J~g*|K4BGTL)X@=I|`0VJnsivN3M1Z%z@WMJBw`j8Z+d=!@2% zOGD>W8e|^&3TL>};Qnsz9rtxZkvtQJZoh0U3|2+gLFkA z3dR`+_R>bBAQzd}{OZ6ls zmr6+WV9U($pI%oMiom-h4i@Y?beMc-?Arj1Y8RM~tL34)Zu&{yGQ~*j?CqgzqK%N5 zWIe6nT!<{#+LbzRANZqpeQV;_C-$$Yq~y3l36ehgS$A%@3`Mur8uF?)ft|^&h|a_^ zRBtC#aVoSN-BY98OPOkd?7>OBCr#K-oq00(^3s_Cbh+%^-<{Xnz~dXHa#MNqc@#F0fFn>qB{AB^suCF=!t|1f6)UjJKvUULd!b&acbPft>@$sBI zpNc(WL#iLQJD|S)^U>!W8OZe1jG}U6ENbYf4Zi=I3>P#-LNaX=(bsSL(`N8FEc3Pa zQOR`*{1^RKN6{l3rLP@KJD&d>(KopB(*Np&BV7Srrxc%}qeiKr{6BPo@zRKh`7#wA z(oamN9d(AhDxuKnbT9b&Xvl->YZq|mC0xw3kAN}eJMYukBOo-m!+2|?8)Rhi-yZKz zfgRI)9!3H2;LVID3Uxj3MsFW`jzSJx3)4E}n3V>PZcCha6WR;YAN(nU<(SK=%niX1 z8f0#}X1v(!Mv2+Xo9Ep>N9b zRc;>~Ds#1{^}{}* zMCqbj6R39$x+!s%gNL&Jf0-fu@VGHcfA1`Sg>Ba3Svmr!e0 z+WciSfw|OEv0F0}{jkeBOU6N=6*TW`-)2dv0B;BOilX&?*le`=H7L~vMzl*mgf)op zEa1tZd&~n6IxFNl%G3^r$5>cGz7gTUwAy7?-T~;P2A;|ywZj9`9WA=wS(4 zfWU%AQsA8q2_qpYYs^N~{ zf<;+wKa7WZzIDa(TaMTBkAs4%K|o#8OT)1r2EMtPwKP#+;q_RwhXS7eT|O~pc%dI` z+a0$buTUWAUcG;DM-}X_m=gSi{o-vU_0c>hI-zpp;3-e;DySH#Z~ZOZ2PqC|oaF|c z09(@&^wO0;OIVB=cYh55%NxGbz)mo1S1}J0B0|vt>aM$Gy>Km{>>C05xYK)izqQN~ z;LNX{QrG?-h%w&C*&68tf~dAdvTHeb+4@q}XS<=UYf#S@&(FW_crBtZTLSc}>PB)) zT@abhbfJiz3QVl~7^vBW@NM!yh~ytC&?z&FX|Yq`nZTGC=S|$-5veuTv6BjKVq_#g z?WKa&sP}ZvW)^6dWiJ(Tbwa=F$1Z(VD#Tw+h~;X>pKDilGIF1#KuJJm+zK5PYIA~Z ze7%$4mmynFq5&EFKPLUsT>hCl`IIxd4d4FV#Rj2dWKsHS~@|y@xo}ezaJ>tK2qYWX@e{5 zJQNE4`5bSdh2YoTz@Udmf0x=o6z*TyD(Hly?Pg20OmDC`9a!r<+6tW1E0JC~ouGU9 zu9+aGAFQ^&DB$*J1#Y<=dya}2{iF{kLas%C z5)+q}{~FF+WPPV(HFZLy*s#<$LHxd+mN*ei@1g26JZ@2Nj zXyIqUM8UUC$Ug1N_J1F!4D-X6x3pS7b?4%vwOv$@={5||eUl9*Y5P~r`C4GkSLv0- z2`V`3J^$-TSU$wA`d@9FB7r&x=^eR71+K&87f#(NhJ6>QjN&OI&^M=YA2Xvu6p37O zV>kB6hOx@&Xpul=s?=S|g9?vA{_T*P~j52 z)zi|rI#2{Tp9}T%;7U0g5x_%*+uVw`7;o0Yp5OYC290$f924Wq($fhqQneSIrs`qn z`^|4RNVSmXThB3MiF*+|a^7vKH^4X9^Vg%PxL+;u4ZrLf1r9gj?PFX6INQgD|2I($ zk@d{iw=F4fjr-r(rj7>CFNk`uYoiJRqFDC4=pjRco1>x3cmq%)+5TM+tb&P|e&?sW zWYFH5x8wM51B{;iJl=Mv5)$9*XBph?fGca$CyE;z;MU~M6-dJ8YKdg)Ezfp1&Eg;P zCKC5kJlH2!yHEkTLHqWS)7pSYtbQSB*Z?s%6?W#TRzT%MkDgmaD^Q*_YWwpv0CV-N zh)@Cnb_cDPN;b8?<=q7r>IUk;FN`kZ%uxb}v@j`%wvoWv#miVZpdJF{en3nL_6M{I z6o$P5%ujPB6YLdffVzu09FJh)QrRn;PJ@Ya|NfGV78un zS5sX9*gCVE`5ur5({#Fri-wwjftgR{bQ0#XRWBRcZ05kl^d>uH=Vn-bX_0^S1)ir7 zp4~3P&;60M*Ypea0K9zSdMVkc0LDDmsb$Prpxn{gL=6I<aZikxTpk=u2QSyXn@8}zOE~)KVmnO%{dKEebvDYYO#AHa14%{%o_n@(s=TAr2PNfzw2Pl2=<1lRyK157w4Ii}fM%Hsz>h$%i;X|;N z0d*`NnjF`5X9|a*%%Eyd&S4@Po8ZiTHJcA|>T)Z-e$hyxTWMgKl>jW(D;8HjU_Twr zL15gGh?ePAf}bBMhEiJNq9STOSnNA}ZPPIgC9Uw-jW^)^>`{W$U_?GxYKN6{TV$dO zd0q==1ybR&`T4|A@qCE?^ylhvh8$G4Fsk{$EF4aj%~ z3Fy#0U~KKp1;d!~u(_E6)W;ejsaoTQvKeES8|rglkvC>$KWi~s&b_6~`zs!uspMq( zbuSwdqOvMeci`u2dzR8*mMrv6uhC(em^o>9nk}sb}KbDi>p;(=nB=&p%_Iw_0c(DQnrvzUWo{fW`A6m`7J+a5| z=xpNg)Jk;O;v(b7f01xf{34~0L_kER)W0eO?B7Y;jlx$0a6Wv#_~--yO_TLib060t zR*vH4Ce>$f-I(`{@t8frvDa1G`jtF_hzv*MA6^-4DLZ@jnEBe*`i)qo_of9!LlPdgOYoP}=hy=B>Pc&A4N)>{+|Ls(i_qBU{TlSm}_B=$$HLj^iHP(v373L@tnKyii5;nqXM*N+|8K}zfR+-9Y&jYk1I;$W7|(I zLVy1ZE*6;UC3Bl$d{%R~w)6mQG$WzO;?~$kVH3+TXBukt#&btcgAB^eQrU z?^YlsWbkI$@|?#(wp{d+vc92ERfRYdi;hZQZ_^;J(A(2AS%`~n z(3no527OdbqAju|qAmlF=s25>_K3es6t1g9gIvA>_IHU$geE0&w|)|$^>U>jy;_er z?hEg{BTB@-SLwn}aBu0t$qP(V1Gpy|SB$D*-m13!8i)M3D8y;~mT%wfCN$jkoz~v6 z0?|7E=ykz+Dz5$iHD-1-Bi$Rv?&VDpkl7!W`P&o0$TsEg?-4v#uKS+e5q6P)UOdWZ zQv4Bsq-sp&7BDC3;VV6@=@%i~W(uZyoz12>Xy9oE-RSUWN>xZ0qX_2cT@C znq^m23+`QtY3e1Epuy-f2G5@aq1Qf3G^6`kQI7o#-R7qvB;4{L`g(jAx?L2)#b?-x z8s!zki&+cN#c}=(H{D1yO^Gc(5zvZOmCkRBOXee`7NHA5cVdx1_nk?nU1h*dBPRp(oyw`t9nV84WO8co-d5z%yfI<^Bpt~mQkggQ6eAj) z_qir*EofZPop)_B75U}diQrT&N3}gi=Df{X(B;s+9^KLubV{N05>svkay}urC*vOp zQ5hJ+tm#t_x6Ma7x`S2d`!njfKY`c}Ucm84a8C+y{V>9RAhiaSE0GAA%p}Cd8|l>! zDX3?l&usURdL%OU<wB=bt%-QP{#0x_nhKHN z&cMEF>KC1;+0sU2L`!K~`-FYoc1j!1i%G~UDe39``wghYt^U`ra~A6TXE7g&-%tAs zYr^-nI@HTABlTV`2O0T2|HwmbMX4RvRnu*2u@C6Ro^6plWGK^$gbA3V5p@^JpjIR2 zw$Ds;Vg=|7=pT6Eg>&+%%N*BsU@q}#Skmr`Md;3_u6M_zJ5Wfq@&V6%MAW|Lfb3Ds zttOnk%5Z9+1AWmtuuMZsKqilvU8`}O%Pn0lhoNY}my~L0*$_ z3!g5hpqeL#S4_Ms&_~-bx|M4Q4o0WNi9l$0WRp57xA1S_)T%wmbi zG{?$M_c0lTXRcrN_fLQnGTV`YbRtT7K5X!Vos7J*wW3pgWWc#9>nq7AM09)IO>8Zr z1C`xR`L^qIF7!V=AJiL(d(}_e3@H`tKrsoA86Id9LB@Rj7kOXov0#qW`~9jNjk+YL zsvDL;&Oe5PQ5Pcm@}>KE_Cgzy_5Z51@RR^G)1JIOPl%|*H!j2RLL2e|k^Jc$IN^Mz zZzRHohyt1|-UmNvMaN`6-9M#X2{yXBbf@tB$5^WPRBSx9MT!~+&(B>Tb{@XQ3_`K|+fxa3z;5aPFrb$G-1x$zb=~tnAheJPS=4zmIUsmKQ z_8Mu>$oCrK_nk%acD?Rz4V-*guc5JCfqEm)&WC1TAFopR^)Cl%;j8?{1h)L3@#o5) zmZ!?l0Uu?B6!}`vy`rX&iTMYi^%V!L`eIaP9M|&3t`^*71g_L*RiKTgAfE1i?Bmq> z@NE^Jhmux`T1rGKP%ig{0Bim{R5tmrU6ZvA%+(s_;xNam^|o}2n3RpwGKFo1p4P!= zt@+v}PX#hrp>Ss)+&5!wrW3tf2d5h^IXcK!ATd4GFk$Qw<2utJVC9CNuZjG!tN8cU zedJ~wQ(h8MsNoZ{+S>qEGK04ae^j92WZR_*<2ck|+k7meya5&^8;031pS!8>aeP)N z3Wb$F4tk)~2q~!!UG--wQDBDXe#ZV#wBX7)FSpzX${I7Ccd?k{(?fM>7muJ#dn_sTyps0>z|J~! z#U^|t#>xx6%jMG;5x>S}7XWuGCc0d*n;}}yKcyekY8^Abja3b1jOha@f9M5sv%WDZ)tx_}uDUX+rI&M*5=Nyj?A!U=rUrqkOv-tUE;i z`W&i4y3MlXBL>(XNSs>zFjobWqan_VyhP*}TC-fC&mdeFLhsq0EUJT0)3fAl^V-QZxq&*tNW z2Iw9H@~Nl8r#ne*)@&I_@hOKrV^lcemD`i+P4^03iRQM?%fzB$*L1JS%khZL=aOW* z=0ijiboaw#m=8*^Y;U(@Oh=D+&AK_>Mx*#oJKstL>w)AQ&U;CdS;&Hq9b*|;$c6sH zjb?!$Xvq4T_Q@v?1^d5Bd$LfB_8ohD-|t*JZVX~BW5hmEV~Ou6sS6co7u(P5QQHhC z;N@}3oh(7R9=am-C-LW1w|~>HPcGiGh%r`3lp}4T_>cX9xR;^ao%^e95r`lAS=uj2 zK>O}?_r*dpay82R{SW6vVkYTTC07Y3NvBIicZ-B>=u3E&?W=$jvPG}YT34VBe!4Fk z*mq>dkrW@izY^LWMqcJgtw4R*32h;%ZAhAp66m#F1^C(c>fw+Is}o$k?O9xR*3t)t%}?>n8?U7KHbA)t{&V< z{$nWqP>wix#pH5dkkONu=LkcXPl|f5l&tZ(47IaVN}lY(_j^V&*23B*X!*rFGySv# z&Aihn(HYniy8e zD7{a$&H?9sMPGGqihE`w1MbLH(_u2w%lpH3&!GiM<1|BBSJP44{i{S`J{e8^A@)e| zwZfE$bn%*gB7$`WeouQc`nDcwz=(Z5<7$87&CDW^8pjA7*99`Fv0pkFxDN{iP~*q8+Mj`;)ZA4N(&r^H-z}WW83hOgr8VT=dK*Kgqa)|GRgO zvw}O&1>UQ#kWU9>{F(C(w+#c2Kt-$G`yJSy-T!|3C>hKIKeM_T#6d|=w1_0a{H`VW zy$pej^Ltqb=60sR?+@Q9Kc4JBj{h{J9v-8>j`q;|JUg=R99=UaO1J}wmY$k@>qLR$ z4fDl)thw+g;mDRU_P}rl*P^&o3jEvKnpqr~4|_x0%{*^*pv~jII|=a=X#ef6+UHaV zHie%{)!aHz1yxsI>OKX^bN;5h$ti+oMpg<3>N?Pu7k zlid&vn;H=YqWt30uLh#Dh}^S_FS?ME|D(_X|1zLx(v(y^j7RKNOt0u>x{wT0U}oQo zd?>&8+g)5J6Pc$+S1wC-V?ez|s|3Pb0`RD&2eSZS}` zJzIi42Y_TDp&MlrSZv$gyo7VJWaB?A1XMNixItm08zn~Q9Nlr%5s?~cN9SxRQ3ccF zbKkGsi1>2t_=EfiMB87wOJM=;Q>Mem&LxhEBz6Ht+)>~cV3+7Xdz-6*B0>o-H1p$Gj%eF-AJXaUMy9$ z42>%c#ECy@M)#%08!3;v(MD8)e%2n`Q}goel&Kq_;M@DvLr!-iz0V&95>X{eR(o+n zhX;Frlqu0ni(SZD^~S+$g=%zLg3vCdNJ8u!xz&+HU8q+s%20`^7FBbHk`|>%=q}q^ zIVJNh)HcLmHkwk0_PVl`4=ez>$5}>P7wSShO+PB;*6We&4~ZI#m9PCpLP}%?9Nr8&C#e~E|bemC;N6$qq>`#BltNZsfCly(0M|K=;ZALG(1dGSp zDv_5I;}`0DC%SrnlHuA`wD3klZxZ8C=J5PEw^W7~$8qq)W zh&i2TeylU96aTz^iYK2Ersg7*I<=jtew`?Uba$6*9-xELP7%X&=}4=~W7zW%=76ow zDDA?Y{x1)^yS9`g(c3;DiPOrRD8)qFUY8d4D+y~)3x2ml5+A>oZ6EGL8fPL{ZyzS1 zz9sJ64VGT;I=kx_?=l7Lotzc|1roZh()7{4AQsdb0`e8=C@7-dv6f;=LWBzbNp;+Z z#dGb}jIccgg*8Tw42F=9z=ovRy$ktpkA{)XkB5TN6en}-h$OT{9S&ts#XKO7g@|x5 z8NJZZo#`7Pq2~geUv@E80DYou&q-l?e+VMfEv}Hzhng3LpPDg$xbuv`&VUXyqQ|j1 zjr04E=#SnO|B^4V6~He}IH6FABta$N^;4 z9AH9?e|+Ma;Pr{bBfTqZYYrOJ7ETxKG@Am1*9!1!7uFMdm0t7s#)RVrH6A zs$lK$mvJq)zaqEo`I8FdyV;f7EZ2+{Sg%&sy=sBr0^UK>pC#B^TF#oB)r4fkiRrm! zcn|3mHXGfYi@a*;ZjbRdA=4w?huZmDK;!Ry9Rs>Fly-08m2Pz-s*N7D;b|ZNQ|gsp zs>(PIJZ@0C%MSOH=?DDozl7(XyHrke%jzMixu+y`okpY(`qEg=0Kk+vXW`7nAPBIO z{YiP)h!SJ-Zu0DH2Csc{H|Cs@Ksn#FQX+k`=>qLzr>Y#DQzQCBSa&T^mJd=#?7iYf54~OA% z#aG#-0~afZAa34RK8yb@hE9EdL^@dw%4=C`*Y&Dl?(b#4a1jzx3=jy?cvuPc?(*@L z_*_6ou&z|EB_R_ZS$5S|6)?HpG|kpo4?pc#y@)qk(1(Ugfz^a^kP5Fg4-9IA_?wGq zvI}^Q!n#&95MKhl(=P|O{xyNI?X;L`P%F~dpLHX?wE)Pg3a<460QXWq{ug%~=h3=t ze^$)qK!_8gi2MdXjr#T4JMR0bIt=uxD5_C%nQX8E4Klba!V_md+uJ-8QTH%;U( z6p!MC1jfm)aUb}5tMcGkGU}atouqD%h6p|(Z1*uY_AKe0>VNZO#2Msp?Dgp^f|F$I-^iV^%gRN5Cbc8`nep>~|HL=fMlv#|=nh_BD@1*@-&eF*>%p7+ z=ZR_new}ZbKULY6AX@*trzRbwpHl)90`q-cRj&C*wA@){Z0;TlM4a zRw3)$1?|Htm2jImb%(*jc62=8t#l{$j~n=s^k3jS*NBKfxG@R$0=2%VY!1VJxA~4q z;Y$@@@Na_c9BUhzH2JS!`~aTc*5?IFtP?;?ZCTS0`%0qw+}CTv8_-$PAH7RE2yg(g zT=w^BL4TGW8E&pLBGaIH;vh#kFs2u-Ji+szkAL+K`(A8D#}vhLH8e`$%ksvL;3Pm7 zY+?AF5ul#87IE^f#V|2BsASoXdkvh<+tiDZkW7zQR%=lqg#VMMH2KqjSk>=4q{om@ znPWY8j^^VW6Us6?SdaSub32vy0r!WEU0J&FD;JnwAOB-7U5oCXyXeV@{bT($5^v+S zu+RP??WyKl)#!rkdv0+N%sa_-cx`;jgynuZuO72XG*sN?dhbXJa4}a9HFi*IM%`Kt+c#sa5#%N16S4;4O*|ywl_R$l08Of)>m&^z3mT z+{Xyc_m3^%AhWVcGCkfq#AM@ee;6k$c}orf<{HsLqAu*}vzQI}mw%#pFyQYH1V=biq7z!?jaa zEbeaKC7zsYK<)9TyfE_TEhsryxw9o{ZWrN`&}y&d-ITS0+SZctTpHb zG`QM3*Q4;E^M;?5i%|l-QGAT1CooEE%kAKePN#;t4E5h%cP6_WJVRLSUya{MQ%YSDXgdN zmfb=ZD@_GH*5SE-V&2Zcp%z5^8@|2ktP%2CZPV^-#eHu_)1yaPTkv@yTifuU5ef^E zk-yVgfdu!k{u7R9K}(9VRC@gz$mTrdum)frO!Ona`sEh%y)tl@5LpWj>mM^cMk+_c z?-aH_2G1BP0fo~pK#AZM3T1xDe3 zT;G&3Y3&b!M&lc-H<^mD|BCstx^Xl5Aerf8awig4JOqtDJSjwRGJWh45>3cJWcJu? zns_*DoXNeskdMB~pV2wV(uh`A7+&ZNr@$4%sm^leJX9AqUS+mbkA5gd<=z>}0FI0? zJvzEv#IR!`(2unq$?(ZO&MwFXqqD|t$9%KVyH}&#Yl?NqaEII51OvR6JABK^=VvC; z{1+6?n~Hmh>pzM7oG5@h*00__kjX%f;X}-;+W%R) zHjDcUzTWP!{TPlshekqw-m1a(O|v5Q0s;shIMXq=?1$`@VsB($t3h#l<;`9jRRH;6 z@rj;kXO!-16fJe72HjgMn;GOFLf&%z`0pdyjqEHC)(s_#L6>x zRV{Z*PP_)0xrEC#x>Q155L0F1vp_iEon;e%xpcamAMNroRiGjj;Bsj(5)Lt>$!e@t zBZrvHjsF;{VSjV>#{SiKI7Zxcr=ztR*)7_>shO>YM&ik_((+Vb5IdT!lD?kfa- zr!~8s9hE5ecYf0Mu14Vdx=%{lun3yW96GA*V-CP08;ud0-~oqJAG=;L%(d;#4*P@s zfcv{N{`fV+aO)wyP>vEftsD710?*A|y_edu5J2AOi!|}@64<#huq<+(h`8Ph2GPF- zxG={-j(lGN=Z+j4QG8Q@;;ExA2_hueA)|EIbXO_R-+ybP>`;MxHm624bxGju#6IB8 zTMGUCEW6b>F~@z~U8}~H1XG($8|RLcLcaOn8dn7YwXsN}lg~(yTgcE!Jyi;iwUd}v zt`m@X#|x{|_&G=?sV#|Hr4$r!JK*YUIp%gxh(E&qr{>dFCm*_(Vm_Ngfz_!Ty?9#m z_k|=0T%I+&{xV()S**10BG=2%uJY+)$#Y5$5+a7P?0iwn#bLGFil)?)flS;JIkzvZO<%}5T9+$ zabt`L8AO>_1=;u*maR_BgXJ0$WmuL>=nzPO7ZT<bSsI z)x8-~Vr=(3W61yoWqr{zEZ9H7Ba_>-*aSiMb(35~vVn4s^PK+q9H={@emH=+39iq{ z@T!UC!Ing?{+eAD)E=%^n|a#+{#5m4Bep^iS}F@OpyGbg`;%u`9%BC>?M%{_@nYcO zvV6>|kPZ>Q5jcIUShS5b2Z4(HvG;Rj0NmE5wI661%6Wx7uugS zP{KN#IUpSeEk|xV`?*yN%(A|%+1}U(|3J{%;%Ypc-ELV^7%GO0{HHHQr5a$pT~<~O z^L5ubvUgsoD}k!Phy+Jg>@%2*X1pYq3@6_2VS7+g2H{$Di1Tvi9@`VP&tyR6ipQS^xK}5~;ezZGwFQ{fN|(%WZbzFOk$U506=WOE zXZ~Tq-UL-|yWN~Q;69WcHNCSIHZ)KA7+JK#i01e7ztVXyAiCL?T2c=sjy`uaCpuvH z__fc)_66{@Irij$K@&W6`#j-hOo1O|_tX3n)Pqo5nfspyT4|-s)w%|hMew+(4bQOxH zX@lP!e*QhjUW3e0VcACPZ+)EV-}*hV4Y=3X_BSl{K{uacnZ#5DyfdS<{J7QzciauT zgC_fd;WFhHO*Hl)ZM)q2$J!2~-apC*TL<7XdHP|mAkJ~QxcqgTYXb*$k}XrtAXo++ zd(!J&iTftf4(@;121(|QQp{d&AXl(FBeA*?UU&M&v%YTy;TC88hC4%`o4xgqzP1wX zlEp68>}ds8>d)r^Asxu5*{HhyyqKK0tjw2BhoZ+-nk_ONQWAS@jy);I>V#rKYV zku1kN;*AcK;7VX+QTlAmISwwSqQkZ?OJOnNkeoHXA1*{@r?u#e!=LCVx}xl2;J6s# z=3qpCjFec<^B&`HS}obu=zAe>%`Op@l<;-yWY!ms9fy#8(kYsc3P2*HzHIeFDFlVj zT&Rs3hf1l8iyW9Yak0{8a%n7qf{<4>o_^z?bFSX+KK2t`TNzUB{ay^mR$A1{Ova&# zhd=52`CPb4XFqjPwHWI4sV581k3-CWiSu3DXDU*vRnwkQ1g&x(Eao@HVElD5&+P6T z_|J2h_h~~REYrN=9U_hahoiuMGO^ikqA$`i-=zS|%9w^69*sc)FTGI9;cN(c>Sw*T zDh~`ZyjL{2#z2W|!5|cs1p##L)adW#fTde}hI8{M2&5?;y8k{CTqpbw?l;W@$$I}6 zw;ql{(fXF_iRBEqT=d`UWKIeY()VzT(~UxZ$~}Snwsdf44W%A4je$3hDuavCMgUDe zXN`@=z9bQG(>0?22+VuxA}lomtpV;&?Di)?cImCp43iIlQ~a)U2zeOHHiMR5?v8`7 z@yHJ;9v;{;eQ!+Q)-Wudoj3dG6A8usrx%MEqR_V>gNK&}hrsgE)|1?8!LX2B3!@A~0!2C+E$*W*J$zb= zng$&IDxB+q@Z~{OOOa^gd_*CI`xEAsW8-Zay}Lm2)hj+Z`Y050#6>0eS1p>jVVm)a z+6m^BZrp>f!_fq*VBS^{_9r3E501Mi(0_aXs~n+V)bd?0FP5!64^ zp0mB%`k|GX4r>zb?s3DJ$l}pR%HYpR++%u5Rwy+K&I%puJ~^I*SfyvWCVmm2$0v6y z=RqzUjAV;>{4WAU(GN)3yAi>B+ckmjQ$85$Jvz$nm>UcyU7dsO%nJa5(B#GCNZV{mQG~mA{liWB&v}Od|@U zcpSOTo3apWy_)a*-TDRSP~El-o(GA)Ic~_p1>pAT)z3m_`kyB44~@k^uNG) z+b0f-`*VE=FiBPEROZitrj6oH!%cWjyuQx(o3#S&@OHa@Q_cs^*zvug8%;1VE9ku# zSOLHOT{O_$0E*J+_3vIKz%(DzpC^yq zS1Tc6&#mBX$AfdYx9*#ev|}HzI~*ZEi>6hrh-fv)KPb!)&7p##lqLFpryMN4HicPUtbxh-bH@UR zRPfO#7)xNrJ?~$yIbQXtg=@W`8&|Ta&{G|D{(g*2V9pJ_~Gza{4SLrO#w& zAK*EZABXvJp5<2uGCDwK^YW)(A!K;@>0QFp#$0HyO&rY4Aj1yHjt>fWfU?#o)|s;_ z4}!+p4$XK|p!mc09BCRdYzw$O34W3X78XrjRhK&<^kBy$=>eRZmvvsv`J4xm&Ke`( zm|ywDd{Bu{(E+A0XGYo|{l#5TL7=LWmNJ5sgUOoU%8vu0iw6Bt8F=x&Oxu>6y_@U2lMYA{Luk7vJCcg1YnqMD*Jps2)~z9?vJLxg^8Us$_`|B&mnQa^Hx4ADd~x3z9)ms zR;yec{(TlukUE&-jpr5I=Yx$fPhjPHxIwp@3)jta~XCUAw8Z^IaCqdK{C^ti;@lUoNM>DSUs<4=*E} z&xE%xlM-u|TY=eNpkEbHK#F>UoS~Ht-x8IKr!KWZ?&wr<7{2a_BUX%M=E<;>(DSt^ zr3Iq@99|IDq`>@Moy;@kabRuN$L`IE{iG%e3H6wdQupztX?_+7Mx*6{vVHBp%SN6dEJLxqsYR*PK$(e>+O(j&QYr z^6`Jw=Nib+^~N5ybh6N|#}|Y@X10L7vZVdLL^4Q7$UjBT^3c;qN?sRLTj6<|tyh;b z8E&b0r1d5hA=NaQdCr}<^Hn)nJhD>Cb?7Lr=#>uuh2Gl zKYi$nh

;=T&RHb+8NEbZVa7_}&T?&mJ3V*fb+fH?P6ZIbHCwC)Vn)Y%3URwoJ-+ z;k|9Xn;g^rZotOyh<}bPaPv}>Q_dw4V&+v=^|k7TxikiJGo1vn*WaJ~S4KiyS0}!` z&h7>kHDztrmjJ6AOi68Ac&=&xh#`j54W_}0O7F^>;Pq2;vi6e}v}XFusIaLUM6=u4 z^Jf|$p7X0^F|;7A%F~B;Cv^kQ#?GV11?z#w#FqM;t`#*X{9rD-(~a|gi(?NxY9ZlI z*Zj0>D>~prR4-oc!WncQfY9cY{izD>$d$zBzHCLC zMGZWwK!rZH&R74KtKi=Jd&PHwt*CAN$TN?hosjj!r;!PJ|2xm@t?cn^Ma-F7c8q^1 zz|^~EWZSC}c5ytmIBM34X!HquOdrVLu%#Nn`mPcfZ~iG}k!r;rrh};#nH?aK%_hvB zR0Th+#gNKU3o2l8JLo9i4$KhgMJ-P!w1KZz7QM?3Qa{OD3ZSU0$A(_NjUz-)SxeFP_%ZQi z<#K54rFua69EUzjWb(HHXH>M$bPDnN=*VhmayR1*7CYZ{ZUn0D(p2Y3KGoH2ays6v zEtqmz`?l3wGh9@1D=jvtKt*%9=ZyQv9M$RrwNXkFP;+h5`zl<79mey>d{91Tl$Kzowm^jbd7z74Dl;*Nv9yy-Qnw+Y~UjvS{$7oqrk|3tW zlRChw4H;$M?i8P{f{US%<(xb@(98%=^az(xWt;T(_V`Lj*Gc`Ad8QcHcAF_Nj1wQ6 zL48=LS_Ne5$x?^B?24h;J%DCgU$nIavN;lwO*s0=+wrpYr(<-_)W1Mr>S5 z!F#}6-@~pJF6rMf(KywDdtO}GE%dqwbORgEL znQ-V*PN+sX>k=Olgfuuj&{{H5Uo0aI2WAX0vt}r-k zb%N^IFNA|1jihOeEAUlX+i?CtKWI5|f4I?{aQf&kOY0SqJX`TsBMkno@IdTESVch# zNIbR?zra(DQ)gR-PJA>45oYbhnX+bhRNhRbLFV1=K1MPO3Ou+gRwUfkzX|r3DGaU` zl;Ni?^M+f$O>y*0Zl%6-Bh(49gqD#0+LtW{#4F03&=Usz)d%Vc7cWR*KVvygr;22{9iwWE&2kxv`HbW5Cn>tD407c5YnD&dU`=4cW?)qchBus8eN{~OGM61EbgtB) zony0v+tYM(FaGJrCR7A%+3%0u9j?d9+rrHnAz7#@ad73&vwXNL=}>u?`1}gxG$L$s za*@?3FXC4+;RpP%Qwo}E!nuW6wQuZ&=pr~1|2;Sx_O~CgLj4xBN}VuF|5$?bM%@*( z;hA9f-mtiO7_ocg(@d^UImYCEIk}B+a+OwPdg&twC-G3fmT^lZ#>A)ePAaB?KVQ_% zUg0*R;dhrYXRE==V~v%ghZDh#d5K4$vJK~c&?T7#*Wri5H1^wuV<4Glm!O_NJ2w0< zofu#w{>d9`ac_Ae!1$O`h^}`#av!g6JCxdtKG)c{4hR$f#iwQCz=3w;Q*+|E%+iWJ zwG&!e(QYuRM-PI%FGlW-QKOys3 z_+}5DzO=jUYHvE)mNx6&CjGO0x?U3nKYQ>2g=2HBaTco7I12K1v|*Zk$DKIqUNq|B z*#5OB2Wy_yu-`b}hQ5DqY4biK{@-#F2P>j?`=w&TU0v0Razp2XSGN$@CxcYEq&C>XIPytFbWYPYNYe8O%ep{+NeVEm~*F&qc0E11A*C&(p z0PSr}TpxN-(+iDOC5Ud&Hp%JH?*?qtyYTa9VlN*0w6(XEH6NSwmJ&i=)Zv?p<#GEZ zdNKUte_2#Ixfrh@Sr+S9gMaEbiguUv;H{MPnm*F+$ryIa3Yn|K5c=ES9GQDi)akU( zhCl``P-^h;>@UYBw~NLl^t2+3n-%=JU4+w@H@p%4?1o4D#@0~BxW zr>E=oJ?o5z+5*n7uS20gwe?Mpvp&(4aI)^XK<4L0v4RhErsH9I%!46kK|~3^8-MR` z=7R6}V^uU4(m~9N#U-`jj%Yqt+q5K{jjtcW zm|AinV)HRy(Wyq%ADQ_YQda>^5g)~~yYfl?1l0=j%?7;9MrBbkRRs@S7#6uU3g8O& zGm(X&dVG_suA@Iv1J4!OG__0$0ogwaM4hY00|#XTCS&SgYjMKEDYin;?d3Xe$4Pv( zl(4c(paB?aM;0!y763l}{dV$LJx;pL9JO#FI*5;P6@?CYVDjY@{TI^zzRn(GDilU? za9`lLtSdRNBl5;v=FSEzm>1*i*KY;|UA=AA#hD;d^nI4OsR5aY@8ZWwGn{<+FITNF z4Z?OxzHAI{#EXW{uC)=Jh7Eh$vBNb9aJgIU(yhl$*nc$X;1RhN`0Jj=@0S`0U*+?h zYaN@>DB|IR+pEpMu>WCwoVh>TU8cLbVcCNA9M?0%Oq(IzVSL)@u{C6xIq#Sy`l=6M z0pV>4P0;IiOCeR{0Y+_aBgX*}Xwok5dg0 zsOh*j>|Z#>M8s1+&uB%vA@)(Mtb@b*-G<-oi${tJ1M&~B6*US{{|^4Cf%doSab_=5 z(Nw(YuYW@;wr+i^$hNl{R=Z^6_w35V+!)zQBjK$$@LS30C0!+O&j|~wE@dO_Wi3^P zbFDZfR(J2ghcft*vajLU<2>B^YhTpPOvE(*wpoRn#qe47ewSKL0lFoA>2`8x!IKu0 z-(B1D;02$rdw5$B2A}w3uu0R5e@$G4I{C6-rT<|MSe4*lsN)4c!$yo{+fBEdArXeg#ASan|b&0AR zMeGzG9t$M%+!(9Y8*b5FZQxVHgy~#I>eqA0;h^fP*6xI{c2zY8u7vj)R;>Y4Gskx%*XvWg`q33lLx=Cy)Siez)U$d>+Zt5rF@_zb;_&+&FTUmE)^>Y=b z%BHLh3C81%^JV)}+VZfwOilb|L^WOjZu9@CQj5mI)>(TV2O;mR^Bs#~ zML76dG@wea4u2%??ASx&htt1fY?v5|P>|hTTZg6|leT*19J}g?!~fX4#)1lQ^s0G= zS!O+2B}6{F*YOCsCH7L+W*1=4k4V``!3Lzd)zi{^%@~#FN<#e&@=<)5GmbZs%o`7R zu_CWB=)4HoduKEkQ$GgrdB1PKXlIq5hrJy@HcWTPdm|fvygupqXLlp2>~uY^LE#T+ z%l7(jer4h?%W%&P&PG(%4caHE7YX-k&mFronvP*JRLjd-8__YJvlFzeyz%!6$K-;sUUPxF(xR5|XTGRO3N(Uf^nhH-yg#;Y8|P-fU4u-PO_TD52x6U# zpVTP*&@O$jaGdZH+7D{E3chP2K0-;z3i8GF_qv=vpH`xHd4#+B9^yk2{cV+Q?uVoP z`JpSfD{$l4$_ZwomrHLA(>3xBz*aUXD)(n)_;#PLn#tW>*!7~DR-`Z(KQhOpC*Ll? z=&a2(Fs3X8j(D#kVEbI2u{g(5`== zMB%UPw)468Api1}Y{NLH)u*AeG#-VpyP?%ThVqdj|2fmuGbwPl=725N`B6B3@A0o| z^MuO~ATc^Tk`DAc_6STcje^ST1SJTR;9fnBu;Y*g&M_2YYR^Yt@PtJu_k}Wi^Yu~0 z*?T#_{f2t$u7D8`qzvAj@}wMtX|C3Z6Q3;&x5K-05+fik!PHdwz5?H6TBqKv%!fDn zmXu7-hat#NLqSWX3YA(i9MvZa;JVglDr>W0D6ktHk&LQFtJaH6hX@C@>$J+n{69k= z+W+|h7tyVx+?bun*h}_fVce1myN7`N&}FpatwWppmxP$aNu(3S4}*9%a(_z$Qlie+ zW0(3WaflWINsV@V!8Qmp@+{mZFErrX!3W#h4GMuhz@CDC&j8%ILfK@?-H1_Q2e+Jf zQULm%>FJ%@p8~^-)QlD3g!m0^OrCPcC;!)9YwPbmU_?&Ady<52!sNTTc!=cBUb|<- zu|)Ev9&CnwHfqB4NaceeKnaCnF-2+W3-_GyQX~G0fKVd75Y`ESmb?Vr7H-s9Q zP(IqzgsU45-yN_beCx`WS{={3;I74NuCsq5zV{yNnQcpl#Q4I!7bZKQHT4AN)+I`#i;2N9VxllT60=yUyEF8=K|V=F73LhkcN<=Uf}KoSAqlMXvuS^~A5F+Dn~lUTro*-DM{A z0l6~NnhHF4-IU}fWs0U|W;TJ>0r`~mf+GAxL*aT}IRtL6s7rWiHG=Hv_P`xOg!{13 zQuzskAei5c>NY>gb^qh{TXZE0IXVR=9ZCZs@`?Ib9qEIGDqrI9=1fPr2Tw*q*8?Eu z#Eq+}3$>td%>I#4ZUU|xQ@c6h9{~G3D87cgtAQVFwMLs#ktkxO{2=8>0Q~V{;zzR2{vB|9!85A$f+{JOLZDRI^yAJ>w7m@_rPC?j-s=sTTJC ziuGWd{D$&VJwJG;C~0UBVdLZhcg#dbo;H<%aBSE;*^f!!dZ2FDbejt( zXE82QQV@6Rgahr})O6TA&6YHO)&|BV%dRISl>nu>cx7^R7U<0k+2!ohgSX5Pu9RxU zu+OXiVS9Nlfax-OY|}Mdi?lF5AV~JBAA{~Mg%m)j)BFni4{JQxuyczwS0Pxa=26R> zEe6Sy`2NE$J+PY3&dTRh0dTOUF&!e@cIi*U@!cdhwdw0ADI219jiOl`3fol<@>(`> zB2f_-`1pd-=e0bz+~wq=SB)#lkxP> z>_(AG9{jdy&>d|h{DWI1{UI^w_$_w*ZY0U!Nx89p&_Ijahp)cL<>pyf_uL@y)^HxI zwfwSc9;kv!;SGnIL~qf-yU2dzd_Jri?Pj27t_J3Nqh`x<`GmK+M74b>pX5`TT+%&C z{PJZvzh2)j!aIh3Pt6(%VCuxftYH3XQ1vR7Z>cE3URqLDmlVQ6?G_ou6~fI>wewB8 zTZZgnAFBo02*=}vTnmv+9lvEpl&tLU5SiOt-8LJR)Dcxhv6}z>ouQtxb^?M z`4=mTQFY4|AoTaoTNj=JAWA&Gp`uD;W>pv!Cv|hnH{LMg@40Y%NqOH)IQhTvUH5lw ztppqOcCHS z0n>EIJ@)Og710d|=ULyOA-oJjm!)~4KZJvsK>-)G5uH|}M)#d#q)%6Y3wf9T(WZmL z0k0}hs*H1k2sWuSHu{psYcv z-&PvplkLyqc`y|QCVBYQS)c+@Z~WMdMn2qs6`pZ=Dj2xwxl?cVl%uVR!}b*G9FWo3 z(D}j`0LSZYs>EC=N71c!d$$;6g8FPXf2D;l#O!Do?5ixpZ_&bYmz2`rn&j~g`Au)| zVUT}2y;zFZnvR_MaVY`bF9lt_+T;yScfF6lv%ds|FIa^t3Pb^w#=pRGNj~sGR&B%l zUm>!zct;d_1Vi#AmH`@1KcJ&*c+MW0j}8S2=2T`LkY#a#H{g6Ae4tNn-a)vt%1gm& zJ4el6u;bZ}x!Mp|?OAO4@;nn;rp;C?)vuwYRGK@>P#9b*yxVhu%(vW`%4$v+~BI|ik-e=3^$C4rS!hm8TVAC$IL2|7NG zLyn)nUH-`@gILosihSEJ_;@JZ{Nuj_l>cyQPNyjuwry&<)3=lJ-S=bH*~(Mnkx0IS{gnxTNCfxp8_3S4=VNT5}`B6kdN>DUV z<*UJ8PlqJKtGk}zyH(Ob`*im1+P}ppz;Alp%{3Xug4Q^mlH;GvSQ7eJ%LwN&{@8nm zWT;Z$e%O8{9hChZQgs|HN9(`Ul_f68koakdaq1X3epdaG&!q~aqN#X)DTwetntR>q zMAAX4&ro_?k37eLqxUm2$nP}pR2C#U=vjPa=|c3w?fIv;zqBQT#HTXx6L@9O2ZyUp9+%c-{x}lb7AQ4i))&qh%6MdnqyDuA->S(k(Y+wl3~FxQ#m zsc`G!MvmV%l2hNW-Na4$qY=wzB$*GV!V{IM?M-ThaESZ3DN}7b*6e+)bc{U}KAULn z-Dy}z*2C3Xg3=w>cZj|zY-=hM7;@IDu@a8Ziso^bybk0$(yx5!OA0K!cv;nPw*WN7 zb!nw3JMrGyA*PJ66!cwiIp+e66fkt##e42o21w7G1rKeQ9p^!<;`LKFB9uJVTOvp`utmb#M*5Y^JOO1mZ zqjwwnY`kp@{~ZVCqU98mCLiI+f4vOlq;K7MJLtOAWDNK{8l|b43_;i2-#I%7H*HGC zqhLfX3j7`(s+hYNi?^D3r8t|L(2!@>EiImKP`IL1vDYLO7dL|q&CWMqd<9Rt{bnHi zK0Ci08JkIb)z5lNNI$^w{jKU>b)MkLTzw@1a&gG-O>^Z2=|iNP-9GZe8WMjdu8L-o z{rw)MY6>}$1OD>Hcye|3gz#Pd-d{KJrT*E>M8d}Vq?7HKCMLZ`&D2R@)ERM^h zo#ZDl;9=S|TR)u1mdaChCwY;6?rb~AT>fDtuY%2LINlNUh;xe}dYXrGqGQCT{nY=B z#|6TVJtob`w%e}~m)&bse+EQgK}h&QhH)xZP-Qq;lKx5e@B2zZ^d4xC_M+0`N+$AK z_nBx=R%4r!n?v99Rgk^%_Vd{8ToioiS^gxf8ixy{nMIeq;1R=`v(IJ$`iE$Wzt~!X zAOHK}KBX1`DOFit{&ALK*LL~YP~95rwtaJlmpTDfMV_Xs)Dpjfn$E}i>>9i$GW*Ha zo8+TRDi)>wsl*A-P0P9$HP}hLZLerfCL})jch*s(1}CeUQ0sdQ_IRjszAzxUAhF{M zYtQO%i_ppb{MCC_P5Q^Y$F5!&Avtn9^c;G}N?}AP<6g%(FO;QY_Rm_*nn$s4^7Z`wrj=e4sqMC)woJsrc?$8&k#MLxQpxgG>=?0klz3jpy7kNKV$q4W^ zJ#c>dg(sFbxHMHzcA;?4_&t|hNwC1S-F)e95GFEzk<;Sq#P#RjXC~J&Ky$n-s(~Q_ zY0k60aX#IF!bUv_(sLwVsHS8|CoCG1>+e%H+-yglQtC5Dnu;Lp1Xr-&!#GT?c(d=K zX&dsaB$z5RltI*i2KInNq5}*vc=f}*62=Lecq4MyrZfiIbY__QdP#oZHLfd7Z(Cqp|L|x2w~@%nx&EJw zP$jA{O}yrKhM+9^=|yuz7>=c{#59DL<40#6mpclrKv{Dnqtqu5Kc{$v$nPk_pgSSL zvF@#)uK3F9>3J`Fz&LH0#afJPTZNcTr4#?9^vKh>6bH1H7k3LhUw|UhM+SCg5#P83 zg|yx-JyderZhba87iIS{Ulj^y1wA@S@9|xlAmXa#;SSjt(3G_8?=|8Z7ZjG?qiP5C zCwl5n@@C>0qdV04YY1uE1Ummsd%)r$jWHjsbiBF$#Jzl0gnsn^>wRzh;Rn5a?W=etw~S{U9Nf_}2`csI#P?+-_y6<;EsRHE`d&NgD~DU%uCVD4C2Mr@jb8 zD>cIOkq`W3hho4vGCZM^^qT{v>dJ29*F%++yn5r|cxVwnP5rnu1*sn;T;Z9og~6d= z9+^E!V0$Kzr!gcAca@m%U-(xI2Nc$)isn)v*vykxQ#Av#Y$g`g|5gHrd`l|z^E9}4 z`Su%=#4MB-OOjHbE(cKuiU_Ww86dIi^=SLuTzuA6(`=LKQVPIm7%77>BDtv zlACJvLf~(6E^O{i8#qDwX6Mg7r<+iW2c8ju$!nx8xS-j-mFi6uevsM~a*HAqP92e( z&aN+jb-o82yrVS;y(Kmpm+gVG)Z@>(ViCCLr>6cOzK>*mD{Ct zZUgoW82j&B!$egGHZol>mo_Mc_Z*hLwHU}de*YiEK&yC+GHs{MB)Q!ut%kzr$Xw_u z&7e)9NCw)*Nk*FrmIEuhwxwEb3ziOjSYI0;`QuNUr&#()9$vr?AKL`P0Ard@8VSXC z!q;N&0NI~%ST$rF5o$&6poG7{8F23%+i%$+z_bzEvgj_ANvg|J#WC^_UTFn`AWEcqbK

^l3h9C+FGHT1`7d-+{{d z>`~{t35VZ8y=&a26<15P=bnDjfr~WG?{1U)qc2y#2G>NlqI8((x>!Hai?v9iL}wZ7 z7FB`MMijCS@=or^$<~HO#u~we!(t%&3L}d%iOJP}&z4D=X z8wxw?t2%6u?_PmHlB7uql<>;!{XW))7MfuiHsn0L&SqG~*%U+d2j1Pr^6eNklUm*O zs10}SY5zqZUIebgo)_+xwBsK1`@j@P^e~$TR4aN5LFsB=Ml_kbQ!ML$m|-IG)QIr& zVkGb0c9*ZLg;NJ^bNi4qv#l9lkNfDoOe}y8PT#AvhC6UA4G)L?X~26G@f_W!Nj4~AVmSh*}s` z6E2t6wW^VZ-f!+bX90Y+mj>S_ov8aj=y5&KH#imhxzOGz09T3J4W_tG4E=kEY3Y0g za{tHHF@Xh;ytSX@IMKuHXsrUBpJmvoBPzHqTL^Xk1zYX%@5CoPPWkPDrFeSf*%tcY zLg>Bd#4~5ziMeT0A}JQd_|jM5O|NwktY&O({d}tvwg1i!E0TPm@Kn>E`TL7uxrEPI zT)LCYuhP7)eaXj5C-(kf8z_cvHJS-#q~6F@YYn{OoQKh&g=4pEN?_pJ7%%l|2dYjL z|I?Nt`A}DXav*IfxCMRuxASEO*6rD_mgLI8wMEWs#^6#gNN8)`Q`3Q{arzSbp=?yB zSX!uDEQMI1waHtt9awJBG0|}=3u_{&jq~Zt;CguE=Y~feNI5MXlA4=|O2V_Jx9lnd zn!;N7ac%P5WMTLj&zebcD|@qS#!Df8I%IqqI#6_F{LEx-1{!9ra-X_V3Ue2g>2MLN^z23sw=ec`cg53!Yz^i*IoO@4r~5C zl!5Zv**Zgmg%Gu?=-PB$JHEOTa$!XY z{1f5mUUA&8&}v6cZwaTC-I*xOm8M}FnhpE{msnJYF5qw&ZQ=FOOtfD*c_WfC6BZja zdqwBk(4G3os{-Of{jc`fU^!Vi(5)-ijWi`RxJ`4|6$0-tATVRA| z&he^fqj(=EKV8$SBhyO!=$~1Cjpt)0AD>Gtha+U)YrayNfp}{ELt*aLLfq>XF~0aw z8`74fi$mMUoP6VUcb@>sQBTd8nyS^plk{2AHe=1GSe3qihg2~NOMbfkbioRH*+Q*+ zC&>GDit}-}SPAZXreSO?Zii2gS{Qle1GJOZEdo0$>WLk%8*59Yjsu8_b z?H$d7>1MdI$C%-pSS`wM2luBLm!aFI67$-$V;E}l#aMyx>9kf0E^!-{VNHNX@1%zX zTy@Ne`x#z^Dos+!^JE|Nbu;B^%wG?9|M8JP0MT7B{Fk#~wzUlDf7!ibG7o`#$C1ik z1Lb&XU2WOxaw+~$J$Ja|a}c?~AM2J!@s`Mr~1yk>~ z-*#sy#`q6yd!qiPftWFV-$7G|6uCbfV$%!JSM`mchiI+YfX!k!DVtGZ@pN8U&V&a?1-Cvf?ZdC-A zTYcKXbkfNCi^!qGvQW~?C9KWA1XPY2u5Pj=;o8HlSZlrvY~Nd9xSN~gsjSbXnNG*z zkNX_%zj)H{bVY}i5b57ukm*=@&KZT;!J-loCP}#Km8bimGv%OgQ>=UCO&IdBIw>bi z#o?ZX?tuPa!eK6&@Q&08M%viW+s1j(xX~xH<4Q?6q~Cd(FCpPie5_I?u^%E((^a*o zFs~d!Z~Qo+NAyuU7L~@%WQJjcwDH6~w{pmM?{#z$y^x}~N1J^(1eZM)?v9I>L!*pD zO;My5CU>@M_}c|xg>Jx^sOB!%5UOj{Q@`30gh7vY;c|E?}%o{ZIPvv-?=B2o26+Pv0{4DdeIKRfQ6jxWC|wkelI<2j1WvJZ2~K=Xa@ z?>?U_d{{2>wSFoVJ087tqa!-DM+w5x@49obsjXGFNWb||Yep5UJw>*z&kT~sy9$Xg(I*O_=P;mQdcy%&Xt~V5( z`Vxed+l%T(G;6T#a>D(cE=j0#c^}=fL^zJo9B=vcqZVlx$CsaaB%sJ~KboAgL?-q&)mcCuGdVWPh44xv~b!WX>Fum!t@KllCN zbS1m*>-){__+#4i*=R1pf!{2+Mz0a4hkg#?M~BE*_Z$I^lN`obz(LMFUB`R|dNYC9HCJCu(; z$%5-R+H25A2is%poV(r1^Pr;30zd)4LG;c`gUwhERaeZFsLtJ{}zNRAWBEkjq5D@yZV znK?DL9g`-$Z$EXa9EzmYmlFw}?uSgIm7^D_yL3|Y@=_~6MP5b1ZK)di8Q+CnCjNr_ zZYnw<$|@)_<;nL~C0ttbaSiviHq4Ayoc^R$4MyRzzt5%Dfr7Xvzbv^vUxMWCJTIyN zzo&^UB5&&9#aPi`4yg}=O2*EA|5gi3U8fG;qHYAgYR{A!wR<;l`u1$%`#;u8}=a zjJg?}+1|x}Qf`8*8}<~s>Ige67X4cPpQEvTi9%46aC}~fxVIf8ypRGV27yBjxZL?# z|J;Ag;H>?h%Vd2ksOq_{(sb2fO>T%dQ+5mC)>+hsr)i{Z-U2izE+O z=@8v$8@v?HtJyeNgD);@Ss`U6?2><(!=T>|yPs;r2k)y!o8S;X8>Uv^=Pd1vS#5_I zo`BMI&MI8EaXsQcIl>3xQoH99+5t-<%2V2M#Q$|PRb%!J$-P_};qf`#3C&Uwr$?PC zkk7B0TE?Lj0vmtcIo#U`jF)-)gGPuC_)&{Fy?-kR=14sMWYh)Ugf9l|lP$*@LEjR$ z2%@J}{e1kM%z=_60-ndlwnBf@_A*JrmG(DyD1_QL#| z5x=d(|1S3`_qV=pE69cfZ=MwG1Mb6G3O7kTda)}kyw9l>PPkqQ#i3C3SmW|i=$|IZ4 zwZfmZT55H|Wz;X>kl7KMiL+|A=c*33!t(>S&DJ-bg7MD6Ut-H?_;JN^>vP&x5H_8C zTwp%{YoFL8MEH}CX*ScsbO?b$1?x0t2cWqkM@e^U3?fISNRSJ{mWZ!(|IQ3TdzswL zvy7q09RWM;6Cc8|o%h?DVS_-^nMHrj#{+%uJ>{dRZvo51sZFMVK@dIReAPfi8_Q42 zGhMyh0^ygA9ozDQ=r@k|rd!3^0mH@XcfU+DgVf9NO;)OBaL4!8CpOgpxVdR;dCZXL z4+?W9y#5Tr=@sWkHUCAz0-w^QOFx@HgCaBQ&G;Z({@0nveI^ln`u69%2yB7_g~yxE zB@BW*{pk>K`E+=oYv@2D)&y%8UtBs$&j08&UOV*{S@12)*YNOcBUJ2aoPRwq0Mt7U zbT(_}fee$1X-jD%+@)Z7!g_iDj+`u=Is3d2MuwS0cEvZsKikZgr(&Lh19#cg@>8X7 zy6dll0Pzi6N>o-89PbBf>9xWlC9-e+@cN1Ui$)OP7h;m3>IcI+N29G4D&Uu+BG1&3 zCKyuD5-J>MZm6(3ALJug52Xo``}L7>j-T+RSl@Fb68;u@7EAiaxpt_ztgUt;r5Qr( zKeo2LZv&s!r}IzAbG>3Stw7C)@G4^JwR0=s^IvwOt?VS6FZW&VuM_{!cu=26WpM{2 z9v6GX^$0;RC$B}}Yb!jpn^7Ik?gT50_B-L&46zgz9A5ElP?H*XZaS+A7)xCqHWOXx zCkCdYFNp7_=Kh+YM@~05$a*H(mDNKWM>C_(F!2fPJklwd(?j}KnbGdcwXiSri;n-T z4ltK?b&yN#g|f0+e0_>FaA?Qb$8iH45Ns%3{wKH(p7ef6o~W$?`5XT^6yPT8!~;2)A(%GzjXELaQ{ zS9_Mk3_GDP;AmLXtwC5)l8^awy%3stj(qc_C%nk4*In162f-vmabHwPJ_uSQU*w4C z0RFhd@B6C;VfNobys%Ur_y?zo?AmCD^`8@kL*)3}!9BBri#afycW}FvVmnw%&26EG z9|VSy7+t9@qD#t*@RkHDwRcmrTXjkCXS2R^D*q4wgY+e%jXo$k z<9Uu@C<6v*7x?$rk^S^H&HXV|y|C4p+xEUwCd5Rg^Ju;-1TIA*PnX?$yWQDXR=^`Z(1dF40nnBK5xq|FrHA%ts?WrXHNrq4=cw5AKl!( zwf0W%m(_^=eX0m1L>SC7m!jbKiS2{I44p7?`?0U6QVE#LCZ$TzhQo*M|61$F`mLCu zN`7&q3>c!Q7Ru#=;Ixm>qh~QBp91ARgv*h<68Z;cG8KJ5LGYcA;y@cbuNBIPK2rgw zgt*SkaJqviW5dSMuU2?+Tx_I@aFU8lh5Mw#9Y7#TqJ?rV=^J;|da;q~d-lpT$JPo< zpdV`u3BBF|ikY#s{(V(Y_TSFg`Whn`2xDzfzDMc|@4Q!g?^MI=lMctep?km~G}Wc7 z(*V0NuWwrQR)bpKd}DN$K0IV{oE1{4gNDB!mw#=mfo+8)8!O7Du>HiovG{{EU^=k( z%YWqk<*Yb=<-MC7$-x!ht4sQ^-=n|lZ~U%?5@jd5+&}IRX{hy>op5J$ORg}IeN0~`n}w_3%jr!T-WI)9LiB@wmSTHIegwOa@4z-; zP&iY;*t?|!!h=R09V0y4`Oiv=f7V5D;-K@*&c0%Z;%e8WAbQj^%hMeoQ{Ho}*`9449HDr5r@K&x%Ls&PDS<${i8a5S3!Mu79oI ze)IrbI9q($>*5)BfA_S|@PT58u@B04V?PM_BIi$iHNOH26obz!zZAiaBMeNT$DTpz zcj^k|HZ{;I4A~x7Rs>ZCHtx#|JcAzN=8?I*x4>g9tbWC`2vjax3b9-mf|kbab?e6( zkUn;CTit;okb3?6iE6)I?_aAI~kfshP+qaxQ z=T`{VrnmjgXB&o-XSAL$y}SViQjgg7$`yi17@O)2v0-pL?Zb0p*9}mSE(kMUD*)<6 z>2W*RVQ6&kQ-;2qU_0tXDco29=X~F6vpY8o0hjephUIF(bePlnC!YdXl3TPBJwFT; z%wvqdOZ8#T-r&Mt8U^q-eMKwy%rG3$qdFWX^AKGBI!1|06hQHTN(+?}!|<#uZ1`Zf z9T*KP#trT%fcS@*^#=|PLvZf$$Q<zPGC(5`$ak+%}fKKBfa zdM>5VzesozcFdL~fy-cG7MnFqan4XpOkgD@pY$2vpu zcz!;1a!Sa|g;0JK$^N_n(4X5HHO8I~IgFoB_e&0ZdL!e1lW72cJYe52JGBr znR7t1PsNUs)U(WDj|4fXOQ6_}Zs-<(@96iEKB?5w1)8-?_};%$ z>Bz-?uvz$Q|93|@aGW_3K2w(gUh)Ut>Q?rF(kMsRsmXHKI`N4I@1(=kc7rB%-adF` ztKNGnh~#s4xf=YMP6ZRCi`*w-d%<8o$IX=kmC)C6vi!wD65RAW73|8~3pe!MX8f04 z39;6;Ixfp(p5ya*Ye!-ae4M|=;L2D9bCTs;y;QMqjrHF9TCpBjyQPp+XYAD+6<@uW~6y(z1 zjcLnvLz$GfLsm{Tw6~7G^0f>C`phd5`Xsl&Vs=TlilYX^Ox^bGZ}0~huj?%GOI^U} zaDI>`p$67+)zwYbec{U43-05ux*#l^zV7G!C@BYwtF5;p2tHi@SNGGT8#)&cxi-_1??|q8W2W8{xIMO) zgD1ZmUfce0DBtRy`p~8k zcC7XWMvp~;xbaxL1ZOX-(T>LL)@cM9Dh3_5$C1FyRl+xYkMPR-EmXGgHiEX+QCt3? z2>8R1=c1a?3#IMBvwt2nPQ#z#5Nw6{eg$M; zdTxu@Wsd@Qtt#2bx+4SE9-023-JgM$)0!ZynhuuLv_}TzbJ6iBwGo#!;l=UL-Yoww z3~1l*-gYPY4GFpwr}3yXR5#(jrkW-V2LzN3y(NA4P`O&ly@ykA!2H!N2BQ${_;C0B z!k=WZHPU=58PZOvMkXGE?Oo9^c#bhJlg+6Jg$L*=^G=YQ(*-H@^ol4{ zIw*5N*Otr=no@GBya`v4$<$Ma=swQ4c1$!3mtpkLjES7!8cdL1+HR8)jt-IW7fM6Q z@%6U6M`71V272S{w-wJYJhA*<`pmy_EDRLn5uB>Vm9ahLGp?Z+_`q-Hsze29u>AJl zAyADs?`il8;1i7D?-L7`Cj7am$w}#xRrvW5_w$+$Pmpg@-KdMR0u?U)D{Nq_#87*! zT{$#iNMm3zIr*s^cXx7@c2tyO+#ctT-6z7)?}h#L>|El1qZnVgzOM|&C;htkc1B{j zhRmTjy>g5_<*%s_TZFGYS@#vAL-NdiaOHpO|?>fnAr>=W7zpWNME-W<%Emq;URQ+UO zU^zHPSs5mB*I`lOIq?IGH7MU#J3lW>{9wGiUp0uHbHWXjdev%C&Qx3U#1q2ns((Dr zZCsC2Pu1uwitF%mbe{45>u<`M-vS-}^~h@cesq|%0oNsOTiWN;!2F$+7c3X*al0A& zpZK6g6u4RXXzoERa5Gbis%O^WT~)(yZ;EEDUEWW_y|oUQwH_7Th^xhu)^x9&AGY8X z?PQt3$8}I@{Yh{S$qnPX#J9HAi@4P{)lYDid`JFDAAhY}g@b}u4m~CP&x&3BUMWN~ z;D71xJzK)R68z06yPc^G+0Kw<{iq)PlT6l;drfj~MX$7O5WVLDSfDNcvAXF zpD1y)Vn`|{4F&2;Y45jEfGw-LdAOzw+Bwpv##5-s!z*#zc7FxX3Prm+)GFbSpkJG` z92M183Ak1*mH}6{fU}NI4M?Ux&vlI6ch?S+R)jzmeoD@uPYa-JPL zCgfKPUzDeQ-6!ky%x71xUSTp{2v^OVzfcHfaSjT5o$BCK@PeuPvlx{U6)#!S6qom{gbhv9K{@rMv4%a1Hy>im#SB-+fb@kGgt;O~5>_p`$-sLL1w*K0y30W&J)z{~k@2iKhs}rf4 zTB~qON0|8qJjYvaOV-}(uZLSI>HLamRhSc{w)We%7+m4q?%qeKhjm>7H&?%?LY3L6 zv0~nIbW_|@zx{bVR69G+%q*+W_Hb^YN`F3%a!k9tQX$u=csVwFsS0JrRW5s-BkS9> z)ooU!KgQo7t~zJEUn10rJ*{C@W{v8Ch0*$54xdd#o^nVR%|_Ye_oMJ@*rzU ze{AA96g}Fk@GogG(n3E;i|DtBseUcqH@YZ%pmDeIu$iy(f8?&m^1KElcrZ z!gk(*OYO+qbYyI9Lmj*pIzFSYsT3ouHipYRYDdQYcQJQQ)q&C+Gm}?y2{M=aonQ5! z9gTge+{WBVKkKqW(BbG3?|y0Ego#eO^OQRx3AU1dxH&@ zwbdmUeDuIh|Lv{lZ8Kvz&fEY7&+6L@K9pbzmw<`I@fN(66)SX>LGmwl{i)64B0Sug zb8L9B87p4C{%sIL>eR=ko#*6Bv0~{5-G5ILy4SGFmbf*7|EAqJM=qD5m^e#^`yaxa zD*eQ9`(YDs$I-o(HA}J7gmd+J!oL{3q*(XRycrBqR;=$ymLf;$hWC7C^;mA|-6CSx z0%5%sN4JcW;K0aY#KjMQcc5%8`B}t;%$)Fb}!{& zaxt!$_B-mD60V5W`pf=b+aOoeDXXEd2pyFQYQj$u?)I-96Zx=qU`&=BxAH2)qpLoc zcy?4Fd!pi2_U#>TyQ|`ptylp%g%19!^Q7QT&wxDvHXZQ!-?fd=a=EDgA)tLXng8h4 z_kSEp>VT8S%@Kwx<%m)teQ4?L8e3`S@Mz+pBSS?o7w7ok4}zDHgZsVFu}IF6bRE zjR;4c+Q_TB>I;w~XWQF-YuaIlLxe=Y-9Yp!ymxym;Vs^E*s#s&R2#G(QcBo4;e|`O zLIXFa@=@)`qbn9STfx07%(_~~2`>mey8X5@AM+Ru;U>3Rp!WIGfKq!4eDvSJ*#p}P zu!;}EU zMSp`l=qhYF);C^^O!r$ItIyKm9`k}iCg&ww+eZ5l^Om$G`_9*00u?fD9 zC>v?kB)V(kjday&Dtr(Oj16FUgeP-eJyA?9$EbZRrsY3t;X>1Zl*3&Y{CO(-&+fk! zxUo@l&h&9LBsd9#; z<)9s*5tzR|5Ko&n$VGV`v+pw_U$ ze62GTFFtNxXU&!k@%;(n`}^atzu)}p{w^w7)K`YZ=A^^6C$_&hf)bGPm8tP@b{e)S zbH54@I8 z>=c;Xr=Co7xXG6^juPGub(h0W$4FTCoGI4-F&U}3HS(3hG@Qu39D7PS6i$8lbU~Bo zx6XTRlK=XbilO{-YmfaG2-g%^W#0v-;2G@;u{k|d9O}^?+*|1bau+^N)8kT5(?sN1 zKjErnWC^W`^7DYrx(4DuAEyxGZL}_n1r>c_vxkLvUEo9KJDv2c}YbTM&B^4z%zYmJ{B}C`-8G!zm@K3eeUI3rfT{ zmG=*>8LP#pvwjl(W>+xG+}ub>F%bhp-wP%C*P?psv*3jfx_ITA`4@R{k^}kCc=E=f zS`59rw0Kfb7mt{{Q!~;@#NXkEMs`)#plRHW=+F)=lr?SC7938*;nEaGOEHq;qgC@E z>y!)*W-q5sRV880>t~JUtg4afxkKLFUjqWj(DlE+$tccSd+@t|73#H5=GtDl18j-> z=eSc-@q7PjRzc57YY2;E0u*TB95@}qtVi;Em^q7 zOUjP=w;Y4pTm!D{bBF9o@y^)B96aVzygAyZ3^}vxcU^w^92^zw`HX1!I2W7N*Rr}4 z{T@9M^X>No&)Q?ZzS$LGzx&yILyKZ$uy*c@wF`v%<~~)Qb{69m#SF!i*>XR|HQ`k-omCL9nhytk0qNnUW(vt0VXP#wWne-CGXsQ8U(`99eQojRNTd@Jy@3>hYu^mj?C2h zL(j)zx?c$uC7!AmG%Uv8O~C>wubtj7`TD7mngk8Ur#}99Liz%Z^fBqf&z^y)ju%f$ z1P!-5(s(p(H%F&r?-ib6rn*hyNYFNpXcrL43bt!+NN*e@D|b7o;&wZvzy+9hjzW|;U{zQh!^ zxJP2LfDd(BaX6T2#88j^s>iW6vk$q*`L_6BvwQhS3~Vb@s?q*O^sb*j9NT!FoO>g? z)8n=!LYugh_1lGd)IMvVUiC2?4{rXw?|NA>7@BiSwoTV#NrLfx`_XVrhsk{sr5JF8A-{Io^j_ktF}CL8qcF3wCnVZn#18 zz2IR*PuU!eWa=x!7M%lp>-ZMKSnE+qUa-zGDHiL?jbrQh^T56eLda@ zSbxZC{w?Vz1&0RtW*XA5eB#jP`pP6^V=h;PANg?nQKH?m^>j>#P3<^Hbe^F$Zg(yU z6+qKnDZX7qpTo)ZMWOpa26l^-UOcd=0F3N&p9S8nL$_<08@daOu*8 z&{Uy1+^?KjVng(k<@`xLCZ%~m-|g?XFhRp_0dIG>%oHNCq80s(T`m;fQF~KTKtrYq znSPPYC0N5dok5+=28B^CmFIpWpR-uP;F)R}4mc*aPKacIf?$$T4bfXqM2vp_?pc9y z!NUKUie|v^JCeL_Y-xC}xqGVuy%O(VirOy!FBL9s=oIO7rJ==ZD`xmrjkoye&(f*M zu-~TT9vp*Gk#TP9sHRGUtUL2n; z5)R`tF|lmoyW6n0r}I=xB&3*Do;@m8hrNT7$%Upw_pPeC&d@v*o{tGdEIQPo$A4J~ zm*wdgk8C_Dhe%EVP^n0E_w{5r1vMU{{whWmh5zh10$kA_A&i7$_ z-O~#@3h3CdZ@c#h9|MoSVAiE-=|HIeInh+2C$|#%?a#Q&!1PTGviow5;5kvDTP_oH zRPQi6$%tkkBb|EW+_sz8km_J2K|bfqkbPrW#z0>0q=h~n6J(uEd)L@O>Rq#D!N_t3 z$v1zxPvf8^&Qh{>NoSG!&Rn70if3T-kYXOC#R~1UPM@2yq2pS+EozdM3=HKvY_$Cs;ggBwH{xH7@PR#0Mv*UGSbY@iNj>feL2#?)Ott_O)0O4irnc1K)%w-B5rMZrvD?{w;~9dV`DpW7T#JVBZ&E2AFId4F zmXWCIdbQ|rla*yJ@k#8vnBgShWe+?Zcb+_PuEFdMW>fV9#E`EnFMau4L8hcMUbm3s z7_&R-{UUYR!AC_iz0IDmix&6aAJK{>j4&N>%8&gYQ?E zeHA);=0)-Q20{5I>1EmEO1!emms^$iHoGbJoH>7lL8M^gLW za95J=z&IY6)m4VmDQ`SYB+^0sb{zMKHN=O|&u0DUVi{iKO{ehIXTkUe*27!8%Q19d zK!TQ;9Mc-9g-8NBHYxNitgigZA;N( z$nk@NPBCzt+t|>vvkciBVvp|8F2$Xqb|-e(mV#?Y(tcV&De}Jb@l#hRMYZ==*71dv z!^hLn8WQJAG0#{#I`D8QTH7nWbtxk`YCj&!+I=VM%LZvv58+bmmlfOI&{YNJ>=ag& zWtX6Z{ku$KQdb1@b==%DUIT}z$C}nYEkPM~F0FUnBtIi^?nTKsLUeEU-#!bH6Sea` zTd_Ae*N&VzRQ#R_8E&Ey`&>$}c`UMNN~{D^C%uIw`w4IMRIx)Vr353Yc$+_E7Gp!X zUdfq?IxxQ-_$O{hDax(()GpjmjO&JmKCca=!`_l4d2%MkrC&c><1Q6pZdwu3sD3@X zP5FcmZHe#nulRiIlR^}}uM=dxyMgE;EX|*rm1BdT-T86v0_?Hf(dIGP08Xs~Us3}q zaNm*DR}wh#F=WSG@4w*;NSjmq{pT$O*H>S77xA9tS~PUaMxJQ|lhE2H#&@f5&gbM} zD&ZzxxZF8d_oWfo=dWsB-Bg3BJ#8gFtuxSZu6CpV&=x$THsP&VbhKqbj({g!1FvZmgIIGlDmAm6~>|^6H;~R zaqW!pLsr&k3IWEkj>IMyf5 z2q*s0!u|ISw?Xi~B|N^a5k;hjOFLx4v0sCQCaK*9qk$vaj9VHp_@XuIj8Qm_Jm~$W zcB2h4Jj`W-A2#966A!&EU5~)-_lxH~lk;qd&j$C#HO4VvD2&aUQ{=lOf3iQEdY)X_(Uz&oF2EG=w zFotLAzb4|EUJosfV=eHpi!15s=@z{7L^P8IDWvYxk?K`yhVEj%S92OIxX^xn!_C)e z$Ot?4sYb8~hVL$1rk!oU=nw4n@x_@qPeLS)H!{FHOW%Y;q6JfCVpC4k=AeKLmar){ zKz;w4MziH+J=NT_xV9Nz_SX1PLka(GjmK_&3Jv7ljaQF6 zY{td;e%sO`BzM&>xsAse;iPJE>5yT zM6dnM^pfVMwdG*&&GoUDc@w^>jQE?~M!08eZbh1DMZo-oXXXS)6K)*+_xs0AQeXGp z-t@*L2be2YDEZt zvmL)|v!#_|QMGKL)dwnGn8hW*%@myb_cWz{v>XRFepNgsN_dlOoFR!`6==zq^rvm0 z9L?DN?pH{xMWH2szqQ;I*ruaWUYcKy_p4RqbVjOCO%z@G$#t_?S2a4{FGuIp|LjBm zRiY^Huzc_@$1T_2|XKgvXZk^bS`rs{uF#LxI)mHyyhDbf4B8ITz%Lgl6#ANVd+;JtnW z`Ejw{!7Rd)ThH7z(P0ocp2TP=aex zywdwFXQI%yw28A1E75b>sp~Lj39cya{$y{Iiq)Hy!z{=;TKRrxw^Md8N_skL2*f3# zf$$eK{s+}KE*7zLPK)^ehuoK>Hpbvvmvz3pzBPpVAbZ!4aC!{=gKfmmgyP%GGcP=f zYq9sljV3il5uSb4<+-NS4-@aX-&>qS;-7k>^E0#vCkxDzu5`Gfnvk^TEgvcxSlsIA ze^`Vso`!O4Tr@>@-(``1B^%G$~9~F&>kL}2PS5I**HU`2C znV(z2e95_uYqxFn%Ob2A?0YY%5DtHnABBqVsmF6``pUki7ok)0O1i_wSm?8yG4Cbk zp1~tp^#!#>m|2ywc2!OygbLT6U)KA7uEe8H5gkSNi^o%evON{H$XQPoEH>b4#pT_B zy+!C&V;vCkDgzFPyuEZel7VgMm9vs9MVLGg(~J!YtB1M$MwB zVl={;k+^J>+k(3}W!qHW=iy%o)6pw-G!Pt-K3whGf{C7^nV}>%xOIDRI!^$}Nu?a# z6Cm4y15c^yH*0h8QdC*)Akm|)&FH1;w>9I@aa|Uk6S?S?*xtb8LEpZOb*{S%9XG$+{?@|uM8L}={=IOXQ+uVGBIU8pi?k;$KD1osMZkf^2 zIus1@TNL2UMhnM;nKcKC$W~zWrdpSV^!WSF>AKnYsylBe^{eX0LgvXIo^_W<4%YXtyHAk1R`o!C$QP~x^c}_bR~@3^ST+=CF_+@$?-A0v zMMYQ`oEK}(mI4tbvXS{WNj;jfdgAdhGH2n`@iu&y3Ar-9lEp7d@%W}q^FHb2r2dnM zR=b=JD-+vIkC8mTYszc+F8-n5#gSRhL%WNh@{O9$O)`%W8rqs8zPB2am9?jg?vwy` z@CJjm)DkQkKDJxqKrKG6lkz%cPI6I)pNpHUFTr8mzLUS#Q1Q9?u+e?F3aEisZ;OPB zF*MoGf6p)#m0mVF{q3MY=kq#D8>CvE5(xk7Y5Ek%}?NAjkHHb{<5MGF*HmCkc za!yY(ES*1TPz~xF?Ymyn^H61TgYY!zUoF+~O5lweh|^LUXYb5Lzl9w^yh3zrJUFkp zS-cj^k9=nQpQ~#)baTT~Bhpu4Ix@l3Pz#&3t{?ban2M^a!E&z;9XD9{sC|?oe1>r~ z3)}J}+;LiAX93~;{Cr`Z9C{lei+etmy*nPm$Hg}4In#0KZAZg*BLt-i&Kc&iD4gF| zuC`H=f^MErYdb>*Is)BBMQuBfAcp z_sj2ZmZ$|LkLpDOsz0`$IQ?y}d>tNr7Pn?vuLfxMPKtk*^~I)tGo^7z!x_ufKCSxI zuzoKi?`MHGZelb0yXrWNV9Jb71(7^~!j?Du_m27?`@%JU&H^gN`8}K&{zidyWg%U< z6@K``T`bjQ56QLq>L^#>R{_OM`h7L)0#WDtE4C&j#P8Ee^UB-HVPs9SeEfzGtb9HE zH~b>W@w|PpH8!>sb}{M_bxA#Lq^4RXZdrrE8OukwcbC9_@2x$?w!~mO-^1Vfxz$7m zVa}~nSp*lVp2oV}NkDn+%TAv*RAXzx>zc~Dg`n1c@oCy*5^|f$ar60Ak-R~fv8E%$ zzpcR$9ciA5L!mpXMg+MIu|A_r{5wusxQ zW#RcKd(WQ2N<36h64vjW4eV?0%t|}wpy86?6*eEj9WIkRc7vJ)FD7s9_+*)fdVf>A zVhI;mE8(o1iE|dvDn2|>WGz4=9)+L+g-VQR-{MnPn+1(lkCHf33o!kUZ|ZZBSM|HR zWK)M@HvD`dRFcn8i1Fr$N}81@zhjro;;hGc_S-pBt?M5E- zu``V=i;?|Bg!%cKh6?<|`^$RtFv(L-ogci@SAZR}#rv=Fko2y$(i_^D!*k1YY7JG`wfg7Dkr+o4_+-=X=r5cVlP@v@=c_E z^vr? zDd&)RH5mIEKQ{HR&P6ZY&7CiU3GdwM`mOO+H&l3#B^!E6jXr;0=Ff$U^@m zXf)`3tGg{7dt7W9Ppj2}qRm;4LGkBM%$(**`&dX)3Q8;*hI`!9f zTOzi9zWYp*13|d@%MW$iM8e+~IFP+F26MVj2c2L+FyTCFwV;v?x;3|-j&X)z)n-Ps zdr>W{Z5!&-;m!qj<$`TLr~Famwx~UYw-zG8E2UEI6~g2CZ{=Pd?s!=p&3gUC-=Ig)67oRMw>AgUO5M%Xh=+z?PB2UUVk|@?H!ax1Y)e)yeQN z#mDuKvnph6&_5eaeZD00?rH|yel->ONwonKO!Yl7;_^T&&gaL%=2S?FS(wUYWq_cA zRGwx7;jPx3l?dIP1O=+4y>mqjczKF_GG`CTjdo|SN<%y}X9sQdw;E0rH`6Y0ZEC#WpuXdDy7XOMZZc$*x=V{N2(~*$4u3hH9_hty$c1wTBi2@bM zFYBkKqT$Gzf?XoB&Csm!fNlIf1%eyS80^G2urI0BKQ`11EVeJM3G8O%3)E6;>x zcrknV*m0r{Q@byg#8O3kM{jjyf6q1nI-iU&x?2X{?z>4mOHBpw(ATrReoau$#G$o( zuoPq}_jK4CuL#N7G=WaX-T+i=Ewk@id+)Ed_M$_p*r+{yF%N=R2Fz>)`a#jVcFT zZ(vRw+mPNF4ZM?o?J7xsqc40UZr`5=@PIX-O3OYRe4n=q=ToWR>#@8|;e$EWzg1~? z@hS)+uLr);cR-kw5GZ!K=YczmZ-jmN>;tE&%vARp*TDIYOz)1c1Y+FZi25gGuCTN@ zb&;2Fl~!Ac=_Qc;T-4!rLNwfiu2Sy~7f}ja36m{txE_VfyL&dC5->nz1v!mAvOYLi zmX35EiN$xi+ZOA0Iis4zjaA)WNZlkj*l@8W4w-JMOWTL~VCKKOQ6(P;pVsrr!wJ=pJ4}{?`*0 zTLzbZi=+Lu^uKk42T*l;cJb7$(d9n)nZy%+!w3H4>+ks!ln5)zdey!) z<>;?4(6?OW4yjCqf}Iv=5Pxr*-eEBc&fNcD7;bA1>$V@vzM-8BG7%cCY&N7HGWK5e zvEXf}yR6$iEkgJWDLXYHqN*@E`P5_H+gDKUt=7OqND+L@8aLC6sm2>0(;Is(JjBUU zM;(KfiH@^)*D%YY8f?(0oLrUaif^J%sc*ePbo|A?m$&b!#TvKs*^|OAFf;sQdr>3> zQn@9YgR^V#_m?~ODpdopB&>X23WL;PcP&32WJNUfRNlAwXE64My|DHtzTDE{#mIw4 z5KV^F2SlHTW4rka?fN!^=|>0N6v`vs-ZNL?!xW7j(`OW8x~OpN;nd1Ke#GXj+rPJI z$DyO+VyIdc4R)khJX-9l#epv!E?xBrcvSf7&pkGE@b;XZM%2ApqzkDW%~Vao(VEGo zqY`w;dmzPi`&|vX@^8Ptk?01h?4iTu&QQbAGc`D~@4E6dXDV*IQIOL@bcIs0 zQlc6}Z#c~r;=KQI8qsk?-un5o9=@im>ND-G!g0-LCyGltTF*z_4!TeL5vK)IMcIhn zaKb{cJUj#2-W=}SJk|iq9b!6oyb^D8^X@$ymWd|O9H*F-8Q@#@_s(-`3i>Q|fx_b~ zbT_&+xi^6UH^tReN`TZUko_)oT;#Ztpcx?zUpNi%*Na2%!Wl( z8X>sA{?=csa^&r=SxQsM!OUk5M~ea*A+{;FQE0vlPaE`){dCAdLFH4`CBr0=_= zZ*&=Mn>OineUO7D%c_F2dz;|Gk9@k1G2uG8O*j+_D$#(|>Ev6c-@!1ygFFlSeWa?KIDw?4>1jxPq$DSXXv!|a^iW_lTx>h5yR*^r6e zp4JzKY>97{&tU7o36i_VoNQ&Sl#Xd>M=xy|YzDo=yDiHT6mrRE*G$=ul2xQ6uN;G${f%WSJo zF#a_?LyM@x`zIKQUp~cw$UuXnD`yv^jKrmJ>(EiBk7pWhCqt9-r3Mb;F0in+a*5tp zj~#!7jt1;XhmfL6pA#y(;I31&N)XWnjNiWVwk0bII2#*0y4H8YuL7HqN9P+b_TuvT zgWq!@c(akyA?$i4iEv!ww)T`}A#ZeIWwJ~uqP7S|1})7o)~hZy*{JoDu5?n1b5 zcOs5?q#H~=e|hucDFcsuD%5Wzd~d7SRs)W$J;40P^4_@uGFP>{ZLxb(35W~RcZWd_ z{3jN=rKz5Q&mK43lbb7n@0^cR7Y%#hgZ7H}(P{?z9h_SoPwJbs&RSYck9#2TvVWUK zI0NJC4T3e!l|eBdzx+GT9ys(y7(K2r&`0@={-x?N82*@@>-eGvTxA3nWd1c^@zul6 zsO!t&`++Onlde5b{ffiVF_7eA9=X4YE>{lTsbN1et$F|_6&Mm*8qm{5Vn9uqe1Fxu zS1wn3AXd#Yrof{fH?FzYA$_16X73#rk(KR%K+ccCbKmIr_0HQ17m40^C34-XSoR*! zJmNgEm;5ffy+r@)PAelE0DYOL*WKVOedk>my$(|)s}mVAWrQdDL7h3Z8z{}kJADt= zAvc@xo4?7W5LNe|ZjxCy;Sbpc@|4h!Yv+)a+@BIsr%%;OOLl{}j>5$yB^n0xUDxK9 zCb@%qZ!qc4biwT<6Hoh(RBW(wytQ(<7!F8HR8Uj9AmP}|0jUhaUr~Hx_|~8ZPF}xR zHFmQLgp0jIgx#t5_U+HS5WPYun6qy=#@z*%j2lOT9jW*|r7$<}LIJ1`g?qCsg%_!?VvOEV6YJC@GOe!oZ(9Y z3l3#pwbC}&w1pCVb-oVUX#U2vmMLIX;k}`W=uB;rdp9IE(y`>tRoM*oWcV?Be*J~? zR`?vZPieBC9;H*pn~Il6zxB}?jZc!TkR(%daa(=^IH#|LWYm z*;)olbcR3l*pLX!zyAx}r`H0KPa?V3j*xs#6=nyalZntWz~=+(EwHIZwCw+LFaZyd zcowqn?^GzCmu_i>f0CaoAR82oCle+sN| zifiHUYKCW1A0MzpwPC4@t%{Ck8bn2U?5BDXKOjf7*%+f8t5ihnUJPcy*|E&bByt`7 z*)1cXW}U4%DmFjAwG2m4tu=h>zfm{9+gdef~7 zMIL#DdxQ}l;Gwmvo)PZA%IQOnLJM7(<{jX~%}%&7Gtr%ygd6d(S?%TVTir;teIw>; zQ4A}Aqge;8w1Nloh^AUqH@e#VDhetrfwrDcF-2po5aeH(JNaiA;Jf)XLC#_?B!dJlSS@pSnrT@J^8T`tl~X$Nf! zvEE?K9_08a8gasgykC3)Gm&x~FgLaCw%O4hoETbb?LcyD`5ox%rpY>~DRlN{CAqKN zjs3f>d?*9Atr@P3r#nHbD|5*ruN$RDbj;QgKVs#vnrj#HI$@89-Ow-jZZvwFGOS0| z8T*x+aX(gf0o^0>q*ZPgzTzJt`+Hm-Yp9cv&r*}_Gb$Brx!vyKa1AY z!(EVR5j2->)qxQsw(Wo8^C8mUtJv#fU9eI(9@LlHhJr>xuPX@G_eC=M3)%tV=T*J_ zAPQS>IrnAe$K^D@cBwOiToQuL*lD#pNP@YjFyWV@op9^g_!DV&vW_uv zv4yL|0E6q_;#QkZcxvTQ!G5kD!~2d7o&OXJQ8d-luReDGcQ|O&v)3V$#YC;K`Ez)C z-T3Ny^$wu!@mbDFL-fm-t>e_Pg|4UP_aBTTypxHqivEP7?7k$C=Mtod&${|V&UUxK z`q4+L1W3Px^UJePml|7K-xA2}v(O5!)r0QD*%Tx5o2-qejoolvmvGcB(X=ZnpWd6`r)pKtoc0pu*!mn0or8 zY33yc9E_%kNp20m_p4cVhBZ7#m!t>xFBmj{me}yY;Nu>ICtNc!@8p3F!_!e54~Y*W zNXq77xjn9(J|L?c=8CKG_Hiuw(Sh}Ki-WA25x!5-;6HQ!3Gto%*+tJIy5`4W!4-6Q zI3fNn|MDLzOuKE&HabA~6|XEfIDAb&nD+47X8-HRzqWAn5i1R(R91QCf3bx-hu^+m zxvCDS9O3m@gdbGY+xT^dr8Cg7S>$HVSb`pvOJe#@E$mOSyFQ%o40I=Z1otU9fR^lh z^lgtCa625uO&NaybJj1Jly^UarFoiH^v-Is{@Gpl<>wDCv;1Pb5BLC!54YO&mP+_* z-@N;Ke-La4k$#$UHxMrG6!;SEMuA(BrfzR}!$6L^$6(nb6pnoRuC8>h0&03wr9qH`IMZ{R+cgdwfLpF{c-|)Pciyu z)|m)WGjS_h7E7SpMVN0?I0;Z?@~x#o3IuUVh*qpF0lDdKeRsYk!w|pP=pOPvUnQO6 z<-U{XSzIW`#cNXur-)lgF(ea&!YuH?)go|Zt}UMPONZAdJr(!x=73ntuk?L{OD8Hw z<5@Dw1d{=?pb^52T=G-p@Yqg#Wm6XY?dP+>e}VBNQmp_ycGtSO=M}*DRV{1HRC8f6 zS>npB6NNAe+Uxkt3!p{g8HeEAeAwrC{aV9PA-EMiepjbe07+*!-!8r?fY(1AkM4L; z1VJ_v%t0mv5cb>S%sH+iSWDmTG&NcTaLVsw0=Yh)VTk%}%VMxd9Jdr*Dgxux#+n*? zNKQ>~)5U*Nq+Vei%P1k=uYIfTu(zuaS}VRA#}l9IXAPtHS>Gb?)l^!p$u5GtiaENQ zXa#Hv4g21`p73{$Pb8>(SVQ5L+f-NIsaB_xk;+l zfV1f5(8IJk2s)*%bL?&=m~(tc?KzB~S!{DQzl;uIMhl-NEi>RH&*d4{Kq}NM)2Aru z^>F>Y?yjP~bl{=Hij26>;P1;#8lfQ#z{MVaJ2@pC)|(}?{5GhAzI9?v@=qC1O`E0_ zze|T-ng^0P#OSc@WACSE<3^Yhet)Ej=tBKoc|-^x)pXCSX?>8RscI1ZEuaK*TcCt9dc$T+u-=CLpwVk6++PcORM$hbig6`9rjn+ zA-n$*#htSlq`p5>tLix^HMC zx(uq1(dF;hP~qDt$6hMQAzLX>E@E-4fRMz6S4mAZkh;7wAi1U+ECzyxTyIu_z|hE; z5%KRCgff@@iRcEV4=+wEAE^dorlY?cM@XI6?jrMTR}bivMYixS)PQD+{;yK)V)(D# z`{+O-$z6+%jo%uHVApy5^Ve_rAox;{*1fS84$RD~7WAZoO%P9EN=YUZ9~$o>C}hxB z2I1eLgr7G3^YgZSDd4N&^j0ye7r4BQ{dv>KJoURin{Zzo#Jj0@p6Krd6CTrmX|_6W z*?BMh7;89eY8Dwc{?H3qiS?s9&ews8i?H?A@c;-ibUN!i-3!Z}2Q_|JkX$g&{ydo% z&!J!Y=97;ty&&S$ao)wY4l?IHcc}k!1req*)QH$#Fg9z(e8OjQ{im!%jFAa2b{jlLum`ac@ZSJ>VF zJ+T=p&Zp$OB|pvLdJiG&yW~GEu`R%E?ytte)CKzziw$o*s09a|YgfeOZ)51a=2?5z zPB`4AyT+by#X=@D4^1UJLi_T@WX<&*@L{M@Z$+h=aLv`~!Nwh94zBwuv85d@K2uoq z;H-j=TE68sj``t!6N;>s0O5lD+c+RwOM(9eh7Qoqg`l9<`}%tER#>gSylSs{1%w@B z*xo9L!eejwI<*v9NdN76*vqOi(0G04$Dxq~*VL>v#!{_zYZk(B2_1rV&DB`o$PLg&?r8D?yNwL-y^xs?ALd zxR5cBXh8g=n}lw?<+Ccl{*WNo?4<^ft!>;f&6Wvm=fB^mb}7P^2l@?0hZ|t9Gj)s6 zQZkq(l#H7Y-`rW3M&3P->Os-$tWAO%$q{LYy!f2x0HwDm4j-(ggNsCH%*@^(n6nIz zc0E^t?H3fcf8?MO{rbVdVe2PgkDs@PEmF|oD$mQRJ9V%<%49Fk_(N5b0U-{#K-~6mYo#aAMICpvGTnKQ2LC;FRV`JF#WC*ncfHru;she`6~(vxJF&^D7Orc$8443!$6CgViF93(EB|l1b5DB>nC5b=v%N?3If)fX z><@^J)tK9*+qfnA5Haq;b=4fhXFai&f!nCn*+pcSwpvIe7dB{EZEt6-{PN8E)n8h#y9Z92D^=qFeB)TQ&PK<#MR9Yx_feDQ!@9({!5 z+%NW-&d~|i;`RP4IpQ(Hm`Je&rM} zT?NN@2jo6Y)S;8)H1ljQ1s4Qtk6f9kg6(&|)@Lx$F*%iaw{lqpZu)PS^IKyT7-+_t z=J61nx0p^Rkmo1lucgHsR0W-^aTlJ65j}VAS0#}(M2B_YN@3FRD!5@Q#ri{zjyX3= z7+?06VamH%@mVsT>ON|DEJuxwPtM5M=v^&E^X?lz1&D8YM_;9*q&XeCTYO5^+m+yk zLk9IW8WcER$3Ac+l<3Hx-Ek@NDaNu_EScN}72vBfKcLr1NBxIe94->w(1Vx|UuVs7 z7~W4Iead>wtI<8;U|)z|YQH3>?kR)6?v^TPPwFxGRr*g!Viq%rV-Y3`-qlw_fKOer$WUdjt)QIl0VF%t$#-TXp z(adcbxiB}weRCC46KaPS>+MSn#WPV)NA6IvVTbd|m{3s@-uaf{xqpop{%|?)jh`zE zg!o^p+88uram38(3x=mry@m7iG@bZ8GORZ4UfY7}Dp^`i+IvEvkVEhHmUOThJMbbu zwFN0AjJGQF;lRE@N;*?A9r*6F4Xi%WiZ=3w{!bl~;Q0IT_2wVaK-LaB9Lri!XzKFD zcKuA4c-bN9yO;(Px0(1E(Kf8{9QE3#Pyjz$dlG)@r4!zqJHy4f4P#jrWvFAt02{hR zj<97w_NLyYLDEQGT7m7l-sP~3TWa;quNm;bB2BmQXB(bMSz`SsT?K<3FZNzvmj$o3 zG2R_r-;Qr)Y$aJbYQZ*8KI)k&$^E?Pz4;+~J05lQa_ZkpgGc|xb}}X8fSq{dyMb?Q z81OC2T4taQ;*TvQb`T!cLPJK`a7`Oh-i?+t-6MQIvpe5H@8m zT?3r?5mGsSvjBKSyvG^rZFp;^%BRoJ2oh=;=R24P54tew5W~9_#bqUS-LY+g&}o^~ z&m#(f>C8&z*!LF9Uc2|^zh}*me$vgrL73zv2I&7>Mf9~_N8?#3-0y4fJ`zAjgHp;~r?u_iyi2Bn z6n9Xcz|C&uR)=i$N!u)$+hPBb@z4X(A3W&D{c+5JhRu7Jtu}vagIA19t#GL_*g%2a zTdqW(ebRpUJUQno+kF@8DlLNm$!?c|17sca(pfm4N%Ya>%$A+1<&ZPnT;1SRgBKQg zpTsDyX4DFZH09M!pl096bO7|e`ZFGg7$&bqe|AT;5V=H;3J@<8~ea7hI}1NVDhxpm2w0&!2ze{>1VfjzA8 zR}DECc)!u-t3)2*qyCSh^A4xNegC+uGEzw@5+zY2nGx=aD3xS1kQ5ndkR;h7O32=O zZ_dH7-5kf>L{mahDJAt$BERSR`>X5f(xKxxp69;b@7L?jhJ2l?`H-q+=y0K@1xMDu zJG0PH1{s3lS0^6if^dt~Jt3nORDQl|y+n5@$cYawy!((1=6Sl8N=Y8t_nXKA4#xrz z{x9uD1h&UbSEe;)fv#?F`b{qy-k!Q! zCtsM1y0sB@n+CGsGjoc@n_1%7j><8wNy)^0Ym^5rZ_b591L1z(hs7vk$1Ohgknn_i zWd--=2K>w{1@e&KkcsOv>#EXf7u7_5N(nbrx zK7FanE$b=fA5w0KXrbc1haP1aWyQdM2;Agtk0bxHBjMjp6E1<|p2|RSzb^|mIVP(V zMCKpmuUI;ebTO4(@Nw379+3^|Sq&-(#^~3!-xu^H95xg>7g$n(< z^EG5?5KhzEuIE<{ONGVntu(7qNrKyOisWYpYaYtQ+f{<5T1uoQ$yMubl=pn2QB86e z#rHkQIigdQ*L&*+(o1?SLn~vcg=&`tw0%NyY8>ZYmhY}XD!bLp=u92(4V0(_5}xs| zDP|QTn;N`W?9CCq+yHD$r;9+Z5k_jZD>{_cV8gw@JcYzY(0$B3w10aOaH3@VRn}Tm zMqZJX?k3P1wI1Hw(gg8xIWj&rwdmk7d}-CXW(Z&8(hbm{Lo3rqgOIUW3{jdf{b$Ai z{Sl=jTCsG9$QAh4aGm5BwcCrjt6HG1LZ3&TPKSFuTP%NY)Z+&4jm9RM+u+lmWPMe_ z<-NEpV`W)O{1l=k10Tpfu!2A-kA%^|Oj%)p+pPiLOA8;{MCR7DwKp6U2v@{=p=`oW z8*y#gy50I4yWrVN)^)#fnqZxRH-{>BBSxeaSbfmyh8EM6>*7jx_d&+? z-$DJtwa~!QQPJk#g!^7Uq}Fux0n4U8I@g7(K&$H1SZzlW`Y8vM{ShI4@xG2j>P_YF zhiguYvDk!LIezNIY4n5a>zSaloD|5lFTVMgpN?`zFEFm2?g!&C;Fw}2`MBzoXMEe} z2!ltix2X4n)N%Rm%Y^&4DgR@L!WuemIHBIVYHL5JWU@6Ja}R}*)~`QQUXlJXXLg5S zT_0q3GU!exEYa2`t6(Io31h05U3c&71L?7v8`9gNG4aR1qW=CSEH7U5`sVds80M*K zEdQ5@#oMT&^<|CdHP>^DFR2H%xG1?Zei1%++zoE%!@;!x$gD2-rS85%FzXJ5szwXh&R(HTYK{3Of4ps zIxcKF)Cogns}8vAYC^Wc1CL*7)ZjROp`4*-2jLE7u{tU?g;if(1ySb?uDM<1;F+y<{NcMRu~ z{*2BT{gICu>5qB0CB~$-fz(cM+P3x%OpJ;@n^Z-?uuq`Q;?xEU0)9r`V)0pZVZjOLz}vGHvAC$C{1T#su$%aJGZ2 zi81%)DSktWKjeDUBqd1n-^Z4_`W9?ZCMC=s~oiKS{=(&?)GYZbf(I{&& zFmTXU`X=Ga?{MDtHc69sfL06r5nsq4{;(#$qR*XB-K4Q=Xj>DGSngL7942|4{P#B_ zMmr&>o_nY3Kg4Bz;rZH_EIbyiAxLZQ1X~%#_g8P~QN5+&fwf{bKKrutMWvt<_}&Pm z?tEE`vNPPje96Kj$Nrnpgl{J>nUw@a{a1}Gq3&fIbJ@7K_I(lS*-kj{TY;-zsR~ae zt(oarlYXQ!4iDon%Eq_RC-_}Hw*&XXM>c2ZR6J|anh^3l3%9)re)ZVA z9ilBZEp8+J8#+DC&0RAKYaKQoNNsEbcPB2TW2-16ul#24UV0|3Hm8KDbGAVq4v+u7 zT8dSJS2h57-l%6z$d{?L!q+I%#DDKgFzbV9h?aH+zFBm4TV>h;!gcb4udbBfUz_GS zo2YbTSvS0{&x!$Ft25=epagYG7e~7%((vOij;hDz&EV+g%WCIQLgqXCa3h#T*Si?)vPbL1ZfKLjhoVzD6!P*G_ zqE&C6(V*bGr-3CWOET%b{+-sM)mKETAf^XdKJm-l?fkXL1)4P2e zu+8JMuprZ8bXFC~l5dQGa^dYSxybLuN~QeVkjMb!zF>av%ZH~BfBMsNfj-35L1XG- zpZxKZ*UsoEEiZE3e&eFX)rj5SDxLWF18~PfwSBKRWWoKcF`M05;zJ$U+^|ae5$;mh zDea%+fdudP_Rbr`PXWKz)Tsxev*u8VmHAVgm%os+(+u(0n;}aRyZ{)wrv)g{JNk!TsM`=oBJqn(P_1$qO0RH0eC7DLKl6dOT@LPuV`}UqeU9^m z4HwNqsrZ52>ib}N9^Osm?T;jV%tg~cljZfq+o7UKDQqi1*=T+%nnew=m~)G7Q7l2> zkpT-@UlE>2i_{XlUW@$!e>H2Z3i15D@Sly;65_FnT%#yWdW$P(h}|NO_*&L@3|A1Y zqiyTr_QE=xlz<=cx;glw^R&DG>A^IsY%DOHs3ZQsZJhO@S*SU0zk2;XDzbI*;=n*1 zCi@#aU2~T3R1T)iDRohC^Qm^(dG|U@I+Sl(`Y8<+Ls+_#pb55BFo%SDm&B@KSj@c>dBu<`(rHei$FVax(4z;z}qXMN0_-#elt1$PNtMMoM4D2he^(Y{{b=OLH zkBPT5e3TpXVTPK8B_ejaMMr3OmtNzcT2H*gRiE8rB6E@EXIQ^JtrFKHPAJ+Gl;aU@ z{^|W}g?NPdX!kzSyH{DYP?1F`BRxQ3H~m_I;=?1WCGS?Fn@RV!Bh5I`fbNON*U|m;yM8GOUDedEmn6PvKI@+#)rf(uTYt-_mf{18cPlew zo-4J%>b+8MBi3f!x#%uaicQ+4MtKLCaBlf>`0a^CjAJzoXOkrTsGBTDGl_q3qrdJk zeW@lCoTAK5kn@XTU{punc{+CLjg|=CXhIdoKL(#gOR@W>$;C}bN1b(!J-Hc8xHP`I zN=c{`SJ(3S?dEDm{?J32^21HoS-*ODg|`$7emZIk6Ay0uA(mco7CO$$iAX!Jm15!M z0s0~1X56-J>LQCGiu9D=bpbiYBj?F| zJijmO{Zl&LU$N{gDKEj+2{9%;!vCleo2f{g1*Ja-PGRDaX@H*(S5ub)#KfTR}Gcmk&7a(Jn?kA@X#c2F0z^AX8LOe zI7(5KTCe@^G#yQFd*zXj&B$7meWQ)=)^s}A4!m1v!nJNJ4Hd*s&ZF}!(blaL(}EX- ztm4UB`nSfft`r8Q-|O#Q)l-Th70-+{6v^{7@ciFtrWTAB_SZeRhk{;{C6a~R#P_LL z=;CeOg5rn2#svjY@RfqLNu^mMu0%QbDA%{3+ID{JrSB9>{GMh^dxfZEGjh0sw-uG2 zexvK@QE{;^{7gT|0}fs@Kl{V96_aAkqZKl#*uL(dMGkud(qfn|(n*fZ{Lb`YzG*6o zL})j@;;%;&ULBK3l0$k`F|*2*uMCfGGxqc)UalTTTH=M?RvdK>Gxyw6hBuFB|1y)R z#c9s*o4WK?e5${p_6B>ogUI85*i^jgk+%K5nI;$+5qLr#fYA$wuxq*BZZ6@6;BF3lf9erU^QY=;i*bXy#G@~JO7T^~rVyK5 zgwJ)yf9?q30w&AzExJ|}BirDDfAWDU)c#$tc<*Ncp0mTu-jhY>_4#f3{Jsi2dwiVV zEIuDYz5Fh}=Pg9a#oVrIy9rOYVTWa{SRQhlOUb=iUx1XU;i7@F#aJ{l^ieuI2bnq& zV@8SRIPkTY{U`ri;b^H6I^YGOGj9A~9&2^IUMV7-*9g@`~N{^a?UdRXZp z)<3iV7lQF)PXRbm|uN8;garr$pgP)3(d*7xVBNYpHU{t@FUO%kAy~ zu~2;eQM14~I1fMO^l1Ot;{;ur_KyC=eyH@plfJhx4>L2T{}~Y%Kf{I zmF_cu-%>(})nW_Z-!qE?D-z0x{Xe_5q~}>{*+0_tHyJAR*Lzsf9W#E zk>zxBJg*s}M?A|><$CKSvI;>{fN}TmLMnOuwW;xAh1mQ2QT9+f$u;&o`L}dE3E$58 z|Jp`g$6FK!cQ%pSiS<@a=2nkb{B&w~OP_W*Znzp5{GOWvSHqd#JSXR#SpQ%n9odK>KLRCl0)Ps~?` zxTii~`JZOf)TU;9?Ne6kc7fznd|CXymj=VGVFTYjdj{cvTkX6fMTI4nsO1vU2Xc>c zc%@p^g8I@tKM(z+K*+|U&7OzjKt@9G?99hjlqu!fbhDBIed$81C;udYm-Z#)mn&`f zO<%WM)`J3#y7#oycN2es=l<7Hi|tspL$QPJECsgQ+j3l)KLeJ9*k4>6?m+6{Ux5P$ zDFDZ-W4l^1A@lm3z5Gu*QCUy)nyoqom>$~RaNd^<^Sp)531VF+PP?KpP3CJY+h2Wh zB7HO?zFv+eF80i|RGPhg{9e!so-5g8>9n02hE>5JcZdVdAPip{)8M;ZI zegd2d>t;2d>A;k&<}OyR8$m!W@lN@01UwXP(tdNX1Fx+SO*nd=4(eg$qK#($FxBby zY?jfE1^&KWclR)$Tt+thi`_Z!Tc}!!*x!yn?j|0xf8PR`>my@ZXMK>x{qJ&M0@>rW zo|V=}BK`-VGe*Lv0o zqAULrqDOLYF=?Oh{D&6Ar0dQN2fHE2#0q<6iqUs$^{;L{!r?OdwXfZ#2X0-s{DdM{ zhPNeic~;RFxaypaV!d%MOnSd(PVFW0orT;?k&O)8FT%EUf#e^|pKLWy_N+mP_1YWV zt(s9-{k-Ern?9K5_9}a{tpV)^PUUYcp`%{K)6&PTePGiyJ9MS95sylI%wYQ3giS3^ z89Il_$3M%TT)s|6akj+fqdS^#WnJLlN@XvwAGwyKGfnok4;qT7r%5jPAcu_fR1esi zDa%MIwO}U|L>oReAg8K&>zV#;kh&4K5^B(j%?EDZ)sd^mEq{wN%H6xbN+)!fmGBj| zUGJ>B=s|eP$9tyC7dilb@YQ@Jx!`9_lF$D1SK}MMgwU_r?eIbaCYQ9@(dud0lLnb8 z?CQAr(#EwFF36S`YCE>$Q??2tn{*m}6CA(WpUi;se!|_{R%EU+wP7}SPX%s1|7<=5 z$sBgGeR=b)b`(p?F&=L(LotgWe|a+Z+$O*CM-Z(IkCeFVarY)1i=R%kv!)FYaxK-Y zM6?ZCM#F+r3@Eru^Fg4Jcr82>lur14w-t@Hg#)OU;&M9kGbfS<6nBskI9S$#OWa`! z9UjFP;4WEf(_aBe9Zxt*rx?T=oZ59hw-8O#*CshI%3y?Fp*)wL^a+lSuh{<}z0?mX zdln_Az&q)-L+%9GcXtM!Yc$HkY>_h?^Oj0sszKFoGx1jH>VH1I(wT!(0j_@5Dy2|U zTQB~$tqBKOKV|;V$;LhRUSAd{FM+RmN^L*4lHS8JKi=ZLOgw#-+`}_UVB_V6*}Mmh zSou)psg7X=a(`jv?buWbGVQY4RfiGT*n^Z#52s;_SeV7`1mZ=zKD6n@Py-fZ$BrJ= zOGV2AyVNe9qk!+z9IxCzsvB;1!$zNS%?3Xz_Ym-+VAWBKL7Q>V=0@zG2e zSBz#EY@!~ORq?FDy}v4&#zkUqP5OWJpDfEEGIWr~WVROPd-}|GcSfLu>9bQqQ5DdA zZ2W4vQ!VMmg!_KfBmRMRVspa%H24{u+au$zvSeb)r>Qj&Niew;bmF>I^Or<@P6|4*mtKyX(YPgXV|7dm!CDlyfNMYYfz!A|o8mGe*oXJAj zLHbFpw zo&9i^QHJR^?IiVRbWl34__2O{F|4^*cBYW{E=uE)H_+ZS!7*oR>FmrrlCSf8;3h@5 z&YoW${QK1i#}__p9uUqV+rSU;A9yIZ&*@*yW9CK};}<+}-#Znwe;n8tYgdAqotqu> zcKk2TP~dnlDh70%PU{#SEyTl;;`ga~b?}sKlWR2j1h{^V8ywEbMV_&eDyife*!_m% z@PL6m{G6Tb|C2%Xe_LdQ)Yn&oCr44nKCb&HHIsi~)v;7my!Jgn!}BDENo3Tg9NqgdK1-$;yeI~m#9n;6By(#Bx z@$c!kti~qg5Zx`|c57cQp6#^ckr#D`GdFTP@_ozTug$fd`>{nhhVW?HWEiYEvaeyb zl?pHTEwlMN$b6+7Hl7P2T+;`S*O`($#Q8P{)*`WTeEVs{{AWxC2ZU3`VyTejW%UUSE^v%cwrz{`*F?x#Y+eur5LdIK_z zaGc3L)(&9-#|^w2lVIvXtbj3JJ(m0!Z{~m14r`Y;&TNm22UAmj>#G*ESg{Gt-Xrt) zgX@Jwd|YF|n~!JgJK<6o3>&@-818^$t$iq+wG$qxs|6Re zhQVk`)u2co4WFD|Ez1)@_7Z=YPZmXlfKSQRDrVgZ40`k`$>g#d0W+_)gol z$8Rpj0L7Q9DI2=LbR!VEl-Zb|}FMzBX7NqqdY{=(R6`|1`Ql z!?MQgf}R)rh?>o|(Is=LsinRM;V$UmKQB@I!V8=!a?MNMN-!+4Xt`^$6CMbcP0sK3 zfts4zMt+_pSo3M{(yowBQ0d+v#V+m#-(!C&Z`CTnMD^fxT-!Qf9ZS~M)OvrYTzX$p zu3my8+Vg9t0*OZ|a-i=s@h3Xi%T0W>EFm27SenU;c2M1|q^u?z41-U3&exK8k(ToH zGseusGut*tNwy3HZhyhvLxj^){l>u2c6A%99NkkktQZb5A2m6TUMa<^-9URra#4<} zLL)|(BjCiaiBM-v7@}%{fv$Ruc~st1nE`RmyRdU9Z6oay~lvrH-}UD;^Hf=JW*{$`Ou>7IaGF!{KXX zIXyq(VCe3Lrw5fQu=ZBb@+QZ0xXjPFf7ix1Fk4-=d@-*A)AWt9xIaa~4Q|h3mZ=!v zY4~|ao12DLRoS=eAM=0-<@DJ{_R+8}!x==(X=oVnBt*N?8G|HuzLKbkgkYV)mwz&7 zsL=U0Khq{0=bd^C4t9sb4EIhh<>xds-+D?(sWu6n?=Cfbp@afYY&`41MH=RCt!iod zkbz|e4$QjWf?&4lYf=5$O1yG*gGr@kF1F>R7}uVEMELg;8`w9J-0Ci7+3bY^#G#zc z%yqtS#CP&hA6F$l#b(axOf16-HE}q2a6WbFg__|tsuKd;w;2RrkkwF@^C%h6T6f{h@?E>8+m%ws(aX~bmhH;zf zBX8$Y@!YTK!iE`jVD_S)kGn(iD?iF2UyV^QjG5Yf&F%4>Co`qud`V!->Imc zSpBT{lRh4)zw;|tl!gK2tbM|hR8+9qG!*H04i^Wvta-Llf%W$Pj{YEfI^K=j0$J4z zFo*B%i12s?x_y75>=jEzBfFt!zKNq~P}1OD)KP&+eFD5pH~#l|%T3YOp8-7@URGL(An#7)@it$+E#%@YeUvp zk~#N-&JSgo+wa1aq+Uhs=?XNxuS6{~@l}`OALbC&@m@+E2qzAyU)*WUr7Yre-t1763Y0 zv9V*s*JMIA~Xn?RI|4eiM&jUF+ptdQYp-(x0`7o9shxzpYzwZg~X3k^Tp-`_|wZnJ;YV zY=qzF;K=tY!XL8UNgUl8RErw<>;L-wqMZ{BTIU1}&bu z_1Aqxe0r`XI!3D&@336{sqDr9YW5E5{d4}Z?iM@=~UPBzs%r4jGORbD%0 z<&9=D2Lo1&n=nC=>lxqgM%-U%?8(XSz+)lWVxL%>&|)PF)s8mdo!RB&sW11CljS6v ztsmi6ogJ-TbZ^3;E?vGFO)Ko=U!oC=E(#nfaM@Pagkt_oUXKFwp(SIFssd{R=6KHW z$@ezlg&UF#F0K3EsK7O+%TkA;caweWrke2b;k{D}9RXnJsCnFrT8+}_?N?mLyj`|y z=;67La2Sw$_``a0C2p5U_poK9<16kn%O<2}mcG|!UF$)zk9lHxB8~W{cBZ_Lz5gc_ zsLWxh)a?|k)1WP73X?s-&ie~&@>w8gy1~*avjDe6t@&?Co{nE6Jk5 zDw4Bdo-RziS_ZL;cI6NLy8^C>LY8gJ%~*33W%TY=K-+B%b2sKN&||cix|lU1uXq2c zxoeehTTDxwCpiVyK9LjZ>uSc0irEV4GS#qF%l?zof5dzJRd7H+hk0G?GV+^!Th}5;BjI9@q|>gS0y>c+~j;Q;S)!f*YXYg6ztOUDgzwlstikNn1fi2W zsvk?}Fm*=yAl0E0i_)&`@+bF>BFdS2aH<(rd7QBP{H_y6{~1QPoub3n0E27)kscM( z{$qca)w*!YRsOki(n&F|aqp*u6176LDg+(@Z z5pKua2l>~e@4=CwElH{{&V0wBJ-&6J=MewS<98U4Y`}VA!vXTA29L+vb=`PHoi>op z*#fD{u0g5an}Kh)@NQ3uZnSC2(pO4qf#wUV&%_2b!$*3iL$+Es=HwStE$?WBv|oGP ztzjqUgGbG8Mhv>~bAOxtgN5I(?iZ3 zC;ej@T4ApRL*&&vehaed!N&Q@PFJl~Xm2s8|NXB9*i9MFKMnNYwG$UZ*G05I zBkIkKr&K}td#5D&nO+<^-J}zh#ekgW>sU`H&_KODO2K2a7fmfM{1){gKKiS!J4Q(! z`{Z_+f}(qU_<53X=jDDnEchG^quEp7bLHF+g|i=p|BJG4s%nHgceDIfT`7j%r&|B* zzu1q+S>n7}uK^O~6=_k@`SAHGKPxr8ACtVCP0hBD-o>LM`4*S6;kbbE#`hEb7=Mb! z@p-Be;!h+kh_hwD`c{jxk2ekArBdk+DI_;(ZNlkpurC!Vh1ag5DGuQK>@_Oy*HD4- zgW32`QvytH{>mw;F@VDlEPu)gm%y|`|CW=-W8o@`!|08J18B&;ig(|t0vMm&DmC^c z3Nk+&F%ct=zm`eu`>$s?U|Ju?nvfj{Y%6So^Dp}G{-;dl^ujD~vz+}rX&DI?f~oES ze*GwOJM_=$&`jvrf2>(2UaL?Z>}=?s*irWx`#1`#Js4XyEe?u1=Tl!~M+J z?gwqMKzX@@X|OpKCSmAY@5Ww?EbMqOemDoH^DI(|PZGe0lXYC-c{loa>ulEgo(K9v zJkL{Gk|CCTc4y|pE;Pzh?SDh=YZe{OGA?`4fWh)M{LT2Cv5 z(HpN?aZfc4mF#Do>t?{&fB@z^F$!$v&p9wm_VOol9?CwbXn|p;sAJ+}zaUd#{WqliX8JC$kex`s<=mc+9P%-Mh7RcG| zM&{kecbtF~3goS1c0KCILr=qV+Okz`AoBM07cuhpIWZ}!EaF)x-D@@E*W3oX+61MW zW+<>XbB%O=Nh<1`9R2f{%+0Tkv5T9My@N}1Q|`I3SQM?BnI6(2_fDIDYDOdl>`TU% z8Iz&7wemm7hQ?Od(0H>U;keHt&RDP)u4l11e$H7wy z&+aPP@^nT(omhw>Q(HaA9Z@~ku%;9goWD4n7mtQuvj;*6*)@>q{NDtNKq;(aGiKF) zN4!4^qvA|vl@NZiLW%ikDR_KqJ)6%I2UZGhb*bOVz~y4n7Fkd7{r!2{EhRDzhTnHu z{xl{0t)wrfiBudodLP*r<;B4h?gPahr}JR-uw9_(UJBe_r{t5S8wV%fn`v_;q=7#R z(|Va;@_M){$*B<;3!QwLRRSj>fSIS9-{~6#ZeHjU^9+swm&bMYMxR@OZg-;r=LsrE zc5ObIcqSTFDtWvvtqVe}`=8qL!l*E_e9iCtd?f7p`Xb?nP6}?u3>n!bvM+P1={_3~ z0q>qpR7Bh6qDJEQ=k%*-$m{OCn}g9@BZEH9tzqwFCCe>RE>NmrQUh6P+=nJ@oH!3P?#RSr(z#dPq<1< zi$BaMFp!%*{_R>Q`2F5I@NR(cQ}hjQ3WtTT9>{ zsK1t{hC}_j<&&>n88~;nAb+-@5V96#Plt_00`Gr`X-XSfu|HG)UNv7nI33A}QK^Z6 zo*^&ea>q9O2?Z6`3HRrx<(_spngBEz&!ak|$CH1mMxk$>a8j-w5!10wflW0H;ReAS zXdV`?;uM?;(^49r&T^*1jAZJ3s(L5!2D-J6evN~P8v_T{#AL!{^V?fvDV^Bl(>$qn zJscuFK2qg4kptCoPN{s;ow&Ezc}&pmK$KIojj(sXaU6KUW33>SheK;~~~ z@KV4nW8$vm?YOXYtA?_|G^oJaP)W^yY520XJ5A-v}4T~Yry0)x?$_EOO0Unw}( zx?@;O2O9bw9(8{agTY)Hy+=f-P$ztrBXg)7o7Z$);Yv)!{9=1{Bf&C|9MEBt{MLqb z?uH-vZ)PFu!JN&-pUMa)qWAKP@2$Amly8&FxqO@*j!rrhP!4TJzjAFFYeCP@!h*v( zCAig8^O(txa?m^xL2&O3EZg_JtcKjX-kI+Bbx*Pa9;peYWydw+p=Yr!KYWQ#*<#sH>@3#mG@;&GVOqt1RVdHtc$lrb9QZN^ z3#IooqO0ISv&eJ}I@_?fs9r0F>1_#H0(Ul`jwUiIu>q<*x_B z@=Ed8zc=31vkjPc#ysQlmSXr%wNmBKt`eM7^}pw_z5yp*1RXysRRpZ&VL3xkgb&ub zeO_5#j}d823+6V3ka6xH9?LDjf1<9AVD%;`l-{;B4 z9~qR^$YXJr2rc4Fi4L+6;}v-O$sYl zYI3peo^i|D=n4#Z;{WPqb`e-k$$2WD%EQ}Cm-?=g`Th}89o;AcwDY=LWIe6rNsT1)t ze=I64jG}^~g-yE4(;{SzmT)@QMR>R@n-xxy*R#gf8?2JAi}C2rTc=71SMcMdx4d?j z$oU{4bBpUbk~7S>_vCLtDJJ@{)p~s)Tr6&}lh?CKu~O!IZyL#2^{jn=GcL3Wf;$9F zi^#tpVoTo<6kUw`&QZ5M93_1(C+cVIrxY|Cs@N!at_VNNb)Nrt5TnZ8rj}LK!y7N_zg`OzwDq_W*w~U!=5OC~m~WALi`jOG2j57pXO-%#xlE1+4v#eGPra% z9gJr-#1(duIpFsEiOuBaIz!%_>Dx3NW>)>ka$QSuqVaO_M>l5TfBfa0b7{oKir)>r zw2E=)+$PWAx^!H4>@8DZ#DG1H*FGE*AiQ(y7=!K`X}Gvxu;w;v3s_AQq-e(FVS3C* zE*tSwH1QVYcwf>2^OWOt7OmNMGcrBUZz2g*t=ruyFSf!>&{P?ZpPp4#=16)oal3#!iLPDc7{4aAw!$-+OC2K>6!xi@rn| znB$2o7b%WJA8SryKho!X^N+>KYKt#iyz$oCHX#y4KKOhsCi7k~OFtoA$q3MQ9A=Ug zj>5Z)qQ_tQx?slhqn`j*65Oy{C zMT>y}1sswno*TcU;uhD$@`b@(*u{GEAs?d*!g^2aTsfG55>L{r$F%x@c#ktfL}=i= zFNywSFbjWt)*88x*9V1t5_=9=RDoW8hsTzZT=bC?zCZW75B9gRD+rPO93xWt{%v{z zYK~{*s0j4Kl9*53hDUW!JU)GE`ClbchDP=z_tuQ;DSS*kx2o3bvPJvh#;2UF zHqR!AQJxG!*5Vlf z-*~1~x z!v8!RlB3E{ARNh*UKD6(0Y$#o{=X@8SnR9ntvT5OA<9xC?5wS@?SKK(ed2Y^?5W`F z_GN$>$6?o(CtE>zdbb8U$@2=GQE;&qXa?6kV%MZ1Tj5FIrNmpD)o6D2%3t~XCfGJ? zCOY?u{QRB7KZ!1t_;}slx5pG4L64Os^p;Q?MDeL`>-Scm$^9syBfj+@f9lVT#~0e* zTg|JUtWD*Z%;;UVORj;4rrfvB9<@QparJvc#9wfGX|NKTD?vB%LEhW^Heg#<=hH~? z+A+5kgt`BegVTZ0Tkf@O;Nr2x=*Y!lw2yMrSkRz?g`%MUP-PoXCM%D=N-MzC2R=mI zHY|aR5I4hYa*r^zbLDX}&%?;~9uDtFPn7xFkt4o#q{qE79wn`gp} zey0guWlCjv_gA35t98pcO=rC3{C@WdY=oifw>KFdslt-?c&K3gP1XH@cECK8yHM z!|tAcyes~?%9Q_HpdN(Y%SwkU6YssjlRbQP4>07yj=m+EIuI8u^!a$3j@+FwP8UR6 z@VU>0Zd<~exchSJdah{V_p{T#lh1h{qoqZ8^nz-^(A_7(IG2Hnnml4Lmd>~!eJb|% zrCLyH`&P!4N$%lsIYLYZ&N$z|xOsx~u~VXeV^=^c-b=prK$_*|k?HG1MFu4|PWStK#AUV5K$x4Pc;{l3yc6;rasD*%#)O$;j?fAto zjallM8(POZPQ5%(2lHF?yiRQBKz%XpZ-whUQNvVR;`_roIFQ~S@Y<;ZFL$iXw8-#6 zvo|$f>tB%f!yOjPml+*+PwC!4 zYt|*c#N%-EWI{we44cK*yxG@@@<$uY&yM+G+MbriV>j!;zuqY18-FKetUQRav+zUK zFRPfYsMZ7Phla>t;`MT#nY{Uy@TmuWm-||?)`KzOTHb%xfiGY4heb#QpybwhmDct; z2rrm5yH1{m-kMF+2fdGRPxI6Jhl1)rcHq9xXkG`(%xb?Da|%W`=EtAhNd94ECga;6l)^uPNB- zyU>*Srv`*Lp0pJicHn95Q(B{E(ot~TF&`Pf8nFFiqFi^T17{NUjIT6g;!nrvPg_1# zgOhZEF3*V$e16a0^SoRR%I|G)UcZ(20GS-k3y3d%S7h)1D(?U?dtWq9rbxV zgjrTfFlhHyvvq$6hg*NnEibkm{|2^>55Fu$4km#c+QFrS3v*t!NWC3xsH5+Gg_C)| za+Q~jC-I$zTs$63ymOCE(3XBlP_Z=lqBBK23nY2(`0=Q;A@5C@GrsXul)Z8N`!?-F z_!T0$_3M*XJQlyPjGyG?zZ+lj43`dswkuM1K4J@gxBnCq#8ZZm8*f{F_-T!I7Vqm$ zjWBTY<#E}KBqt;5m!5j6Famw#J0E-=Y(`tPg4aCXsHj{}b719EI{Hfm9{5Tlc|-pA z2(vsYp6BOvd|r`{x`xWe&7>c^{=J!n64|41N%(u;a-iUHzh?4FE#d)7IC9OC^iHKM z&VCIrtU&KEpTjQ~>T%rl9&^D43i7@`Qfo6;g-5d=6-^t};vu7ruB;^IE-y(!=LhTX zQ|-rh@suijc;;R2tJz|tGnqG_Fk;N#qT|Q;Xed$;GpV$-2!HSKP*~I7h%w13yPEuo zzy9$B3)4LXc+2UZ%lzvm3=EiDx452y8+P67d$2bT*K_A-t*@YC@QtlCDR+y|{lbb| zns^Rw^Qy>vO!gZk5l{W}dGk=9YcqeFWEOI6SGC+T+Kh>IVs6RoS?F|5$9U*)29Bv6 zjp|iopps08{B4solzF~sBKme3I_TFgG2bEnU!Jh!aM?ucnQfg~?U6$Iliye8L@{ul zPb%wIa5O$$O)D$0NknEbD^_>%zUeZaeJ*S;40G-~q#ekP!(D$(H@+!lAWJLL?Ido( zg{a_2XMX=x-RF&Vr!?0zREFTSI{EN3iwv|1aSNKD`C^IPyZ-A1K^PeH`P5#47Tj`g z&%T|v0+8!&&E+4(fhhKAWZTN27UZcowf2l)5OyVhaH)@dgzjiutY$(u5ESvIqx4X0 zoXofFRP{%*Z#Pu`5l+v|hY`N3sv_{)KZhGLcD}gsg}XxBg?PVCBZtaRG+qt0$=fmK zi4&`JGV*N*r&#_+%+{NuR6gxSFv9p48_d?Y#6r&@fIdi+T^H}1*PB6J-;8a%4! ze9J(6Sz8w|j#Ts6^dvO@zC5G95t;e&ld+&^4lu$Hm+@IXSzNrr7^ZtvWr(~h4;uf-xN`M)o zRo|}duR@uC_^>Z&S@`X*#OH^k2l-+|=vKymWqAJkgWl0&StvJV`1No{8W>Ip`^0dS zV1(JmelNdFyacg3j$h7zm5Qms%?nwW#U8CaH8uvY>jLRbFS*3uV2Ov%3pZQ1N2*#v;}%(Bf`)e$wg*G`}tz)ZUm20e@K92^*xs$>!OHr7Y^lRX;cLwVd{LPeq?5}JOW-(OwVxw@X~T<1LJem?hozu&KS z<>gq1-{~OBu>G}*eHiX2@yhoS&43_{i*sWSsBrpK2Sb*T4_@G~@M#N5gM@8WiIzk8 zKKvhycdr$DOAP#(S6&|YRRTrw!lCj4ey}=O5pCZR3HlG%o453pz+e7-T|#93_*6&X zTGokhc(>m*AV{bL_GxbNUN{^DnKJuz4Rb>vI3J+R+odIHg&-D-1!7}Swb=LQB8(T>Po%o9AUsS{rGDBix4==?st2l zISDeJ9G1MR8bP?G#@76r)-ci`M!fKe@S%=({Ev7vTvK`RN4nM(1*aDgJvICH!Li6i!mEI3u(WWH4AYw z{a)9M%>%+kRFNN9$N?9nj7@RAC3yVuw>PhXkAc3vp!Loz1;7^-<(kD)hCL>KV?f;= zFWX$W%Xy&~*8b7@uu-)f#Z$PBFU0wxLI#ui;JH!|xverfC|rT>D*_VYu7{)4{+i{b zUuAIApe1BoUIqTRPdhJf6^lw|%8XCOll__dzNA~j6)3>uY|45m8BbqG5@IF%@J;7+ zdXHlT>g6A=J#;@EghB~YGO4_T)s^F7y=;m9991K!?T z+@;IUeLt-M+K=B$=K58F7e~)y)sH;%I9Y3U(V`I&WZyK(OWRIWJ#n1ZV zUn4}8bE;2XDa2EmlbyFd<)i2w6YmAXCZP8y8!gSDVQF%~IUqO8TN^y&%5*d04(_vtut~6V#{1>M@)nb)mId z@5B2Xtee}nw#Bv)l;55!{Jl2=b>_tz#?Ml5tBUl|ro0BArTx`-$diU8N4kTKJjg<$ zSF8hRrSO~?i+r{*JzW^SvTjRm2xdO z+40t_n~B6t3Y1m%(M>p@j+m=bV)PTM6MW5si-*v!fytKn6ywYw#*;XmzC z=^uzEru=qj{U`;`@UZudn==tJI0Ep zx^49-BKffXp2B-Q$v(AQtf}<@9!-ApeV2RzP|~Gi&VKNR#mxmXwi5T>9@rZX{@4HW%GlXpi^iGWYujQbEObk6X(^ z47_nO^Zd%`im?<4pWfkYP}Uy2AIy~iEV}w6kgG+{|CH z!x~^K)el%qqk{U8Yh%&94Jb00JDE?fg;SO#j_Jizc*j|`vZ<#DxwrQ^kCyG*{QHG-=7{Zo7gsNfO6 zAFQ2C#{x>!Av>8S;MjkAsp?fWc(IKe8S^*ed7+CZ>B~(}I$$1>_<-nLYzxd|ESpho z#5;@U|GeQ}wu$z<*c|8uhT$_drNM+aTX|ijaqBJxfz)g&+SsTq7knC!s%^x zSuprPFjkG|gw1a)eN{52LFr`T&Frcy7~Q4F7RXF^Jbeoy5n40|+j6XDw`?|0vJAfo zYY=_aw?m0~Vl?>UGOK!cp6ts@m^2>FHKExi1Bd#T2!>w*H@D4E!8TueAItVeRFOW> zlp~2S&1*bnDUk~dzbAg%?jSkgVnYM#ZZtuPig##Hd>*i>aqdlDSBsq!3{I~}-DAIB z$v!DwK)7&sY_ASg;dJ2EwGXr#z^zszJhPW@h&dxymkTPeG`Djf)9!jW@FT%3*R~jb z*KTRDdQ9r>hkHBChiZXS(2#45TL}bF?W`ZU5q`%XNsC8*HK21PsaagC6f`)aPF z#JD@H0as+JA$h>IiKD0#(vpmFxQOqx-6w+c>5od#{3H<3xuy(UE}Q(`k(-T)R`W%c zZ56<)+VJejmNK|>xOUEV8wJnGa)i1xltb~*xc2+crI7s8WNDl;10@#nm}5SaLFmba z{>xUSu>ZGDDQhsv%dySh7b{-|iifXfKBW>awQ^s}{#~gkR%K0@>nVlsaSkXp=AdC#kiso6Um((T;g;kL4VEJ%X&jbHP zj|`Y)camAjPMTZlKtkhaXp1SQO&gmW)rs-U2%^^rW>~>ya?Z6 zarw%owd8s6v-!}U5s?)9YPq$UU5$$VMKb9hXKF!}8DkmOX5eDM^=s=$zWLujG9Dwg zbzmuYnt%Hv;)i-#ghU4=~olsj`@| z0=XPy@%rGY9hZUsVuJ;;IO`#|EzvXEDi`hY486DUrQyNvW+x9caBA1X8*}DSJgVOE_i4Cv?CAeB~~w+EBoN( z8Cv1pmRevB_Wux*n1`u~-diW8brMv(CYi9gb9xFrYPht$K{)a>|aqY1GWoiGi17`_$ld2o2^F;*d1at-g=qjOrAKyy!CMoa+s}^yGlMs%gMv`#&-xu ze)Yk-@SI$Hlxr2GDBlPbE39YNy)S~v^NVjj3FqU3v*}+yX(4b7Dplu=ll|s{TzlT7 z0&EGUzcWjxL0(0M$-CEikm_h(A1zdjZXXAyMZM`Ta=4pmv^EDi7&mkHc9r0lP|t{0 zTFp>2F8JNrD;uoZC9r|N4ErK3jX3kPfLF)9n7s!m@I`)y`EfEYIAcRGInmq#f#w>r zS8CHib@!R~s|&<$bm+YO88Y|fJXqpsb1DUly}dU(-K#>|c{yQ+l~%BSGraY0PaMSE z={EcJwi<^IoQhHkY6CUZ=x^rSk#J9f8dXaCFuN#*KU#R&Ne;(^$R#qD;gRxZx#3uc zi+#64EW_KOOj{~OuFx4`+`_tR3)9@!eR#k5fQR#Qnj34XF4kgVEWc z19YU7q_#eF!0&H0V)v1pEvIMlxdOu-a8``-#^+%_{IOlDMyaO}`52zxOq1?})S9GC z7SrLl?fivZr#3fXV#9VxNzYDLHx#{l#3vTL&9WGB_?vKp!)2M_rcOxa@3^ujBnj=J z=bIhI8&TXl_Gb4~C(xp-{bMcD@PM9hzyR@O^T}ydsxWuKige40tw08uqq>XV$!b9T zqXr3UH*`T&*|kTCYMJOHJ-W1&LU?-RKL2eZ{I0-T)~6yyGf~w^`RT#ib$H52&}zrq zPWW3fp~vzz6O-PbQ&gU*!JSes#!pf@L78>nnl#yiJ(PT@CahGAqZ0!Ug!DUsb4>tq z)p9zv7OdlqH?PE|_r*+Ie>>oWljMgpa%mU}=9&Ih<)}aKEy&%EaLj}rg^#UE!aBv{ zg?DvJ33oAPD~0G2wQp^!V4jM>T?KoZmvxHp+qW~Kl>6 z2zkG%d)WpB)pz1z3;odb{k({+V-}8C|ET*V)&{IPVYgH|95Hvtisyq(>G;TMo6rHG z$2{x!j(gBmAHNNZ1 z8uI|EGU#7y<-IU(`K)sVYctsJMfKWm_W+xllRdk*bn$o6hu7ctkerS5&0NWwyrAf= zqM7LKhw%O?yH>3N4H`Q4G;E=I!ugpiqTZ5jGfg#wA=TjUb)8OWRuUGc> zkepw2XY;dfZ(-}L9o(YrnJ~^mmr$Fi0&cP6Tm5QW@WG4RiSpTOP%x}4T_SZSJ|^bC zeP@4kPGw><-jWA~1`CTi+T{6E;iv545RRu^*)Js>DFms|x19<#r9i%J>pj^qxH%wY z{VSs1iixBRY(HHBP8>g+Hl-zE@s`o?!s1d8wf7Kzwp<8bt*h^I?o30OZv{sW?JtK{ zy&{e3WUes7HZ#5EPzEO4SS$E7t^)o{`j_{K44EF5rm7pccbJgo} z4$%C~Uu<;9!fg}ApNhn)!6>TW<+)us@OkaZo`ke)JS3}=e)U8R3?@ojs`pZ%HQ7oe zgw#_WZD6sKsD=L2c-P@slHbAC`Bs@T2Un)ney*6Rh5w`rq|q%0&T?KF{dqkHUpp1N z)_G6|gX<0jOk3xIyq|pfFXtT8S?UmwCVJ_WyMy0K8uNg9qKuMZL7rQ=!i{{hb)a>~ z!aCTn0O~57-1Z(Ld<~xB(dKt`Ab4X`fLWmkzPb$Ljn0!Cy+=(6{mFH3{7u^ry?rHM z>UP!BJ&TG(472w44wKipP2cohD1|)`x1akG6?1mft>w?G1+IUU@hd)MK=&9^xVx5$ z=7;pA*#6Xj=i`fyUUw31tB2e+!)o$;weJ@1l&JwJ&3TzxqT?xQl z21#*=dnJ3*aisoL{ZHdOa0*>VsoEPeNwR}D*1s!cTG`0}E+O=Sgicg10UWszc1%Zwv)cmBb znNpDs*RpRqF0;`=RFZpb@ZSVv-q~z0vycMzmx>ZQI%%NLJT7zea6Cpc#%BJlNB~;& zsb0DT4SpzOu(`X&;;Gdw(YvZ+;Nf!9(Z0_JSHE&aT>2P|1Bx6$qdN$X!CN&^wWSHx zcusW-TSwu&bs`6ORzl$w<>-SQmW>d2ry!|Lob;);4{mXL`fxHvnt}Qq z5ePirB&Wam!tmCWLv~Um=fnQq4#^AQSa@1v{N^!lxO}O3R~_LYe|&N7epYuFx<9%Y zRaE5#$G#d@-!-lRT~9ON#F#KtzNWU}*%>cLiPYQXuTAom*FMtKtPjJFuVu_fTfM-_ zCvrMmstk^>&^As(II8H*8g5^C1ixQviE6Gd0sDE~Zwvb(@KSD!*j$+p%*YJBwyPs` zDMk8za+ecR-10bn2ch&4jCUmnr9Z;vl zBG(W5SueRjxKP2P_V{cHIQp-Nx$lsGlD!vlsX9S0VV_ra%q0c_Ri8F$yhui;pAXnP zN`pXhvujfK-Vm@57qs3xM$Yd-j>{RmLC~W8s-EkJ2QYL|jVnYlF>B9Eq~hhr@ZW2l zh1wei@FqWlRktb&kL9q`jqCZrzk8$GWI_hmJg@3wvYz zTu|?>hJ3W#)vcf=>I64bpYG~355bO)9oKh>7Zbi#LHo5{6Ue;Y=h`wFiJxlC?T(Q> zcJAxS?i&vc(3X46zsSvTxPxWt-I2@XNIM!_<-XM!Wf-ZCxO){nJ=tk18HwNY$J+Xyr=j2UHWfox!ik_;o!Ft0fLkJO z{&gQt$D#JnTbuprF^Zlk(D;?i>$xHo+oLjYztDV474aGEGHA)O9HC%Ao4}(ROBq;y zt%tGb2BM>KWubDd=@yZ5zO*kwe4;HE)A8o~w4MRk8`);2%l_Z5 zIBpcVv_&KhAJyM7WI5h~{`Vi_4mS_YT&Tmk=Nk+%?vWg_l%KS}j;$E! zHCWICb$EatU9?Bc27heu`5bw(73s5AWpBQ$#beJE+3i26!{u2ius_m@HY+z*eYt8; z{*3cOW)?@#k!t==W1$82Ud-CMb*>t(F&zBvR^bOet_P(mb6W7gm6hX%Jge~XpUmE| ztZ-na3y+ALX~CxJDaUx|6?mhrT<1V~Ed2WLMxOV1GnQBG(budm!@%;x70K<%FsOBA zk@I{rZdYYy%5*A0%5Nij8cPQ3END-*ucqTaadn-~yagCj`uFSx`7DsVWVT$uO-J=F zTmc%(*{D3RCs5fo2Y5B^NbbEtL;Jji$(ELMl&u_nHdl}js|Q;)Q4f&&L2i$0n@~K8 z>+o|4jTM1F_dknR!m+Pk+F)=~G6biNe5sUYDuoVr>j3Z8dUSfVzlyoq0hOw)g;he! zfW<`rt=DIwuerUb5E5+yL#j7A!pZZ;K5APpg?ujF7vH#U)AWXG8P}qG94et~a8z=6 zx)Qg?Y+A#)Eeu|+{@T;uQw8cyMSSc-<_a&^Gc@}b#7Iv*M9Y@V@3#zNPJ z>_#@hdf2$W=#nCt<4y%Wo;TKt2K&Edx^mO?uy)=4&1@N&c$Ah_DU%%zBD6Zqm(dMy znR~}&F7z@J_>;03-`J81<3qs@twQhR05gn#2#RZcZSw@OS3Q^q9cgr-;upP z22E)*dG-aep#K3I7oIeNu+zUuLB9xODb?-ny5fYlp3dbc{cI#TG;}p+@;~iPbSR%c->0r|3C88yYsEi@MBxRcc;R1 zo33Kw+lthai4Y3Kl9ZbKL#}BU>BPUU_eLXdFG^-^3JNFwT3Ltd8#7T|XkzHWVgr1r z+EyBG9)%mab`%bg{jE`3o!}$q26%LMcIUSBakxgNTvDMs8&5L%C(ljPgUr;m3%rno z3pyKaZ62qh_a}~H2cRB)240F5w;|_Avx^JT_T-#Zy*Jp7=;`3rrM)X-87S6YpH%cH z2Q4P}M44M_L45D=7oFF#P_y{-oy}Wv(B^J}lEh*SoMxI_ z4cY7KlF^ToarLlECEU3=dNHrF1UDZmacJ+1Ll5~$tx@8ex%PxVe3_{fM{FtcrYTWq za6E}^9kmiTuZ?cA=O?<=5sAHf6T*=Hc=r9w9aWIkwQ{kaw-ompK9rb`3&3vQ;i-Qw z2v;_5a?2#))N7C3+_=u!3o{shQLLYl^PVuhWU6dZGk8KCCynZ4X|gpU*;uWDSEjn z1iKu(1KLsrSvIsrSSX`ZOnH|g*B#}*dN~d-BXIoc`Va)2Q!^X64-lXFePzQFUpyee zvO@SpDUEPw<4$+-5sqf0QjlA|FED)axG$bShrKpdKGiA}_`Q4W&Rvy3P+(@wn&a3E zLSkIa8C^Hp&Na4!3-D>)-{!#Y=e|LBDCMLi0>IvM*JixK>d8` zpeC6!*vj*eHue?K~8Tnsmy-4pYATcPvW!AK)F8mf9-cCj!m z0iiQS0(tfsy)&iUZIL3gWj4 z-VKv^f##@UPaxr(xUa}cG}0j>$M)p9@=9#gsVH4jTn0*EA12=`(P3!x{*B=%;@4&_ z5&B$L2GO!+tR2s3B)7KumUn0=cHQpUP*+k0QuJ->7Rdaaw_Hp7;5EYIbTrleKzuc? z=H^-d5nbNj^?~lKi}`5cnb$F5R0iwTwYD{6B2+XoaY-}eV$Ym5)pAD}P`l}@Z=?{O zCCdM>@XW^3yzBa{x=P`tf&5UzXcHVi^1k6eX9}5zRL@tKlKjSHii}x)6Z91*{Mhp& z1NZT~I&pQm1db+a?(Yn4f^6!Wp53FQznIaBzwTQCI!4>wDBevFtg^tod^#PKDl*qL zvX(&h`yC3ikDGwu-GHVBnNtKe_Lb$Z6~l|k*lU7`WRCxt?=;tmbj;Xh@bAM?A?)oo zF)J!=0`WZ`SehErk)wlQ&C|~XP_S1jMU$NWCC|Z_h+_tB&MN4u@5_hE$IrP9`iOS1TnLz&&1uc zkn_>&)d8OzxYoE!H?XM*%vqbOxI(irft4lah6NS64oFDYXEeb;_L}wK!Bo7un&q&f zkq!G_$#9LiHNmt(uDYdl4z8^^J{`6t4|;fXg}!9ohgJf6wKYf@o66VZ%-QaVT*=a z+!4-c&<4XkSpguTJ$4Cah9 zF!Yt=>Zs4drxqu|ENdUZ)Oj}F2bwf^^L|M7CAm&JSDv~41_v0vwI(Ajl?F_=hopvH z=HX6>wY`H{&{3Rj-;Kc-QSypf3N2DnE3ZOXz+WUeD7*bGN4>}5v3=i{f{kC`J2bMc)(gljH$Gdy!izAZ^~ zyYF|XoZC+?#Pb8UoEB&3AU`^OVDqnh^tUv-=DARUdz;SqoU0;vhj-2&t$j!QCpB|B z8~Mv|toiRUn>nc)-_&$}SLb87{8vudvy~_)Z`R($N(a?rJiM3O^2x%?_-EP!!fhU5 zd8-vc<^YRhcR~*4qd|;l=vPWDmfvDA=qG-2c=?uLvL_Fezc+?9)rjxha|0`GH$t!ZcGq=vxmeKWSv$}B| z&6v*^b?-lqDo_xfod%rx^v64P0FZlUgzKoyW8^ zsdIg*i?4gKGVl(Mg?EEV8){ft))@#N5VJ=B;pXMJAynViU`}NXJ9M&&?`$jMso;XbXRe2+ZUdp^SFBH4b zH2)0Teis8=KO7bhRC$6&@a^mIZA7>F-sN`@e>k+wZ>l>Q5dk^}rZ$~8L-e>uyn3Ub z_<=~_E_aTOBv`rnprMx5jVF@LISt;qfLSS*++zhos@op_Zl_|vOAiBRm(h+ z*2f%>>hL!?l==jRbe=z{ymbo03O8z9U0($4Z}@Ms{(FKa97hbQVysZ~b>yCn4@x0B zV8p~svj;71&VLGwcfyv5|GtIRl!H_8UFAKYJ;=M@*l%>+3)9(JZ3OEofx+X~g`z6r z%lDmi4e9YEygjv*5vyt#w<>tLshQ+mmhB^!tIf%1nt*ZoDLVv?)`F+-m%80mME{!eO-M^D8C4gbKTg|T0~-{bH>|(c zfgc5iqSJ`pL?~luOIHnPZrQZRXVHp@H!qyY zxtxi7$96t^rdAGr70$KoBOHs$n`}2{wvl;X&t|`kmr9BMzAUh8nubkPoWrdjvQgmQ z#-4tgB3M4+y>fVG6E=wlPd>=V!Rtwzb_s9H1OLmVapszJnD-&TcAa(}-jJRT4EN0f zx95{f94=LOx{B|aD$xNCN-$HNeM*Co`;oOPC1rRE_+RVm6rxyl?82&99F%w()m&IA zM6P1_qq%`anDauwf$K{!ShKIDslLxfiKOL;Opju$HxRfI-DeL!J7i|B?;$xRYh{K8 z|08@V!)LyzVvQR&sIye|MB+bM`R5_Rr_Als?K>e8hzk*v1co*bl)Dr$_xflFwhlgI zQx+n7oUq1tHm$4RD&fN{!c5NDf~5t=bjW;y?W?56V;^{XSlBg%aHw{%tbDfGl7(}I ze+Fi*M?mV2-J8qVi%{?6#_iM3b8#lVi_I-F4%(g+yeYX~fQl2AXLkD);hSftwUt7X zA-nqgT@9B!w5UF8eJr*Vjn?0MS`w26pYCRJijun1FcMtkHA-~F3g?H`x2J>P@N)c^>!9)!;&{vqB z7^IW^Q0D6=CnziFaBJv$m77v5@;(1B@$gOqc3Zm}XKqgigNT10M9+jGijm{x1>@-yT-t)c7ED4f=njQyKod?^00SQU(Y1r2LN$gB` z9E2aG+L=c@g64O55ylyGyjG`T5+M@>X2yz{a(^P=-Vf)8o3xtIOV5IG_EiWl>}g>y zB-aZR&EN26wi&Gtt3Ff<_J$3#v)8>?Goc|bUNh3U1?Scm*o7I{5nh@5mgQ+G>A%i0 zmHcc$1_`ZzKdfrl{`v2vj8_F-yy<$Tma3&@}Jt(CT+Khc$wrnK2?;Vz<_91at zT-d@a^R61s@+mg#&G)+gc4f{WQADAHb3*+t5aG$nDpfp|(y|=p!{d1{utrJu<7;%rkM!1qjHG>1v z>}}{;{QKlsY93A|a=%=?L4$w0V>i2eZ^emx{fRG%g(#=4#d`KP4Q#fZ{j=KFivElA zSADc%jIn4=3ALcZlU^2rQzvsUPA$FTL?`}$w*Tt~8XZbsKeAd!^wa#Xn~i?3472$T z`c}`=;r9A$y$+{V>{pZG{e* zLa}T8G>JZYek`MNE8$a~*_iA6oDOyjpN?*XR_si*Z5Q}hiIt`aqu>4M@UcHeKSQDw ztMnN7GGnT6@Zy*ms}LQMX=y+F`C5^scU>a8WHsvMS?jLLq(T2Wcg@s)Etvas6YqtB zYP?=os}spig9@WMy9;ky@M`jH^R5jwm^|qc+KNqZsr>MffB7v~aq7_*OQL_OQCR4w z5&p@CZ~qn~En4vRHZkicSHjC3*|-o|UJnfugeJYE1*5pwD;@{eV4Da};@b^%kmS7e z;&gs9sy0iM&3o4%{R{t+>eU)>nEEh2w6_@r%y%?yHL1aoy6 z$D}~220I*@oIpUY8~#TmpAFzU8_oHQ;X!C5QSCRantFwtrf^ z5I)#w>Y54Gp`|H1?;D3IY>Kcd^R~=`S(T*(>5tWD{7L1j5-ZX7OW2C0QK;}dtLmsg z81bv+MadOKSE4`r*AB%g3Vasa*mO^_98Vb>=3W*cd06l9v$u2xJb3E+h_9yv-$h(j zQp&7AYv<;1|BoraXLaVD(uV?^uzG0qd>8R6o@J}=6N?AFf9XrD>N$A(;CpwG=yGJ< z${D?ZHxd%#INg*t09xPN*~3&vNW|JkRk7M-crISQP%pzC zQb$EdWU#u0ZQ8YW? zkK=dkMTg^yF?f&sp7e)N=*WC;`s|P^I+whSk+UqsGop@WN=+%qEo~%avf~~;yrz(E zK+fY6N=)NSUnp21$+h*kfG+aOl`BXH=3uN=oI7lQS*9^;C6 zl9jwNeOL$gC1G!IV+3A3zjwc$LLL6|Yugok)dIzDJJ5}_A7R7tol}P`8ZlYTy?J-~ zLqxq(o4(Y~H+@atvOn%94LL`DPItWV!UsR~m17QiL#c9blOTm~wKhKg`0B)CG#$G= zkQEUHA2t5&@c+_`q5MkaUE<*wUJ|kOnQAH+@|4T{TGxsd*S&wgc^HjHU$!r1vuDB8 zmn%z8~*aTU>Tm5f}i@Y3(_i!LFsl?x)NJE zzJ8;8Aq>+|>-X7J3-dCfA4~auTCp8t&%fvvP@tf3$iu{qBNcFkWs8}YR6DBb)x1@H zl8u#T@)XqfRl~{RtWQEyZRq(UOYlFUAF4kPu=ArvE&QuW=XiC8aI~}5A2`3K0JY5r zr>d0df%5y%mz=^@RCuSd>Cvwu+-+*&$j8tK#`{fweWSNv%M+~#gXt2qKl%88BkAXF zAG@=CGLLXCCN6!dFfBv#PXPsy9}u*-QbkJc(TVT%VdJxzavaH8%Pj9k19eG_>vOy` ztYHk(Qgp1uUeaT5{~$VmiNVm+*-B~~OEp$xQ@X0o(m^LRlWWMN4vjv`Eg47G z;8pBc>lQ$VAJ)R+)>hRxVRkkxjK2dnIu^y|Em?W)R z>7e+$$=Hxuilxr1E4{3ZIOV%FytbJRaa%4LiGMFd1_!?EYGU2FDfm-Vxrh#_-Dd_= z7IScK{I&q~WW;^#P3QDTon z9=xLAyZjxW4{*@oMOXI|8c!k`HrZ%19;aiu7?e zyLsyyh%Vz=4G+4=ng z4F`AjroTH!&hLs*CA6kYG;G^F{Kk@o#^dFokquSQOx@dK{ECWiIOBY;4UjyY@+pz~ ze3kH1{;q%hwF0!+c(jhWx(UOSd?T%Im%}sl(bs}0B^WS}5qvbb5!Vh#O>f931%+)R zv$Fe$A1t`qtm#?%9oY&2^|emuYaGmGnI)yQAnEN&o8G{jY_!7B@ZRd~=(N0*oww-j${_A`8b)U*rF3 z@GjF9kqh5a;Rt7g{t6on&qPiK9apHvb72DK3hu>%$#${wtArCcwR*3o#H)&wO-tF^ zhk}8RzuNq`Ml-%u`PtS#S&5-dhEFMW_7Gkp{$JmP7W5SUn6`MAa3ZU-LRwGQU_xkA z@>=;;jM=$wQk|<3|7fk%D)|wFWiH%ijI3=~U&izyxTgX=w!8eB;4?QF$ue?q^yKP1nmotB3yv)a-AvD!14)fT)IAQ-=XL(O~QjBE!fa7^?01*+K#WK!@H7BG!LUzu2*ixm6Mw7Kh|aw{*}eBntKI;3pGCsktN}iORosHiMZd<<|t=* zURy%*2@V`QsiU{49uF3GK7ONQ2MvWCqfV!upz=pOo}Y8Im^%|BIC&xfG`+?7A8&nv zay`25{w&nsosYEOJ4{hTtggv7sCL5f(kmFB*+L3itXp{cy zrRv#iP)TVnyZfmVd3r}gg)UZNxlx37LR}7Y@0wrEIo*l1U*r0Ig;n4~ei2otxjdMW z+&8u+p#y8&QV%rOl%w~fbZwxZV#mxz{` zLKIG{Gt6i!g;W{!D}irXa4~mc>yd6UuUuOHM(chVWZ&JGcaymV{Yt%J6>m^6bf1Cw zM!s_JEt--0Bi4+E&X{d$Xw1ard@;W2%5o@5=k2+4nvO?iYMFKor{X;WuGg086<~8? zpH+c24NvW^`eMB%4u2KjU>JK-0cCrH%a|&ga3t?!0{g}=?Cz|XJZD@9w$~X?IOaEC z6-&$uX>||WqO$P${O3vt5k61N53a*FHJi^Xw~pe%hwU6)M3@Z$uKDl$K^=}k3cPiX&`dQ^n}g?E}a4yS^!9Hsd^+4p`g zA(5@@dH6*uBemv41}JrJJUt^)1K)nvgx_h*!j~-d5q-xfaM2>hCZD`M{y-x0N+B^6 ztlAl!e4ho?D{18?){}Gn>4T>IZxb2sO z4&-ylVlmiQ4|n&IL=WGfNhIm7sAs`l&#d4K}WOF#Omd7fMs6CRP8dgo`bY zmlTefq5MgomszKC;mv)HEeDk=;AY70SD%$lQI%!$!y)2JX{yM%>_eVUOm)n?L44Nu zP-6G^Px~COj5#$~;!p;w7eiRzY=4O5#^XyjCaA!@J*oAgV<|ky_Tox-=80JcwuM|f zMTJ2jS=~WPl20Bh$~yGdA2+kDvgU_p!Bdg<+pz~v~Mw?O8kjah)fo1>}te@~G5Gi2Q+igJkfJZA_~&ybu-x49(Q-{XF1*;eM=m-8Wb_y$_vfa;y;eQDhQSQN zl`>M}s!Aukx0*(2-2}Mw^%gbZHqo8M+0ZTf(!fVRIErH|0`^4mw&rGLVJG8o4pT=e ztX)0LaDv?zR&pp;Rf370-f1jHbR-$93K(wPC%T-$`OCQm!c;u(b%E#0Xd*BTy9%i= zIAC_AuE^{?D$3HojKvJZL)YXVwXCi{l!z+~dF)L5&F?k_IF!ah_>tUInpg}T)-q4E z(V^nfXX6+Zr)W5_&|RFnCj}Xg&Yya5|03y}7l?}auAO;Vgkd|QzB6}aVN!^*azUFTco~1yPje{2 z&W_0%74cQg7+ip>kxo17k2;oGY^7D=t>}Sd`eY_n9PRkPp;3mH`>rqfN>}4yp4plv;-<;Z0pS9vxCgH~`1pA8mH7LwAYy6(2h?vGgP_P48|g3XN>!nNw}R zL9bm-2RSqGvMkjyXm=^HtuG6%kZ8gv-F0sbSJQEw+>FxKHzoK~{T#J~oA|iI_Ipv| z((rz}b;de!&Q(m`C4G|UgKmCRR{YtKjC%I+Jm2n>;Mzm%KSjBlv3Rqk5o>=uCiJ{{ z%cEO@>f5`OojF>t_tzeS`s>m7C$H+~vQ7#1KPny=S!uz~+xxE>28ZFWqH5#Y`z82W z{oPd0`&KNIeplV|))!p^czU;2mmr7ctXW+_8*WkJ+N5Oj5Gi+0Yh2h>iZ3{FDMm)^ z_@XjmxoSumC57x=hRevj^!ix*#Lsqg>y}Z>;k1Ka>8Wpn?v-KD0{iVRH#^Y2>tmeL zd2eu@1Mg-Xa^AbXH)S}#1JCugyS(WMfp~MqnU6OK|8sX@#Lw;y)Lh#8Qr#vBv@KrD z{EMhWk2?=2#!Vea5qX@lSuP&lG%G$2B=Z-)#(n$2hj9Nw%X(|_lOa;}>}^Kn8dTK0 z{L+7C2XePwPz!udIEVawDT#y+r(>)2Ryd>`PqSP83dlM>!v(13qWThKp}Ip0dPFz@%YEO7AHh`&f))wa~g13{B5sL>Ub_Oc`! zl4Y)l8n__ZiQJyDrV$@KMO~xGo(gZ3#q>Abq~VqyCG0iMbWB^wDJz_!!ZV-sI}QJk zIj!jxyD0%08crG(@8isYWj4{16!L%dIak?M3GYVjS^3PD5i0EQ_ewcNa*B?z^lupOp{ykgt<`Uq>c;6Z}qKm7s zzq6+IKpZCh>rOOji-v=PS8B&ePRMBE!TSeOg7L^gVOQ6oFu0Wzog``2jNdo}ZO%qG z;!fH8t1m*mAtohyw*>Jcei2Xen)1H@pNDo!Mj2RxgvLL!OD%NlDfznQBd;sG9E`lm zR&o<5$Dc*+x=P1kWhkEe)Q@p@`w zYoRU4VV&#sPWFw2e#_?Twy`njzahatBwJ{}_@Ios6G(<=32h(}Zs= z_KV3U-w$?V_zd=dCf#evF z-)GI8^C%Z@$dm^g<<=wJbWh6@S~Ljl7M&K_Rfu^`!F2wVI^5*BE|KCD1xW{s-2AVU zpp~IUxovzcX3I!unKDO$OZNs7C808Wd0j)-Hi_huEM+ggwhV`_$7;N9ye~&ZS5AK! zl9yDyW$fpAN+@ika+Z91T#5Yx9i@XcRmgZtivL7H5Nr)B`kuVA8Xu(fUySRm#M4iE zvvc1CfN|Svjjos){2aPVUE)gxIvzW3y5i#p^Ewg}zrNI>tQ`Gd9?AFAx4pstE!qbH zWtN2kN#7w+X`^t8=#ETpuRi|6;tgiULM1nFHXw!N_*PT#GTg(ipPAd?1=>UBpGOZh zU|M>^lNG5_G#q>HvA@z2?6Sm^4%#-NWqGo|8|f0PKYMxG7}W!U@~xN6h8oefE$3q; z;cxxgrF^0Pog1*mCEN+(ZbHt`$=mNTu`8BDWMCJzZT;YByQtu`Ea$T6$0 zk+1y#l!e&N*)lYt)0|VSz-ubrdMF(mdB+B>I4*W`v^Qdhp8K__j4aGK&iBl3(=FIp zT`#9&-iU3NGSZIR&qUb*QAXJYK{V%m*!6R+0e3bu3#(|Q<6bqXd{;Ab6m{V9b-CSu zzv_km3kgZVYqNQd-HtApx)ft|g;tN3gBlG43lng3NawfiF+WV5`J7EEz#MJ&0hdMe8Kll3E5r|p**MFKUr{lcF-F{K7YCI6C5|H%L7fZs#+3yw;&WnQP zi(@U7_)PAJc8Q4>(JyLp?Fq}pri`u!5}Fmb)9MbzXTXKz$HRI`cp+{dtz`15C_~n# zj4aoMc2u8BIj?NJ2)k_sHIR@A25%2amn?NCO#JrHGVoe&_e^^Xf&O`@YY8 z&gZ(W_w~=43+seFw`A1$uz*5+Fr#M|>=Exg1}r!Nr@ufy6WgI5V8hgeXlAQ?usn{q|ar(5K_OUK9l{ zM2DYJ``Mta1H(5Yqw68`)T;|@vc9k+?muQ^<%F2O7tx!mHo~FS8=lV?HGrpWxcg~| z2hvd%cc=di;7r9rl6>6*@%Jn?ei8LUSNMHbuD4wCdSy`S=* zx_dL^iKh~}&L^W*!u<=Tf5MPUyccm+qy@&clhR+8WFW_LKR+i0L?Lzt2k(b-EpYN= zYFdR`E=m$oXRNvxhg9;ic1gX6pmP22T*S9R)ZjA{Dk`3YCU5U9jIy=DzqmI(&OZr= zbmQOUtW&ATKlS1)e{m~lZ%@;DBd5}E0uHt3`(m5Y$5KnC;|IMTFWuKy)x0V>KZ(u!v40Kot;uME9Plx;Om*U(acYR*ULy}|F_t)y0g$2}E@ z{qJA4nxlnCsJl)uln&32g!f+E!nzEdwpLThUIEgS^iHW;ZU_6(QImx=%(3_UA)69X zfMyTYi6-Q?14&5Fxx1yMC_Gr0qPR03v0Pw@efqE+&a51{o26WW@*JgH`Lps6bcdPt zd~1Uv0>^r31B#K_!Ru!XX=NIEI3-J_SVn}Z5p~WB_#CA2 zd+nz-KHnTW^&`Fk@4K=U=Lpn>3Fuf9-!8LNEE40G{s_-opp9hW&gryBlTjEi;Ky}|2U)J>Ft{~vcmW&*Ng$`ZfYXlC1 zBf)BgrEs!I(eMUW8X8uAG{22|R93>nA7frT_>oWfyCh|x5mp5XmWT$pT+U<>G)Mpk z%_OqX%`CLEy!DXlQ$5ff|FKl~t{6U*uSR7v=Ax#R^R1T4bwJ5~n644?XP!_TRq@=; zLx=z5XDK(-g4*;M)qIM&w z&p5Ap=brv*NG2%t#`CO)7op8*QM1c8E8%g%2b-@sX^<81L0EPh=aVPuZbrYuJuUAn zSNv`z!=lTp_~)}l=wtw8Pu>vbzu2GqzC;-d9;{Av#n_)o6)=$!PB6cwU!3<|S`V;@Lr2!`2{x)H0o|Ej z8#e@lP;YPtxrlZcTDqjl*C!Vb_1tSi?pq-!CvJvj%-jQYPpsbaT!;bL7TZD3_o0ZX zmOo!lNeZRCuf3;mDH=wlBTlOIg`x(_drF;L?w~3AtpD@rDA1DMQmmZ_K?nAhE+0A^ z4oQtke@^5_g4Ke?!@JbNFwEM$YPN7l1^ z`Q#_4TAKRyTvG|0tRn{%Dj(z&+nzJJ*Y_oms9TWI)F`^_fYB_ATv`MLH)G9fl5hdK9dD};8A7E)vXWMj;2UH{uzut?fuC)wW$dzQb; z3oaJGIf>Csf5~jPtu9N;Dc%M_^p_*0WC|c8s;b-+^Qoo&IfQ71;@<2BE-Z$q0KOjP zgYX|YAYoQCo`BDb@f4*Wj$bZ-8M7TV=gM4=PkT`%wATisHrHo#&J}3 z2|LHg*k%Fd(3HHUOe%n8uLYXJ`2TYz(aEH>tq{K3vl#t(RtUuo1>S8uZLs5(L!bY< z2;YYx_4XHwV8(lD_e@$VT>S8EhF*yPR&O4OJt}L>Z!?oA~?gaJ{c)3Gb zY_EpTwf6bH$UjuT>g6YFBE2QhxoZ{>d$S3yswoY{4`9DKTVX*{a48JGtaFIE)(D+a zBAmrom$1sZ)SX~n1}Te249KSI;FyJ93f0YeNC=es>Y-l_1<6~7;8hLKY=t~d&uat= z?X6B8`wC#~%eJGqshK!xd}o6X!;op?+nb=HmA% z_~Gc>yNdhI4*T}jou?(jY?}nzyfW^s?alH+rUdAb4BU&lj(tk z2({BvOw#IDXA|?U&ADC=SrRX}-+s#l&d7@2m+rPhd1XPjSaSn3g|PZxQOXAG;0=mR z&JIvi@G6^?1rT~)toKnS6I{K7eFS=@aqg$vwK4jpUnjgw?$)xR)+0jbm8_T0wHxnz@;y6(-j)%XlRR`rfN{G&B-{(_r2G8wuV= zMP-=KIp#tUoNSTs#k`+lHj=^yA|#5_4ya>(#?AElc@ua})e>YX$_Lf1djVI%JSv?#-9`>=>FcuCU4-h{%SOQNe&s5h-*TP>i zp1JGRp_8H}j@dLGqMO`8b&ytfyADi*6M_sJG5i(NH-^Z#R!6&S{{( zO~=UJ$>u@D%!6^IG5q|+cThA7`J#J*ds4C_IWRoW>Kw0Ai0Ay>T6$49KgU%`5y6}V z`;>vbDt%ed(sj(H_kAjQp!kY@+bIL&tV6gcwvqwVj2COp=b$V(X7zHGboeHt%D*-j z3NA;knUlxkerBCVM{D1w0@uIV>(_V8;NF(m75R6isH@lWOH^74>|VKJIC9+^acupk zBhyxaKJ+e6nO7%)SGwWY#QRwEO=E+uaS`i1sZlpJ=i|X$hxp3uZU$;~e$GSrr49*^ zhpmq1#K3Wb%*ck!d}MxvIKo!Yh!`*X_FZ3#fE$&elAG4pU!^aEaSTmpdE*RKaB2vM zDnEXT4pyKOFIC=D)HI`TF}Wu3C4CV4lq<(do>W} zu5DdK_{UyjZn$?~W}7(zuU6GoE`C7K4d*mhj<%v}W=|V$3fdtiW~qdR3(d$xikAC{ zRV(_qa`5M)USCw8asSeAP7A6ab23~6&RW{HXk?=+N;|)F+dI*ze{@Ndoh>MY;`KX9%rSeuW10K| z^ViAO<_0!DHX}|~7S({#LZo06>O^MRjV=r-N)6zgyE+Rix~xh--!?W%Zd3N4=J~fL ze=-1iI{PH88T;4dA_79byZ0cCsdLBXWibbXY%WmwcPV;)m{N9dst4ttCcp?U<`6Nl zadDq1M|Vj#ech>h5s8e|k8>RrXjbQ>TG#msWG0z48^qp=m{Lj8h0kC<&fCnck)xGJ zSI_keKYcH{C%JW$<4pmwd^Xo}psx~zUuu?r`Lze#)O}BRSvdn0P57ttVs1isk_9(Y zRuAGmyOPA7jPsob_8(h~W4}>9xAkq69u#}y(Z%K|d#p1>RJon5M!{pod+)w>qnP26 zv4T!-oM(OOW+GaRGDS?goNT)h+kLaEGv5;+@Ca+)Ja;t;HLM)h{jUpAuepjvGGv2{ zmuF1hY8A3q*O8%e>q5Q-9kvF~u^+SXwN`;o6%uPCoA)8_LPlp#@91FNqI>+i59fcC zNa@+t%iR8*$kH?Nj(}nn_^K?QAgWZNs9Pnc`4~D;E&mlApVV5&m6@7n@~l7{7KQ$k z$sI^Jm6k$2t^qoCq)g5vm!n(<<KH%OjkXFUToDeiTR(YBybyGo1x z0<1G|Xlyy0O-B{f*B1yn&4}8()I&b@yL{6TFeZJ~l z=Z%xmM%+uI^HYF|M8yyLP!nNAtZXd&NCIk8E$8jP`J$1ksecCsT0rYDfiti)2K|ZN zqsP#zbu8d$E`uCrcy@Ff|aMj(|-Tx7a+=s5I#7Ebl zPQwjweS z*P8t%Ld7^&0uL^#uu)4iyivnV)!9pip5>m1(z_#iN zP=4N5%rg)Nj;zoA>SabFkKDeWg2`o|_H{pBZ6^uBX`Vk>)eJ?KzH9~@)GGmv{ASO@ z^i&Y7_~Q21!y7eeudK`q6~Tq}j7If^bXYZi^XHoLYxMVF;ExxvxlqfkcPCRW3zXNJ zC~tnh1PpPG?*eHvfyQEr^+10PP(Iy@|9HU`gGr9~KQ2gtXZn*VB5wJhXk^aLxakQ4 zq_mIMsbfLV<+RFI{UV4G&?V_42?Eh%l1?kLQ1CiFoF3RnfJ0#>w>BBV!N93fiCV-9 zu26n<3o$5#&+#RM4|!2=Kk3kvEQK}Djlbn#KVJ?9E>4FqH^hP%P0*~K@h3^;%{gUF zQrth=lp$p&lK`WHxmSsu=17IVXLT0)h6O*KV`9CL1Zrrgy0CV zK4c|B)1i~$wlZ {=Bw6MyQUmhs7>JgF2|R!M#)(CCP!uZ<;NI@k#Ju33b=F;9W1 zM{_DmR<>yTOP#YUc@u;%yq(i~lmhP_OsQuWm>_XcvRc~znqXD2GHc{W3WNztX*8z@ zLehXbA1vXyq|o~}WbDas`9;w6GHWZ43K+7L1k7vv{@Km?eIht|JfMp*@Bli4NsrI? z`HOYj9AC!%Bf7$K#-E5mz*7D;znT+s8*Z%}uWpNjj`J(}^&XMnuYEhE1^Z)O?o26F zaK!>O`Ic=TF|=+2nV6)K)rkloO>fH69?Ay0rL;)~2kgtCFyFjC6b>W7=8+~lc_3&0 zkoSr{K5x-|i(03_oRxw15A=3$?nFzSdP}SgG@FSe!QuG6F5dJytWSVqBaPGad#&(> z#j_J>hk?OF@A=auCBRts%03+X?c=L%9859AIsX0J43in`uWwLny06;`isJ*lNu^Uv=qG6wGPvc$vCaLD3K+{lml-m~NzeC8QV)<`WtGcgjd_`LQi|y# zw_>2g+1^q7ZZ&L@cje4nX@NwwwXfH&$HGIcCwVVYs^N-&md_2c7O0~i-LVjf1Ik;< zb!S(rAzvs>DQ2h{`sp1?j0NLiw86#UiBJs?4lT>Y$2Y@e8BVh!mlJ^IlzBs`Lk);! zE1DEy9qpsJOv$8RBB;dtAWRc$z*~A^UF>)>e2pd_SiYVFTCYF+B4wxr(!2lId+P9g z8~;L|O)VKd`RuOB8P@_YX-*!x-vpH3sqB-*Q-DnR!o(o47V8Ao%OmLk#nVBX!9yvq z^&(%h>uep|cFS|Fw`+ud0}UZ&=BXgNpuXndhjpbw&9(QK(^>QCY{MW$8WevbeeC|d z4u5}L0rA0gAO)9-mJ)Gp`00Lam|8s?TimMfAFY8J*}J!|oll2-3Hbx+IDc;HlRnV3 zUIoJzSC#AH(qV*Tca0zWdL>8}dymajfWRK7n#MPL9((@8DD-{<%_6;9==$Z5&7nI)cs}-wZpFt7bIfEA5C%s2!S?HSqzOQ$poD$OD2jkFQN_GQ8 z2-?wRdL;wDZfKHDaVqZf_)C#*(*WlK4V&dTqu}Hj%_F*zDPYN9Dm8nd0a9XbX%lz+ z;NYJI;?IgCIQghldY6dxwTScg5<)Gpo_YNk4|@U#8c=aumaPY2Y2GZ|2d|JpKJsz( zjfIV`|2{3`*8v$*&$-@i-1GfKp9vVFfulWM`qfS?2z&`BOxO=cz2+B~jg}+e)-!9G zEN(pamAXT|doms^?{;mU;|hm>E2BA2F&A*w^V+BS(G+wzHquk%Qz$4e{`U0etH${| z@!ulD=_uRo8eOFT<{{M`>%pdSu(#n5+;GW4V(X18pLuY8Z*sVX9Ou}{`Dc&AWDa7B zD0tP2`vZ&)KDvJh^9v-;(xxd)I9}{8kh}bEK>gJw8`XU|++0&TS=m-r^!Sbwo7dnr{)3Trmo%xE2q)g;ued z)cKI9Lel(svk199bT^EqPloPRf%DA|vLP=;R9bDT2wlANemSEw6_&-8zt1G3!+L01 zv9Vtf@*n*|+D4NB^kxrzx>xZz%zv}!QF$R+JcNhUxTlBfgr|zguNcr`x_Nib4s&Ct z6;gUcazXO}nU6t07(9A1n{9(RkQyeb%mV8;k9$O*>t&}O=388ezw{voU7*pI7R)b# zMBnJ}EhASrEb`AzEg%bJ@mDG&l@dT?#M9_Po)uUP^`>xbq@!Z3FFZonH`F(~Iph9X z5A>;{>k64t(drt(G(xEi()zW1V`?A6dVAz?s#6K5NRscDxnntqwG^ND`&AeCf4n1j zv`3=3U3=-1f!HVG`jG$8jaMMfR`XXA^W?h@6GtX+&gC5Si+{sw&LDkon6zln4QVMG zoucbW%t09L!{aV0(Nf20P!p|}j01Ix^-W!Wmp!WL|mFm|t zFrGhg;wWC<55;_;nX{^bU%{cLd|%0wV!o=%^@c?6qy_CpLOGJqyjPs|a| zznKP2)H1iR?`Y1I`XA=Y{biu!T#Jc-|2V8m<(|hu!4Z>N4@I)ziw1iV=XeOrxY1^9 z;=VfWB~j{AOSSmy1q$zuxR~O3!;{1@ z@t&V~7=EkqWz^3NX0Yu(8)0KqbUZD zAGH5{wzdQAi_atEErXF!of+fvd;+i;tgVs?+rT~PWhCntfy&jND%yX-dW>P}h>NWi zDA=se@jZ+|)I?b;1)O{TSLWZ6NN)w7=Gor&QN*KjmTb&sc+N<3I)3KpoE1oah?k1< zOh6efvr>zM3K-eVX%}y^fzZ|%WtO@GbS|X1L=nHwzn;5OqnIr#V;VM@TEKA#}M>D*j?(Q#!I%jtjk@QGKKfVE2Rh9Vy>HT2) zMPZbMsTx}NWFEeR`POxue$3Jffxs-<7x0|l6@C#O%;aBaf_HZ3Y##=NKzr*KZGX%& zN>t?KzVyBcy!dG!OMM6f?WXBpMVpCG8^ij=2Io6c?{kyUJc)!UI&Lm2`b={YqX-YVBR8+92ztYhwYwQ98qR6hk>>`3SU!{e0y#d_yJbxL?a$H!)%eODrUg0~Yy z4R<|s1@j=ZpW&roR=8Ri#~^xA%!rSgRPyd-7A-@x1eStK=nB!EX51UToPKMS$U-7tkr5 zR$#s-8~usU4eIaYW*fXqpdzH>=!ifo)M<=Q)C%>0SG1;ioJ%P@Y74&_$=;QNp(at(m@?1aA8y_@*OSMp6(-&oHgXipp zA*Pqq2jFSCR!X*79pr`hWpk`xf7{;I%;ky!$iIGTFx09ZG&##_1#k}Pi^vS-m@+%RH5#9-#}WhVDNS(sNe^ zAV|Acl=XQt{3ulDEWM5O>KnDQd^!D~o;gJr@M?zhnXfgbe^$UorRIeLl>I<7KA_|h zgE@T9s5{m1^`R@^wK(#q546<_(>&vvVV#TRP(EWBp8u-3_$T&)?}me>C(f;=1Tyx% z4=91U*R&p_pL!rR#p{QTP7H{-Cuumx(gB= z@?H`>asF(XtxHo6^T$mdUjq~S8YpX{B`?rj@07J_kQSbJxEpP>E_$0BX+rEO&j43i0=LMPtLd=s+AQB&waN>&L7&1GbKA9vq6#E zpQ#>B-&r4eIp~W1@xQd^l*c|5@qn+YGj+g`7c=txkq>(EKA7x`684*3KM+Oir~~58 z_GHq;J4ACniA-F!1A;#Pl27l$x>T#eiT4U&NZFw5{lujXFlRbxY4@WJSd3Lzqn093 zVu2J%#oR*aR^sWugo|q_N z!QY!oK={u;x3O+6m(r0$(gt%J8XUE1jSzEX<*C-2JXA>WebvXH6)f-T2!5?>gz@;A z%&}R_6aJnnQwT)hsHw5GCIt`%npDL)0%|2ry!&vB2uj5=jg7nj1eX>1mocTN;n3+6 zGpxsYe0YB{pAVp#(ZOWgvmAN%)~SnUH^VRKDdqfsjc_`FA|c7C67_Z%EZeQ)=RSPt z3R_Ae%+rn}k>mM&_Q#cRN}(or>we>xp zXo33ry{oRZ5bd?>t+rSLw6-?0KB3LXIjcWamlpdLNzTk2v9AUxAd|tx z)fM~Vx35f+UgT&;6QetGH-3~sdg+Csm=8EFlgiM;FV}&tes1OV*er$pg_2ZYB>=T# zb7O=7=9Z&wQWlO<(3n^&ztmm;JQX|?$gvA8licIH=vo39N6g}Ejd35bjIP%s_ikiz zeClH#V+qKuZJ2%)%7Qjmztou5J*cRGi8gxyb27f^dD~-u#E_2hkef;`>YNu|%lv`o zBC(^JM}tz}Xyw9@XHbfd- zEEXyRp7Ku~?MG&coFO^3rNFr(#;HrhK808vY4bb%$oY11OSWzqBo;e3ADWAVi#%5; z?r8KQADhU$9NTgz%Q2weONj!LH@Vvyy#46Y8IeV@!U`z1D%<#X>9P;crzPeTbs# zqr?EtVGEsgwB%1q#C+d}lwvAe0Z9*eAu}TBo!g9azLgLxb=%sPjg3h`WA;9G5;1;FZ5mS`5{b0~>^Vs;*AMhh43 z4xYsPx7_dy0WrMZic5{tb#&mE)7h2_M)m-6!9oNV%m+=UQ{D@osY7`i72{VA0N&p? z3xA6zg3(z4KJl$8^!S4P;dqfo_!~!eS04KS2R@$ZW2Y`hQQ3Y@l1vRSGH^>Q(GB;< zy#(IGs|0kBzL|n7vkp?;Umd(g*A6eGADd_`vP<`R6})UshX|yz;`r61H@_`WTOuz=Kr_?=|c{Sb9s;O+FnAMz5R7rwj{W(~fMS zRHqfvr48%}y@ZpI}KWl8T4>GgOi39|4Hc?(66A@2g<; zbPYZm1w4y~*@gKVpmNnRm+cw>&tF!~4VZ_)8M%%b`^UAwA#t%sKD-3JtkSEbvWGzD zLHTY?vno(9<KinJQLqmT;)G&1NuU%YsZQd&PB~ zN=Vo`_2MB(6f79BhP}v7hPlD`ApL_?aGz=Tc8W$U2z8!gm%JJd6U=uM!a}M**&{7^ zZ#4nfH#nCinjFD={-RjyR;;@s_n#)Bu%r$J`O zgVB_P5Hwz$T^t=&4X;%)Nk8tSL((NyU-GJWIq4Sf3`FC+-gohjdsT}prY^;@A1sIWo5lZzc51+{NxZw}Xf2YRzEE>tpd3EEf2|a>Q42p= zg{==*)*!EAMJ4_|<&cw8+}(}$AGsOw1xpE7|1^qCPdHKmi+PjI)_6Z5S?cK!8(D=W zd1J1+)KvhR^XWr&CmY~Os;kF>W+l?#nb@<8sDu%o^Jz+N@I3O=OEax)oHtE)X|fSo z1u$e}NSoOJFW)gX`xus?{Q6w6&xO^nau4M+VISj|rvvSFNePNB52PlUt$|)+hmNnZ z4KOG=+elJhj2P-x#RoX+;3MLks>FWFUeQu5t(kn3G|`};U|J7lsouTEmvH~bzFCs; zhivrrqnqBXq6QEPXun7{Rf{=URX#Jd>4(Lz^ZUy)tXf zT_9@$y*G=m)fn)7eWGT!H987u$;f1+dt?6QY3;xRCY3mkuCskzDG=#>V;615xf=2_ zf7A5i%Hi3~VVO??b|^q1)Uib!=R?wz2?8aha6>%*SmSv;xW_OVK*V!!|1{qs1DtzG z_~j-5wVv=vPfoD4rx`rO45Ujf3Ze32?sySx7?AficRiWMd<4sT6O6BOp~3Wwdg@E; z3z7RAxw?RRV~Zwr%EPhWhvP(T=d~12lPJ#8!SnamCf;l8*mt3uyQ1&zmk!x8`Yaqd zn0MhAP9B+;09O{t^*z(GU?zxL{kK^&_zd_u^Rq<(CN^7$;M}?XF=yp3Y|U`6zQo>~ zH3UlM)%KG33t;ZWbF)LlCZG#Ts9kyP1p-TwIqWfbzM0rl>i(n&^J@RvZ`j*`RvXEu zGkOI0cPEcn*$;3oHTS2Z@Dn)rpQY%)lM*28Omo$bH-cT_U!@yNI;d4GR_KXPDY(Xm zlnM>v{Dt*~ri7UdY9T+E_T_6Sq^rFkecMnEsEQGZl{q6LOX>R_PGyk#t?sB{N*#Pw z zZaH+))US}e!}~M+ge5oLK$IsOchHEY940STaT{MR2UP)oyRgLo)Rxv(?O9X?zCYwV z1;3O+gl^~cFy;W%5Q)Sou9QLR<<}ny-AW)v;vXpY`5_(I_yqY>+#CEuJ=T$#06taI z*I4O&QSjzu&BT5Q+`c9;0ob>TD7I+M|MEh#S|o2`v7auF{Gfe;ejdb6zJCKw`f&hm2(g__goN8?HK{FrVb{fTP7A zTXUf()-)ANrg5?J&TI5R=~}JPl_D5acvT-+p8!>#j6;k!ULpytLnCLi3&B7*7M3ET z;IP;mX&VuJl;g;<`Ogmb+kGW}arRjVIJr`A4vDIwAN&E250@80y-owchu0GvPcP23 z9X|tR6vrKe42v))Zr5~)@B*Zdmd3O@szGRsEgxxgF;wMS=;r@tfK)6bojWRZz=vB) zvn-PUy9b<0=%d_GwvWlHk6{MjD4MF-(o%xw+Hyp?;b3$}cewudrV$)Ub$z$bQ3fAw zT1GB~MxiRL>5maUMj$LQVWfij>R*3-78jC8L{#b*gP&9BL%3>N1$AO2C>?cS7+y(5 zdA}BCeeIv%^?RB1IH4Nz5x=*-IG>4>IH`V6&4|L=;RpH4c&_$AbO>$8=O8h8p0Vm6 z4J2%2o%Tbg0p`h=m&C}jF_xpb zrZkcTr)bR0A&j|=b^u#MmS1H_ISNwW?>q7+9yPkT(;fZW2~tigKZUPWpj*bD*uK&y zqxv-u*(}O#IB@-d=TLeD66qno&Ly9UvemuZF70+hisLTnk;9efRp#MX^2s#xCA;08 zxvK|)%+AlhdQpi=+PbxscrwuYB{Q+W*S)Z>CQcLj9&@ygW!%obn2G!m-LxZ zMkW4n6?&Uve&fz$CJOnTbxr4KA5`0BYn%PV9JUBfc~15$qHfz1+al=(64E;NEtzKIc1A4tIb$$N7@T+4pz4ATY4qhW>&+;s z_9<_-6XxO>bl13&cEXvuoLO_LEKYb+0fN+J{PZ;GhkNGjWm8#$ zWBoaB<;5Wg2u z)lWp;{Z{0n6{WiC1Ou*%^!tbCD(#Iml^ z2aP4b@`riXj03fBXhp5^M?nkf;JRW!IGO^1F&nv^DpkfRtz~{WP)u_GHP3YF8o+?&&N3Ol7V| zG*dL-5u5{$4A=Q4G4DMi`uMSMqgqt4QZvq)i+in>x@3i={o&2+($fXq)reN5Rq<3} z9uzd0ME)^;4Al1D7@C!;5RGRwiKPMdnaH0}c;)GVmXA%{;oYe~Aq0J&g8%TGJ3>b$ zY8dkpqXZsU50#^6*InLq-2xbxG?F~+m5gZft-PFO%FyJC_&O9^0C_n+|9Ivy&<#fI zZCCCx)TyxYqtpZYw|@+zaW>|nAKeX4wbDw_>sF61!IA~w{PNtEm~s&c2&CciQo(&L zhv(1UfqY;)KAb5fU4k5^`}=jcG0*#IT;R8Z`C!$2nrvc<9Pp3ZyKCa2#VANO#PN_%G|-RvY;E7FMU`gJ*?&U|k=$Ohec@5; z!#G6qplGB9-5k8Wn)W3RRf@PQ>)w6`aVB76da(vAosXM}?8`<;CffZvZJt1-b(DET zqZ%nm;SN8Y3}pVUOs)To14ud(X;jpz(8Gfo+mod!h!6DY8D$M1aB0TlD}N=5-d!lM zt&T-$*%^6a7IKJ+--F=*?&)10@V3wW9*TIfNT+lhUZAtzSp@mQ@b}N>Jlf&qiH;@u z6=t7vKrh5gU%2v@qWM%^6j5Hi;R9_E7LwA&6 z<^AXo#D5g7a`42XteV}cAOA*zLeG^?zE?v~D#d?BHjUA^x2eZw>2x?8wx=n0=Msdv zPmYUkb>VeX{uf_#RuCk=UL;q&9Dtsg2WcKv4nvk2ytQF||L3ykN<>`sM)hS}zWX0N7nv9SlBw|Al_ zCwlD=SxU`f`P~rHvLiN(Sb;vD<+c!)YL9Dmxld3k_DaDJcA?9m%116#yKUZP%d_C6UY*dPV=RcORb!mm!_%A{iCL@vVsH)!Y6S!CPI(fiJ%mt*lOr^r` zUnFvrr*~PcFGKM(PTrOx9gvBIv;m|=ZJg3a$h(S+OZ^j52`>qoboh@yxnm2Q9}V+YJVEw;Jv5h9Dj%Zz;#mm8e@H+L(wi$N5FIxRXI3@;`Rv{{lIh+9 zWDTB*N{qhfVEF3><=54yuIbdiTvQJvS-Vy;kb0s+17Fn}^>II|Y1!>#Z+mdR+wtlv zZ(Y%S=AXYAa8HLO%j%?HW;u%WK2hrXn~XJfh!53!I*K-;`PH`yzwNp}aow5yUjXL6h{T8R=iq(> z&m><+>V%^UzqFDjolvf%re$L|?gLd5nsLnOfJml%g-Z`ce?tw zk+xP;8A&Cf!Pf*50h~7_a-vbcrPe`zsWxO(Gk;Xm9``3({aW$&k45Bl#A{orZ78Lh zbxJ;<7UYHwEj;-ahYZfT7LI&rLq+XJgy+Mmz*&q<`FUeJIurT5CW9Q$&!t?&*}}>( z7kf+V#Ckkh2LXYG1MMicDYLQ<^QV58wOP*F#G}2f?EvMEZ74D$J^t=q0gRgGjfp>s zLySWCOX?B$^NIF2kI5|1?EUsKCM^ctwmta1^+Fp;9O~xC&q)Di)>E0nMo~!OyOjrR zLMxKeoR3E%xZh2)-9e)%9I^J*u%QhiO69O@_@U(r?tZhNIS_)bX#QT#JWoVrKZeTy}Y*8xa=icY;srUf~uJ}t^B4n^r?hZU}>dLdmBDdri4X7tNf={%_{!_;0at#_CdM>#VT7lm8Go=oCiy(78Br@$@ zi5N$BN(Y&0kP1Ows%n`P6fXKC3fGpQtmK8#+3HfNc2zsS!Yj1iOp3C@ufI#K_6ko^~@aIr}xOQ>Ip+7#|4ygkG7+CpZ-<0Gg%?4 z+{z{Ut8WmGet(&WbO#b6zm`WBw?WdkEu3=3o$;p?%3x=)la&nQ5P&bPh` zJ!3(|2gp*O^(@&dFYHGgH+2ZTcDoB1rd{~&pnMvfT^oJLe;Lnv8pmlq_I09>!pOvZ zn+zD75}$IBFN8D9A7>iXI#K*&YTgZxERbGzdta5B3r};!Ki5xpV7@23G<}f+*Xv^6 zW;x>g)USMhHscOd;iy?CB9I6AOxypqmr@{u>DGgcKkaB_xcFjlS3Xdhc<65az}$Au zB&&N7?MPlNvfoY&^G$3tj<%5mz%A{^^KXRP5r+fMm$|n^p#1H(UCydL9C)U}Scso* z6Rwq6W;|!m6>iuOyy%8HhYFaR1KQB@m2}})X#yP2S|0NF8;-JT>eB0Pw4s?>CL6c2 z2q5G7Uh?~^WaLZ~h+5icMYX-$JpX=TPEzuUbCh`|a;wQ9RHov7V;-YL&I=__`Ag+^ z8AU!SjxW>QR%}HQQ3{#f(zp-j2sh=N1Oa7>2w7&V5YYn}qW{rbnAhzmvK2U5iY_n< zHS*XK(U@V(=~A439J#$&z$aaS*O|a<<8Lj9{i*7B`UC-rm9yQo6+;8wA;fT#c(36dw4}Y7*CuHlCf++bPu^62^^_MBSYT`Y&mm*$KmL+ zf256Q+{4H^VXYcPEIlqehIN!Ev$9v)JdKFqN>BB$UIkjysio~JNCRSIR>k8b+=Ir$ zJSuMgKZ?#f9?Q24;}r?XC>4oPsH|kA(3vPBi83l0sI)`~5!st;viBa3$DSu1d-KbP zQi>v!mSog>z5m{y_@Mi_@9R9yfs8*;2#melUP78AGejTBz z93FwL18x`o9HE&5vm}C6@=;yw2xHlVh@XBB~-Z>lhv;MFTG`_p-Y`aU|7_9hC`R=Pa6fL(^6T@&|wmH*(YB&o&-P4z@*-rQo=7OnPqeCEUnT{?0 zZ!T7wyIp6wkHjahbnVy!;)l?%y!(*k{F{H%ncO7%He7Yn-=^yW^q=l9QlcnmbeZ$j zH1Ug2+jmzrthvME(}RIaAw~E?v2LAfAkiZ>z2owMg)eyv^~k`Y zbU)VI5z>EN(WmuMasCm_x`CWmy~E#s{A^>G7_fnf zi&)OIlk{}1dvy1uD$(PnE2fIot)YMA`1L~K^S4VDw&SR6L{+w;`0GJdAl&|8OM*2O z4`m8}IUq*EE0g6r+0?9{Y|SgikmN60-Wy#~2&ZBH$dPB2+pIt@_tQ;l7UCbq1AK44 z&`@9EAh%lJBcL9&-S=}31-~@rZC-!83GXBi+wM4TN#29Dte%GpP;igzKOXBQ)UsOQ z5%_l>Ze4p{H2RzL{e;@Jor)%X2X_wFu_fMwZ`-)aorq4M`e?qCKdT83GH*7bZr6p$ zIc^;xy-ZA?Pdd4h+=QbyZ9_c&0BT+O^D2FFI@ahkm85z$p{%waN0Z+zJmwXuB>yG_ zFa10fY<;nb_%oeqx5+$4kM-hzKEFyrskqUZvn1EhIx=J`80>-u%rdrI`x1~=b?Agn z5$VBv)tTPD*BfVWYv|0rSk%oHtNWr%L#DLqzFYf(@C?J|j)J~uOl9-EI@;WbF>aE2 zdc~pmr0e5OE#)W_&>SNK^G3u*+0Qg%lKU|7uz3{}N%o+R`b85O@T1=u%0s3YT>e{p zpsO(w+3%@aPmujg-u-@#khpkkPfY!wLyTYNvhRvtQ6-#jQ8{TB-z40Te*g9eLktEQ zQ9_1!5S90cdCbWWy&>uE7wcW|xV1;6`@a{pxbT)!HF_`=`yR0M{=cV3z>4><^yV5A zInQF+ZJv&i)!Rl!Hl(7YC-dHeZVk&Zjc8CN#^SAo}D&pr1^ z&B8H{-L4}1#Ft&|ANUzZTW0LF{rmPzSFR|ufUql@9 z8!ZY(gq2*{@VyvMzO$8|dQTiSj7#g4OsV*Dm(hQ%CR9wkaPlfkS0QF@zW!k`oN%?m z&h`6!qF{(sMUe4(3Wn_uK0rzyQCU8Gtem|N#j-VmnkrG5#O&j;UW66DAD0`v>FwuJML75r6-PFC@UsD&cofV zEFaTR_=Zk)zyq=`_38Hex1kkN1oM6@a%Ny`{=-CG{xUrB;{I_ujW(>2@hO@*m4O%j z)&w1iFU7~t!fE3k?Px3fgr`I+169Sn!b7KsuOvl-J-M(0zcTEe73C&-GV|-4oa@Q{ zRY}Psu%#1k_sRv@`VyYz)T)o%Zz=}57=1s}(uI{>5rON1(y&)@|Cl1lZ4d4em-(67 zjgz4YOgwvtZziE%W;u+UE3`Tp)?sB#x`dkJ^FT;7O6_!sM5His)_<2q}3hjW|zFu{EF@9)J>%yh0i z@F5@r51DOh+9c73&Be7w6Q6uh##~-0c{~+IoE{0#l>6`me<_`>l_N4fwUSAbNk(Ch zr{C4j^kHsFl2Vw4CVnq?NEtd9kN2%@zndTJLzl+~`ktS(hV$1xvn>3HLP?MR`?>q@ z@aoo_dMOXk|6BT{Z88)YMV8|&I(jkTs^c6_XCO=t3ch#x;ExHn=Jzfu_hQkb$wPaD z$^1hd7#_Urh8M5cSKf~8!SGY#5(j4^Nw1WG^x1GLyt;8KQ&oRAx!+d8R%Bz~Z{Mv8 zHInl9*s(4(YPt(2Bd-)65Qqm=mZq``3ipBCV`tUD_nny1sWUv?n+Sgk&fU*ua)cqH zI8DKZ4wQ@Kvzrr524xZR+2q~sK;<&m{Oi+>yf4Ey-?2=AxGaf*5DRbU{_1ZRsMv-d z7+5!qVk$h>7O5A$;RiUQt+@3=3s&z~H_|VV4qTmQ!*WLb0gH~DION=nme2A6U!`Wi zk$qFoACv2$Z#L$*Y$Nk9Tj@-gLKf_^Zcs74>j$&`RH5X|M%?07zF++)w#MgDz@U2UH5g2^5ySO`t_{K*T?ffbESfa|TdMK<2T4DxN6gm9S z{Y;;c1?hEIekV5Jbc1lPSK11GZU{z=A*!|Xk#xdKcT3@5E`t5Xq!yFTgrb|djHmEy z5(+&yCUG#50yn>Du~Lk}F*)yTi_o4Ic&;KgUYv#aJkdJR}oX<02CN zkbH;Dp8ZyecdCJ(QvY`kB@;I3$=TNN=AlbM;Wq9pat^0^^+=^J6G~Ud1HAI{@zkmD z@AgD5DoPlbjQEfVL|kKwAbsY`Ue~!*3hN>7h^Th|XeNl?*ic!iO2L(@C-XH(-ukWi z3fJ+>On8AI!hN$8%sJE8YX6~u>_@gTh7vt;NRaVp%d;Yk73^BuE!zm%CK?Md0U1Ek z-l8C~fr@Top}3~s2>+ssBzK0U!pL#<&IjA=SIg@fiLMdit+Ay&b%q@dRW~4%)RbHG<2E=@ClLJjo4ULqXZqo6!WXk zdW7H1p>0_7nfQ9TpESivLoK*SnxE+|@`sk8k~gtCit)^4=8hY;s$qMJeX`|>3mluh zA+6p@Mb0K=sgE9&P;WMRf_C&C>`r#>zi&vz+=d3>b$R75@S4%Zn(GRVt#zmU9whdgMc88h)M1g_R?M$3NNxV1Bz`$(&*e`dUrM zkLKk-L(>W7v$wqQ7yZAIU$u$&piU|!>}(Ej9B2voC+&(O2l&GO(8uE6uCocX>^ZQ` zcKy)I2^*~Veq@@*FcQmE&P#-U$%c4;&6HDHFJi*QOQ}8WAvjdm^jT;m8w^+-hsAc7 z!L09G0UgB;=jb1Cb2es!IkSXxv*J_eD)7s*-0p_<&G*x|QnP`bdgb*$J1=-BrudI5 z!Wvgr4t2h^$p)9f=4q|0Aei7_ahjAohrM@4m_wwp;qtXsb{n-Yc+BTlwIpu_8E5@X z1;(>r@$y7J4_g#)g%1YF$v8l$mp9Kb+boDz+uY8T76VZ$2}Lbz9uQUa;B(2pOz@Iy z7d*Hr0U|VXmzwkZfKU9V#95b2$Pz72^-V}3U&o}vU>6KIw|5r2`AhUWjr&*ggvdT! zT4H|TRv4&XIrDA8Ed%PdNC-41rNZWIzga%;MgrT`T!w9&88E_aX7-LF9qur1&y$Uc z22F{(4&9aM(5|xhao9NnltVW#1-He(?yt|?RUOj7q$z)Jel`=XouZ`HWyC@8#P~1o zD@1?Od9t=(m<^H+g%7?7CcwsA`OWE9(?MGN%f&N&IiTxocf9>rBE0t3p4{X~{{2n8 z*g&;Bi1pG_{BJlBX1#v|viGG!#i#lYs*OZ%3^836{+$S^vge=iDrCUgR4yaku|g>E zG}o03ON46|~6ek?x0H$NDQ;9`zGh`E=m`f}aJua48tj~gk((B<8B2;i`-S?8$=mi|Lomn=1 zm<_)zr1r?g5zZxjc~9>e(P=y04V~JO1Fz#>{=P9s`WNP+CSQ1m!=3-q-W!GGKp@X0 zcg5|+pmjg{&zrrW@b!U_%zMJkdn?pdQNmsf@25Mo)+V3BxenHwhT^&K{#P32 z10R$VT??IaV6(#8eZp@jP^8LmBmJunurP7gEs?$M+@JJ;v?qnI;=YCuD0MQ9bRS z4njuOPF3e3U{zaR-6HrZB-SduyH}S5&!1;D{n#4}&s3VFZWTR6JjlI4c|@KrZL2ozz2;_9@~C6U}&odOW5Ho z)R(m1Z*#Z|DiV#x+2h?YxP0lYT{78&%XsGxSCj+YzPk^rkNTj##k+)1qEDP+Bo+v{ zN*L?O`8u?l=#AS0Kh^$6A-QmmO-z(3a1T}>)e`|&zi@Mgo`;Hk&-Q9|?yUilJ2@ZD z>iJ{Y+U$p*KrQfDR#mt^_dz$dh!Jkd5}fOe2)+EX4%h-^ZJnmvaYI`= zEoyx!iW>Y#3=yq|_+yuK9p5|P(-TMdl(S3mSnrVIl{fX^PEn{WGrxtuu6A$qKU79| zl)Wxr{mJ`pPnWc$?+x%8?ONXHUWOExHuZx?8)4;U;2^h~6KGn9dG?i&ob-R+b(P;V zLQ=;1G*1yfC>&(FxWAoXHn_7lSGaH!$*qdN;u^^xO zmuQ$t4&KN1jLc)V)6UmLHNh^Yqn8Y`6TtmY=$~}4GJI(CzKxf)8JtoE#Lkjl%DBY| z+FAoShYIlMZ?$X&(XkXK7lSnLJvndp9!l|S{rTs6tC}Hs$%$3^YzFlB$VJ!Wmf)AT zY|FXnW^lft^$2O1z*v*&dV#qFbDCQPGX69J{qX01Jd`XbEzeo>BJcaumK3Q&pPOOc zOylz^T{bix4QqH))Fvn1l1#ySQPXi<2w;ene#e2IMBm}h%1a)M> zkwL#kFViAC;jSXy|E&r3CqYf`3DTQwdo1lqI|b*A`@FwgZGz(uoFDS=romcr|Gol6 z3VvMDSyLrG{?Eg6dorwuj_JWwrsY|P+4*#@Vm}ZckJjXVhr~EQ<|V<5;sP8$AET$X zu@Md$kM^iNk08&Vu{owq1sDovSv7Vxfak$ihT*mT@NbLsg1S>a8fVhE*YefFC&L_l z@%OgCV^~k$$dQk-cXUWoJLy5IytHnq^%g$eHq`4=n}@MizNNlat^tbOYl+TSFI4ha zzYp#5@JZn|!&k(IY*{UpG&>Q7EXO~dVwEMnk(pqw4W*HCm~!wX*K1u#(u4Xb)NRwW3+b=_p=djvoR4FL-?q3?ve9;9a*M*xLeO9BG52yO z{RByS7W%1KxLK~(FrGf2@P>8u{dSXnCS`fPYp$7SbJi!&NH_;%dp`>ujxR>emnHk7 zh#q|_^X##MS2H1E-b}rNp%lffI!D9<$a%%<`UAu8G@zd9+N@z%hVTFTu~+Y93hFv( zug0_`LzY$shgDoTKE18fxn*54)?RR$um2Pe#|xkJOm`ChdCm<^RoMg_))X&YFBAURt)M5%?rFHIWGVBm6*?es&H@l_fGq4;={L|@?$LUf%)Q)Ka)$< z`18jP-(lV`lw!{1AG-1c-oI#ANBdZV>YsbwZK!yTf<;#xnYPHnxt(TxrG)<{>3r^G zD&a6Z9XNJn_LMDFyp}T+@vg%TFI_gn{hqkQm_D--<%Qyd+)uVjBhIg9Zx=CgMYEDk zK1FrG$RnqyINXFNTBuM^`Pd1c82kDC*BODjoh1v)yNJ&@my3R1q6049Ryws?KL%&3 z1K1{%>e1Eb5!pdFAluh0u{%l$xWL)Z`%I5;?a#)#{<3;XdcP*e{;N#FyZxp_i`zGnv&mA7v9{yq7mVy*KJ(wyU&QXs->Z2xi zyL|9vpYw^e$rrEe;oe?{V~PLy`qf0@%r2pXFWZyRZdQ56Ig(?M;^hzxmW)N!EQfn_yos1b zcf_dqS2YfbS$;R*NWuysUGa9sSiF1ow85E*Dx6s}=oe`s9K=tPnnAIV=yL3avXE&d z{%qKa_g43bwvLsbTH5>bO z#!4CZ5r2K%$sA_R9FR{?`zq9)f#YIV{v3E*i{4$Lfz5e@Kas@xR@gKR^^ZAYxf>?17x}p4&BLy4vv}$yn>#>h(w_(@6Vz3H3KgyPpi2ZE^$}dQcbT@zN0h(?Z zWPO_$8kLR3oSN@)#XlNQZC32z@w5tXzdaz}H5`e*dNgZ>eHt@Hs>I|T4efoISzVZ$;hV;T7;mm{DCAqR_7kTOr&b)(M)F>x(cO6DA4L3M zuRi5nCp{Ou8o#(Q3|fGubabEa?nF2eTJZR0RwKTgFy^Ry-vY+p-`9P(k^-);->J0` zZV%n-e?}2kT0vu*Hj9%GId3nQxr>W5;=Yg&)~LEx5Ly}GyfsaHL2g?^-IhqNhtlvD zW!5(MrNVkhEh+~*nALl7`WleFqqa#zy$uGLR91Ez%7=4B7c5VG0mc$1t(8)Q3| z`(Fqvgwq*s9Ou(W@8~;T>JyhX5J~Cw|2;*4j+uL021yP0SyIPZ!>J7vH_P3#n=AsA z{n5+*=?&GYtlE?_xS<42Zrz#9_^JV&9e>e3DQ|_IrYEzUrX}!)V|1Mp=_`r$nWvAq z)(XvuUqZ4YN+2ox#q#Zc4LB*;DE(up1=uokv_HQn0kxyAjJjC}Pyfhy8)lytSbBfw zzx9?SFh1;L#Ln4>*+$0N|A>!(b=-B}8&?T@K7>+YTMC`yQt8}o_KPBaI_jU zd)XqIiC?zbRqK^d5nPIIa*OC{z@PzhRn^@z@JQVYHk=gDFRB?hlTUgxB{S;u?lgkC z@2kg?-T9Dp9rMU}4%d?v{?Dui$h-G>^ab&m*A*oloVnM4+ehC1(jw=;^t1ap2g9@A zB%!Z*Xg1)AhPZbJJ<)L%3ZFh~Nr#c1Vm5J-b1OQtFOcU%9VEZrZhmnh1+FHX(iP$- ze)L*LG4@L}@bTW(6X!+~K}LWvFodfCd1G%%{WGY7vG9MKnUgQT>Z57acAf@&&mb*k z0~O#c&Swz(Eezy5T*|&2YQVj3W)I$BF9TuQ-os-80r27pPhZpN27LXe7p%IA!FfS} zbG*m}oVe$+gC90vs@UqpyC+01G!eQUfVaVI=>T6`Y6Cvg*F07yNqFMh6I)BanxG)P z+>4_h$p8D-gEGd~vqAQBQhfNpQ+)qRGM|;)|1+8=-o0^61Nka3XD&%^3|pGH|Jkk) zo!ZvjRXk1RR*KWi#6l2e1}Qkqk$scg;e0Neun4fU+nDjWArxOe6p*!Mry;c~G2Z*H zH!S$?RQh`>0w*Z~n~q1E&hw$F{|`+w~# z3Kj!txTj*Z^T0$RR<$L+JsTT^zK7S8?rRc`@=M-}m#L|EI5W%leRBkUd%E}O{M$x+ zUo)PgA(DySXZ;p9WW(?`^Xx*f3gL7~emn}gBp)*R*?V#7IX3lYm`2$(;Qgp3OHUzk zPUOo-3}Ey@q2a6SZ|q2(skP_9@3=zzc>QxjR)Z4?L4H3^KpjTps^|~AqF}VO(p21> zF;2;i2i|V4#s_=iUow{zp~~aZ!;-!aAoc!-DqoV9xHF=zm}NwAy=)Acia*_9xMB3x zw{xXfLaOe*{zt_hnPQ@mtHGeU{{HQ6lp?ejC@G%aMe=j|ztavzM+3F}z3cK|E<76r&G%Hy z5?tfDelHu=-)g>R_1XIDl<>MPg*qyQ2Zuw{l*cz~iC|M`LrIP_n_JtJmyg+wEy`u~cS$4Yj zBxL~i@9&GnlZ99>a5?&qP9<#gNwp3>od;nDBa0SI3ve`u_r_{NHFyq=Y`&RCfvdy& zt%APhp&_fPgYcF*XfC>^Vg8v45uc6VQ7rKtz@}|Cw$;PB?|<@OtOOMDV+$3?d0FG* z{+T$^4Z3`3b0>#0@nIR8X9#CxW0F;K?}M%eINJC?Vr-xszNOsx^iw1o+qqg#k6Sdt z_ac`lp3w?`EmSw)%f{bQu3i7gsz7U@ZT{f|COq8xaV{eHhtDRgDMnQ^;Pjz)+5S}$`U%qhuMc{-Lr3PXIHx^*R9et7pV)B76m%s4E`I!Xmk zg^}L_q1AZpt?;Fj4&>+lcH)&KOA+Kw&(Wpi5FWr%`7MR{a){J7OL0F`05qO=Udnlh z?{3^Xu~EGgHuCcR37pM_12@L{3Y+RNtEKX&bvzZ0r8Z5w+)4+Tqo??FVj58Iw3#s5 zQXxq0*C=R8N`mKt>#Mfukk93)i%RQ!4x}yZ)%U*;1zoyG{r7=z_*g$}Aha#m#p}6+ zTiy?DL~r=$O8RV`t`7|b{+h;Ly?n8lS#s!}(j6N9 z?h<}@;&%}IPV%`D!bo&m&e=mh2nV07IITkUGVvY12{~o4GXo9xUMkTnXhfsDDf!6- zUszN*Q!|j6jhSX*bkeeo7%|shU!?8_*4>jaso8lbWEY%EDpAg+JJ!%rpx&5r=vui;%HBaBHa^;`zYh zVbTA>pwL=0G<1xDhGA|-wy*23z-e&h=ZkPK-l_f1^#lbYOSZ-BaIV9~S7NE(6e8eY zT4IhtBk3pRFPi=;RfjKSI5mrVA|T2>{_vl$JapK1{43ug;q-BMZ#jE25>^X#>%Uk> zINM1AbpAE9sO02TT)<7Z{}YnZ4bN)vZ|dEZYZFoM_S3(BO+QlcxyjA> z>SKg2E~+R!`6e3Nd#&0nQj>7y$(7^h$sBmYd!&zhV+<7Y&vQxo#GqR8f{BJZ;S6$` z)a7f%!s3A${v|T64^B;YX0g{GUG@FD_PKHJ+tx(Vl;~3HB`>^@39iOlZ=~2b853ag z`K;`#UC;0-Tlo{4jn%l^Ir47ud?Gwsby?oQd>cRg5xdX!xQe_NO%zj(CV|e?lb$|m zdeHA_{!VPN5*_ZHdN!Gp1fuKGZ#CX|1pZ3b;`lFB;?RvI@66RCa5e6nty=d4%oHa! zPY+h0vaX=Enn*I7@K>f=6n+W=e%aO+? zUu5Y}GVm{IsIqUhgT=$!#<%B}BbP|LX(9vJ)GQjf*!RH8(I;{bV^Z<=?&Lkemb@tXn=xS98Mi1lFRPd&{v%QsB6Oc@l{KJtJ!K z)ey_&FKK5JzWQEU<)tyQZ6U8C_qArA;2iJ`%;vJ6q5 z`mKc{5q9!NNbK-6#U#GC2i}2YcwhpY415!S{`_9izF-Z!lVbCy>UZ(1iiT& z5^!{=Mfdn+cL*7+o%>M`i+z`xZ38HgxNq_6L-%qwI9_GSzvV~@&MWY}q1zIOvuQ^C z!!d-1_ETy-6XAS0o0Oc9277#|$u(gx?MC|gQVy~W^da2x{8E?P2 zlDu@Z7&hy4T>BvP9Ni~$GX+ny;Dp7Z;dwohXRA9maAz$N(`0JxO$J-=*)z$@mZHV5 zx1~$`kU=88>zn9GR%%6^h;4l%NQD~jy_q}Ck{*HwU$&Y!w<3MqmFq#z#8^rv z8(q4XZ|8Xv?$hiZ8y2x5C{rB!Ra{Vjo9aS-8(nF|agHxF8@Ey5{rSo?ov zhd)U_8Mn~lrPzG^jh$wLHQkOXAV^D3u~6xQh~-19dm_F%_yw) zJNr4&g}1N>waYPA>rPlUAydD|rek?&VBssIuytJ>`t0JjU6r8W$EZ1zY|ms+ zx83!6vsFEM#K@-WHWS{~_BWdxhvLAx^wNXvLxdOCah`ixsvbG{9TRyb2!DW&iShmc z8kTYL>Z%amM`RwW?aH|jxTfWQxsvdO+kR$lT63&Kapmk+j`luak$8Dbitt)qf7;K; z{$D8$q_q3Qb36mXqNA5%+*;7gbaX|X=t=XFWTI zpJirg!e*_3tAl&nkk61@72An%o^IO0G7$P78dY(EM|wQ#<1H-SvtTQ{2W|ZeQ`;5`T|qdGE?> z$0VDFX6#4Z;mWb5-&HCWnB-fwSdrh3VXu`!m^;GZ(6G?oZ0kFCVB95jB(xp#Z_c*e zXGny-6V?wRIgPMga{V59lJhyJ#8L8lUmCEKR9x-S<3#(pl(*;UNdCu?|IEnAEbzH{ zucQ3jHSo(^xvLt{hP!EBsW-=Rq3Z;7^gQYNBu){<>aA^9%-|#O=z9TNi2cCrT>1od zz0$Exeb!3myTwy~X%rZrjcV-8b%n_apW{E?w&0v{lWAfv(XajX#TD3kf&J@!N>)c( zu>X~>a%%z=jCt5jujlZG?lA%DBwx}Crz^HJEnQ5`Yo>SQ&OZkRPiw2dS527bp%U*x zbcM{}_I^vZ5NL~jb)c7U{7#)bX}8i=3_2zOI$P<&fXPT^lkQW($#+U%a2zOxZ@=!@ ze%T%l%Xae&j|UoYZ%5(FuF7Jl&DviOoE;8A3)A|)MH?~k^!hVLyo%vrEA8LMqHstP z?@pyB960V@0ejz_C(U>+wdg(vNX6k5o|Qa$d28!M>*gk5l#Q zaW#cSCM%c<=1udePb@>A=xyc~iYwyOnO;i04Cxmzei1rR83Y%_*30Exsl#jH=eD?w zll^9GB@gqsFZ|~;CCGNP7C+Y)OO*x|L8{H3si9C0Sm%8GjuGLgDfKLy=cyFIOLuXX zGg{6tvN3FNXsHS{+iqFO(iOqRFDNK7WeuY**Xu@sFgwToX>76R{?xwCwW$8dLaa`%5+r5HJ6W^_rQ z5G3Bt7?(?_rgUS$6m86hWAjJ^twnvME%p)C0?$7obA%-2r! zT9fyO9$lt(P)!b;{;u-qYfdE0xW4_&K>S)7k86G%4$Fqb9&K+A<9K*BHW+F}I2mc# zk2xwYWx>bA$&ots6i6@*`j7QvF~Vh*HBOF9(l6V4V}&^bvV(TJ@>`VPyF>4vn_)Vr z{8q3~wKqXsb*}28Xx>uRK>OG#fFzWIs@jLy+lQCzb?$+*^x+uAsn<7IV411uA+KXAfJFM zC2KAc9?Df3-@9G`3N=n*VkF17e|1uB!Y~Y)Shte^OeNS1etlc`umUqjt!2-w1VKd5 z`&9vw|0RUZ{U?^o2@fFLxyqaL#m5~JTR&9=TTDNdnH(#}R(12$&)yCoWUBu!NxS<0 zKj-5O!ew~U_V})nkxMYPE%T0_do`TMjA){EmEh2(Z3i;fS)!OH^Hrs%)lem$epOAN z82dHOO~ZB%d~aI1f%!P$aM8xkmdg~O%!ZWayywAqy6wsd`Oy;YGp~{n=6ELqq!`Fko64nQIe2(KzLtW7}Eqk3*ROR=m zbe}ATl~_HG71em8^?m-YTq_er|1r_HNnR`e)ZGoKvt$ljWwqLKBNxTptR~FoN??fo zg;Ora6I@Wb4K8+t*!U;II`Kd;{MP1N6x?kKI`Q{?i%711yJhiUu3QmxE^E;*pAP{p zCG*a8wZ-VcV!-aCL7tamA|~7mabWB5Y&M1PKnuI#n2&$T2DSaXpDg#L!N9FQDUpPG z_0GHg!H8Zu@L9QuatD!f3f)@gdG<=YN7?vqOL`K#;Np8`R!{&HvKONreXFoynknmi zdlWETPoz$k7r{VuulD)AY79{oKYlnY0JI)?G>T0W!we6%p~ZL&4*#d_3I*1nJJC|0 z&{Yay%z;e%2?xmhvf#wW21}%<@1N?hCiju$z6)@?4jIsWN6ervo(bc(CbI}M4NB4J zkU6mUZ$>hjm&e7KgQ z=TI^R=QF%$BlnB?7Pjftr-U>3-a_-qR2q8aa9t`&tA?U+VXJDt8vGi(E1bhC6XgPy zr|&jZL+rpydH-|OsH=&M_lvTzq3pXdOI0=0+xE27c2pvDUv*QDNiK4y4;ZHeS3~x~ zp|f`h&)RcnqvGM{JcJ!`W-}M7fm>17{`-zH^q8ThUC<%EuY;#=+p|?e;wGov+t*0{ zjJx71!{B_Ro54E6o+{A(rl5ASlk{`b9d!u0l#jctB!r`4s=!b>>W|U>Li{c9-+|16 zJfwBy4_$s*1%+nS9;fPaFp}3__*`@@8Z>h_ggmK&zE7`J(ux0g(brT_ktYY|D6e}( zBCB92Ztdpo^b|a{Pg&)pViw^s9l3DlzbbG(DH9T)OnBSE*7+lZ#~}1WJMOeZHI)2d zX4eoVeC{DtxhCsWv@^4hdXQZWrkPiU-)<*)^zKOD%zPd8|ss6s8CcZOdSl?D1qW5 z7mS`XA~gT=@^Q-x$1#&}o{gsEup#^%Z>coGN%csU^MjFiYB_Ozu?x}jnVc^hKdXa9 z8OEMhJ71s#EuoPTQwy}9U!~qDwUC|mOMK*MEQZsonBBfu5Bewf7C6R}oaY{2LmsvS z{IHX*;vdl;BQ|zF*M3+HR#}S{eCEW@Tbs7gRGJ3HM^1mE5Pi^8wBF>(uVkDsS80iJ zZ-UZOllME_Dj+FyxcPT_Dq7w$=^7|$hR2QO8?INE!9dyA*nm6fi{llSv21LC9Of;a zY9%F*xI?d2I4l!&56l_f%xnc^txi(|N!W3}f-4%;n%Bq9bGkl*t?*In-#G@BUWo znfORR-!kn|1u~6nDfDP;g#X225ha*)_X$Z7}_)aO4?!BeR!8<*B zqrVDO|7Z^%e%1mFj7p*cW0lzWO!S!=@CAOQ=@XwmxtbkK3e&d&}86$mT zhIZ=jZz^Mwd&pKFWQGMb} z8+L5w7oYd4MdseK0uuR+Fgx>@a>>3O`?hdUo@>?Oy+N(zUCPAo`-#W(xJ3uXT~yh! zMCP4i(yfh&V+|nslga4Ep-vo}zDDaq(sw`RQ^8=<0E2bvwlkTX_}vSgyZz&g%Qm(GaVX8RUA`$(>bmm+PRr7k{%ycA%B# z-972MYOo{VfLN|pEi77y*Vs_ok=syGEr4)A=^sCK-y~lHDwF;#Wif4Nagu}nLn8;IQOy~XvT}YVS$af@w?j>?jyD6@unxgv#AVzUFF~B zS5uG9jZ~A`v$d#^w|M?mZ7EpO?K{g_T1x_UY_)NEwWxhA_Qke(vS)=|1`o$8aU|gQ z{z1)Jj4e89#oJR1ISH|R67*%*x2=6gaqnD)AeBSTkSBLw~fJ=xz9aU&`=C(bGjB>wQ?ssWTk~M7a0aSk>T>(D@5qeiY!B zJRi$26_3t;w0|d)IpC{m!1cehLfG1>?il_x7~QHqJy0#G##Y8Zao^$!;HB{NuD8iqAGA}OhVrarUJNk z|9IsME(&D$Kl0|?TY+ubZ^Z6BE`)-%mJ8Wesi31Lc}z6591VJW@J0>=N>Xe_!zpCn z^u{!Od3QOkEvT$#d|3nvK7lGHc9w&#E8C|~-!jzSxO-Vewisgmvd7#b`XPY9+fbPc@ftRCour8c8vY+%)i%e+U zU-7O0vwN8aM|$d^q?`Ld?WJNAx;|Al5L*R%f~Pl$%QQmz+NK}T^2FEv=!4Idwi*cC z(EhnSo^YiiJ<3aeQE-U&?e|Ue2zQ=uepa}l8RFK(GCp7|L`DAaTc#=Xz;0MGGJdrM z4m$tVaqP@R-wpq2L+cyhk;jzOq3l*TU31%cRyqrR8%^jPAY2K~iwFHY$J-!p$9-!L zwKQb8Fk^2sMT3A=V{}<+hrb!MjHX+X@Y7eT8Skkkc+eWIa`Sr!w4c{pPTd`acDJqT zP7gJMee=uF=(bLHI!&>?cheu$vUXUwm$g8QBd2JXJ?SCL=#fi#V}Zt9;tbuMtzfY0 zjHb}~Znzkh_~>AO9n9)&ZM~t=1_oJ|eaRCS%DyQvu=_m+HwFIQ`tNN}>f$nA5!Vg8 z=GAUoo-bfKXXxqLkalR;o68(P?S_3>*0-2lNEhB0I}y%(9Wb92ldvnJ8|dVt?00U? zfCq6*Z%(9jfOq(HoeK`#z_zpf)}USvNKehU+~(?p0BezWHOX$crL1VstXlw~Df!+C z&YgfcZ`$elyC725nDyB|3ha88b&YMX6Fw#Gx3j$51zh7-q<>{l;SWm_t%|1$R(8=d z?C$A=)nK!$-h3r+DSb4fUAqf%{cq3TKGF#))<-3qZk7V$u_E&Xt1d{UV|%IU*#XkI zn!ArYDT4-MW_90ZU7+itQ`K^-YI>S(gy6ZlOC71G(zF#K83`i<)p8!xst!H6@qAd`%fq}z~!4P?4`D4 zF!jYG)or{547(n8U-YVn!j!DX>hYy;VANcE^$p<)yo$XR(SX3nFyDBLe2xPXTRAQI z$^E%m#|yLSpoz0{n|nzyy!;BsKULE}tb}^>XTIq4{yc!NCO21SpPmke>#tYndzM03RI1!27Q##a+xA>$Ar;Q;$gaDgQUVc5U;0`6 z33p)DZ)8?E1^&8i(4bc?h6vkpb_ZD+K=MJI)>upu?1EdAO`cQ`erVG>=GOoW{LK$? zUdMw6--9EkS*UO_lS%0qT_bE4Ts+V7kmLlbzD72V5Z#EI#ZknH{QcZ+EvAe`!qW%a zO7y3Tp#DhS$c@29h>7(0%fB-WXyh>}eUu80JNK~YiO|5`=!{FWU=VC9bT4WlIx{P8 z`1*s^H2BgxIlbiN3BBW=y#pMJVc0`CI4F+>_QOr(+>Z9JGu!#=GvY%6zp0hnVH%v$ zRsQbRtpkbHyk?gzOF<^8$>*?;>%7h}w>| zq$>E*oZ@0cxP1E@Y70~*;!!}I!Appz2K?7u5992nLAF83PPgO~+;HHQ$ZC2myxY^- zR+&zN?QhclQ+3I}Fg3kBKTjb9`!gpG+0tMq4sPi7$-xQsB1R#HdT>dB@{MrRadq1|!X=(O-`V9%d~T72#$NQ~ zdbZ0QrTwXOxN+5KquIAMm>YieXk-=K=OqY<2(c^Ekb8c|$~LFI>E7wMTzY)F=%0r%vNC#>_0$U2LdllTl9TyocIw)TMU?=6?RFEoM6<&pg;*@Uw`Vyxm_y|6(l z_K6@%GjQkKmHC?6gytX56o+5!gWl|A2|M!quqW@mZH&#B`$h9`SX&%Ks~4VDP$2S@&f!y+Mo^N*z`UBk2qKn}o}QASK*)#*3t?jz zwJA3Q9=9GrjLeQ#eap#^e0M=lK7SZlc!~($Odmn=Z=-D;h4FRIiTzLi(;P-Gt$8kb zbd4asuPs`2kt8tp@OVza?^ki4**D{lBZ%(5df}{D0BWv;ev{=vM1RU;UH``j(qsy? zjd{@uj$i+b#OxVFVvnY6M8Az7-rrWGL&DhCe)GbQew)&7B=bZCQ^9bq~C66#+Ubn-4aA9P)7x~d$N*#|ML8aG-rc$RH@b#nH*qzWG zbmpVvLX_hj)iLTI}QB*vyV6=+*SyGq$H=0rnaJ&7ux-(4-6yg<->vGkGU{r zd-Z4P^+x1zD>#;?c?cD8H}AhGn+1_~4*F+K;hfIb15>o-Lx}&3=P&V?6mXthSKc~V zg}NzZJ|X-$xvG$#$zvA>VJ<$=2geK1_H@L)i|vEx`}@1ce(!n#qu=+gqqFJgH>3N+ z^XG%8_=zv)`^~3tTH%R)^VJ|!>6fKYV?2o3lH9U2qkQ4^_=wrACVy~!*fU)qKZqWB z4Lp)O;08|FG}mT@QX$w=U$pQLzW-lSp)3wZ@SL2#xZ#6+X7kfz=iP%Slp~D7@xun{ z_wUnqeYFzazp88CS{p!m#hURBR`$^26e`MCRs;WCE~HkN8$fejcg@7N(3#IPE3?PE;0Ed5volT2KzWkLd!9IeF1_e*56%gI;Azcbc_|Vwt({>i ziypvpr`C)m@8=+pG?%~sE&hG7I$*bHGJui{WNVyjUchsK)Q=X{ZBT3RdYq4S09hGN zPE2vfLG#O{2&%qzh-iBMXXj9B7@7bc0Zmi~8Mnz36i5IldI{T+rF3+?=HD z0o}_7uD)RCMPGiLIoZ3b0P5Oe62iJDASB1+#nm&tX@kSpIoDNT(Ct~k( za4UU?0OnS-9m!!S?St1o9F4CZwIdP64O&KyDsZ*FXb}0W4~)w~nsYC-p>wH0^H+XX zVUCo}eMy#nkp8;%Q;3FwnBU1i^1?iJD@iut+{67K3h9q0@b%8AGZIzOy47%Z^wAOG zp?(n2JHU9{0MMato?iop@VqpRwcs{QKhDuSKG`AHg474yO^=AzfF$zbU!Uj$wWB$e zc9)vaA9I76pj$PNxmY>Ime>boMdG*fpA(VS@}b66&lPN*;We6C0PZFlUs2bCZY4F22Tl(;J5G1!6>M&<(XyDr=a3{lPCG;H*Lq z5MM7U-o(A~wM|1Vy)?}I(r5M#?d%50#Y-7aE>)wS6|r-<`!GM`oDL-Ecf*(3L&SY_ z)rdv#*fk#SD&Sok*naZ43%pBSMR2?$pk>liJIWm9aWnfr{r0d6O54gV-R~tJb}j$W zv;SdER{Vkyg|!QW0!{c*I`F=b*7$UIegy~~lw`6j?Sw3GN|;7J?k{u1*~${ip|0Zl zo?P`#xWXiGbm}z$aV!ZW*u5-+s}Av7M?Yg9kwbS~)o%i-d7Q3#lpoKjGcIQ<;e3IK z168mL?qMb;4v1dzD}{}*du`XbI-qHl!fJ{4tn_EuBff5zKxz@o&@X(v6=xgs8n^iW z9+V_m99aVDPO)M?&$h#y2c5fNOf_m7;Z3WME`j01dji6HLyD@W(uD%@_5g|M%?;JAMxiv{HcS_8)Tc?HY8~X=+1{uNe47l`f2) zqQE-)fy*q-H7HotIh!d5^LXeEvu_oVA(gm(gpa2dZ3o}G+Rj)6oRVgSj(lWLx}L*Q z=3R?43GA2F)C*yuot)hrO#@t?0C;!5}b(ORIWW;hn~c? zuvW`sf6tGg<6*o2MDORSlTYiAziC?bkvw6;5^$&hVt#RZFNXo1tT`pb3jmG zB)aHU3nXo7W_f+CLt^rKPM-70f(I+-L}eeKaN|c`=iaAq=cn-OmEBEn+@~TjPP_)?-mK96 z!tVwSSu;0J;M->!6<$mHC7>C<-@&T9YUs+1MI$YqCa|sK81G4~LZ1|NR~@?PjV=us zUH+ti{aN3580|1W!YwCx?1pLx@?(oIkFmn9C%!2+rl1t9KDFV@3yeVzKPNmYz&#k^ z>5BNx)k5@uo5K9&XA)YKyZlk26#Fq0CO>v?=iz-gLHewCCffh7tSFAu1T3A>y(Pj~ zC`sygcklHa6wXxh$b;Mj@6Nf#N$4b_e|=6_ezy6DcfO=gq^Jo3*a%j0&e2F?gxkBmJXBn80M~Yg)!t{7i0V-;%l$t@nDO=CGKvobhhdZHhNo3XQs9`esxT3_ zgN+7P^Iw3AkCOi`Jpy8VI@0KUtN~^`66q>1Hz|LA;|Hr50-E@9cCnDY9!xx)6gTTq z;rcr+ml~;R)b&v2J9~32ShfE*ZlIe5>f~HS2N`@ld)k&^j~4dNaV~Du=wV;zjquAJ zp9n}rukLgzkpMrQD(`WW-EeWU6QxBr_Bb-$z+IltFH%IxZGmf>8)*8g%gRv{fM3dq+V(AI+l zXR%nIK_(j7Jf`K47Z0|J_u58;a(auUT)o0j zuJP97*ad$uiahvYQK<#YYh7D?8{Ci%Wox={=@y6>iKR;&1<0Ll{O0d>2cCys+~qW6 zjpQsXebCq2)hq}}8m*!K zI>`|4&fO{+9ShojnG(x4pCi7Q%63IX+&_8ZXw$Zy0GtN~x!n!IQ1rU6w_GR%Mtz#r zZgVHY<C+ zR`icVf<#iqyZ8)_TY~1Do#KT$jLwq-yY@i_^C+(L2 z85;UaZ7xd1L5}v*4w{EPpgNyeW|2aI!(pKly=JjMu)Jsc?c7snP5w$jEF^GJl&WW+s*0Y1gx zrdX&LxVzEOi+x?MFa4Om6%TSs(_B<9<6()PF5QEGb6opAS39aE!eldzs+@TueExSX zRVTF(2n{-chxGv(qdwNO0M%R`;5=eyL9-s3bHfdlZKz}EyJqfJL7e{YlKhX_>kANGbhOnERdp zhrfHCkvLlgzv6qC?tLqQ>RLxnmgEHRWx0MJz_}b;KJ<7dDvcjkm&e0eI?PE@Yf94;IJnPcoo`v}( z?}#d3e|kSxtU4LYIh8m(3DJ{awPol6exazPQnm zy<89Cv&szVx-IBr)W1WarDQn9qsAX=*$8G?kKeyx1!TT#7y8zc0;+Cu#4P6K8NTk$h8 zb(4PI22?};PLl5QfZ(8>egmE(7JmxM7qDuB3hkv0_OTw|RX=j*0X{F~GPwWAe4GNG zVX4(y3iH}@XopQ4D-mZlkHFk%{QK9cMl;~k3xcX1%I6|V5T|zk5zPoPWcM;o?{Dda zC(dU*D$nGjsdj=@{WJ-dM&h36{_cg(8han*{>VhjZ%=T{agrc~S?+o!e;>e^?29DN z1fbT_Zw%&BgE8seMrPbMD66o>0iHy59T9q8`%T zj5uAxK3*oziFJxJ&Y?{0ExBk~3$el+T8~EiAcw2#mCoT*(EqqyE_S&Zd>1pPJ}maZ zxQ|cs$dN3dbcVc<6v3XyFpH(-z5Nhjw&$(s%N$5FiVr!zR0cWk4)AQB=*K>z-n&o4 zG0(dAcAk8E5lmJ_o@UnW$6o8-XB_zpLD~rmG}ZDze8S-kmuo*b-aYnEv9<`t6mqq$ zv1bA8ux&G2Qa_lU?q7BIQw;wIoB7`alHqFHA`=xE-{0A&-s?>X)N*edRK-ODD|OMc zVs04R%s!+=mmqkV|Skb=Kwq}AHHr3r9jj3;DFJf8<;MwnKr2oz=yo6 zz5|p}m~)M+^=bLnn!i&RBj_;zw!zy)ib19D$ns7uhthq-Z7zSo33K;2bp~V!n45T2 z+oR4c-w)MaNSIBY8Gw4#XY>@i68Pu2TaY8_Df(5G_)wL15G46sSx)2>LzS5+yEb(w z(ze`E2sa!Am0rdWpPnK>oVRl*M0%o}7Ewq+mWKP)^&#MI7ma;gnGY9!&BaNlMIkMPnC3TjL-326P|{VK4;M$a z4fd@@A(fEcm(Xn@$XJ z8P&aEr8oo@=a}+O#1-OR!er8{LoBk%DkwFg8UlHq`B|#&B8WTxozweG9CDp_`!Kd- z5EfcQnZ!<)z?6y3$vdeD=&Q%NUDEkM-0Q!y*JQF3a`U_HbLS_a?XP-@g>?g9Hgibb zKcO5>J|Bqu2^3ZB%(ma1> z7mS>(_(j8rbJAC8jGxjKJvkwA6E;|6P3-lytEEroeE#l z-l+wdWSWdmD+MU0=FF&HKs!Wj_xDNb)j_QOXXQ^em?N^l^MDc0XZD^J9F=}i2UGKn z3ceYIh=oq%U!^8KPxAR$Jb`;5(;=d??Ma2G^vHqwS{X8QH%9T$jMjl_S@>64gF;jp z@KycjVG?ZpvEQM3QwNC?bP=Ez4!BIX*EJyC@>f;H=a?CW@0DmMx3`S6$N zd1oa^S*ADmi`GHQ(2m9)=6EDd8*IHGT>%>XzSHB|wcwgL#Jch{8olvp-OIDT3~Zms zhv#(FLR|SbIt?wnuQ_Cwm?nt1BjUp&fq|GKBSgQuZ7UdATr)l4d8Y`@CQND2oUDZ= zYM)~ll>*R*82(L_i2`7GHFn@~XASICJ=XpCA?`ykF^2iy&4;11K7~4!8hCM{Id_Tk zKFSZ4wIK=SLBG^mI!zwV_o#|&b|0`o$JoTKi7(|qN5=({=^WtbGYxyTVp7CiUllZx711yuUPHMrDxyFDQH8wOiei|?@o0zM37K1`) z_#e`i6H2lCM=(@L0lw}6?KF=9kd3`ph)cQfh4Iq&T4g`P zI=g%1Ax8pCTs!}m^GhZ?4878$njM6;!nUJt{fmW_Z`XY0+LPg(yw>UZh*0Fd$v6@F zBN~FkUqAGJ6a#wYi%Mw=FVOfo#kV3em;<*XuI;)R3_qGK*Tjj(qJ~votAWmNDEzaj zDbDKx$L_hX%~&TOL1s=4olnnUxiTrhM9dN0i6_5$5SWa1Yr7cA@;$}h>jx@|F~P`W zAlcmCE)CT_udJ4J3V;v^DG%cDSTu5JaD8Db106eNm=m7!2=1wVTA1ofMIBp|Xo&+^ z=<*ygwDWa`0|WgxB&V{`#-)Q4xw$N)`aahGa=jDiwH4?SFc<6b+Z=CNw``>UO_V27 z>n0TL)jc`KR*JmxnTN&dvXO8o<(Q=UaqO!qf2v?#iQ*KJ)XfUAQ4rOinaq4+B-YXJ zvtWpT{=KUlx}c69XZ^Xwc7_8Awf}CAE{pRu%{oK49X`K?vq$jza}Mcdjfb zMWA1OL!rDR5-JE&D?6$bg}&5348Qsrzi+SHi_@LSNb1b@l7-?Boc+F@$;Gl4qFQDNo~Xt-?*W7^uJPbhvHC3!gh0Z2?g=V z4n-=&t4?~E=u1Y)Zy_x*TJO6}&u1GBx21o_j)i5R(z}(f zXp2cmM|tUIQ5j!(gsKQ5W#g>H) zjtuR)-EQ1~hM#rmdG5y7Q*28cO02qQ#-zUS>;od|##Sygp|e{{lCO5vptjnP`)V?`(J3Oe+kc;$P+gM) zn-702_6C2Yx{!JcH6MSY*@$@*zAo_Pd*;YikC`5D{0cx0{#z4P6lvqYEKvlbL%C+#$0E{ilT=vp^_ zY(zbJ6sa|wr;2`8ME!-98%-S918hu&;Jk{5o7jG@4K< zV-ib3uREM=&q;HFL`TGAAxi_I9+#xLw2zEV22|zwvmOSD_X>;6RvoImLZ@`v9e*F` z=C6A!9Dy=%vue}#*i)>1^nx4C+cI6-BiNB34WAU9P39>zs5O3M^Dis*&bK_<(4s{k zIeDP?X-PE_3NZ@TRmc1BH<io3XNd}Bb|DD>8bxc~vH9rg z!z=>9gMt_n3q83-QsJuV;YxpxJS08oczRopf?A>Pu}N?yh@GiSPt(jrp{H|{^aLp= zGI3YykwZDacE4@=G;I#L<$6MN=RFzCS#ks`Q}UqQVqoi6d=~n6jCepMjEo!=>o%V| z7Xqf!cT{2S<$v_X(-y+`eOxe#GvY1*lbMX6_j;*lJljL)Kn~7_cjw67tSp1BI~C#m zClgU#NiRX3k%Z)5>afhPSHgPVc&>eL4BFy9PV)rkh}3G26#Y@e+}Nk)#TPQd(CLz* z25tHl#x*;;In3ej6pf9a+q){T*3WcVUa`iGc}N})m!?EA74LktJfKeT>(}5 zXFb8@cn|)??v?v00XCA4k6fF>DlGjQ1nrJ$U>R{JJ5*c)eHWO1>3Ai8%U!;T6~1bq zpN@9>EL{inx0DRR-ei}zubY1@KoX9!cShzQ(@GP;N-<#-q1VEd$JorZ06O_#8?%?666B6 z@jTCgc6edTw-I7;bA8WB>8R-8t&|x~<2p8LRUyBM8ptX6c_Cie=$TaE8 zg*_z#YyHAha0{M$Nz&Noq?AF{)PIRK4GqA$>PKM4oCOaP)xBbcWiW41tvl3I5AR&| zuKgaX0NMaq(*2<_=tVyRm=fz?ML0=2o23lr3>Z6a(wD=e&?xUSgIWlqi%S!w6oIk3 z7VY1Q<#6^LO|mu@bkzum!kw)b;jsV{j@@#1l7J+e<_2|3HzHNn0I!{t!FIT z{TU(zbARQ!T?S>c%V$!46~MY>j`78{I3&unPxVn-DFihVSKflsTSPTgPK>rXzcrN-R%zk)eKFRW=~6ieVu(Qcz;>jG$>t$56vUx;i_ z+zd2qao+9i(Ym0k`IsZ|g4!hh|J=CW#3q)!YLscsRNK>ly#|XTM7`uHP}tqpcA2#n zu^P>!g!JUWU)Nb@1-u_lksp0;dkyo$ttO?9O=1qJvR?SXwpt+PPM_LkT#x3?bbVug zodac$I5T%0XaE|w=;|<%LZj#H2A@7zyBQJ(tyBv=!HTq*W$=|~$$==wXIevUoA zlbThQ>aj3+t~=$LbUUyfzAdKIU5}o4J^83ii}~_qB9&i{VSnH_8n+p$Lti)R=GGja z0>ctpz1O}@NMh1qh|R7=oG~XByPZA2$;s}T{X4vOHhlc7QmqEhFKT9vD6t@ioCDc^ zlJH);fJSqN#HaE@Z^UzU8!r9_ln!Z@XWq5=tNUSCm^>4SR;*OPOVqYx!la&0!f3fh+;^_xxYZz4$zW3dk_Lx#wpTfy> z?ZY0!M5K=batAp2u^;AqWgl$>Y#m%YwfdnE?cTj)rh2d+=1fS=QE~C4)s7?LTB5rS!W1pmZv(zQj2Wzeb{&KT>aGe%aN68 zeRRln)40698b$LRU1n|UhV+3Q$A6WNkTPNp_x2|sYg?{!W=Y+^N{$Wwb2$usPRpovW zc#hO*PuZVX?uE46^O~4vgR*?Yk9F>LMJ+>mVaE#lpvvpx(Q(se)K0edliqt5A{5fU z(%`u_{qm13$>CPyFzWbcEh!iti7L@ETpxh3X5Q`jR1y+=>9uI=6bpao=`zMt2O*#% zti`LBjCzjo(^^TU!J)k+pAM@JfpO&I2c1QnM`GK^9xaRe-XML%hy?L>68>>o`c zDnORTQ<0-*1V$yUcnfmeT)lW4DrUrYUVZODH^#mn-K)_E zt);J0THD5f=7~-_siOyNf7jy|v~7e&x!6>`fpPdgHI(o$qz5q?ng&Q2G(!IIbEn^S zjzh|dbEgFE^O@Y=_|w4N2%%fIQAO1_7@wSH|E7@c0d5Gy4@{EStcLBu%7a!DHb zgm$CW{H_omK_Z;;Syjt38;8MDPCZpJxJO8rZp-A|0J(}WJkJh~!-Ef1T90SD5T`WP z2L{0W*PD%8^HXE+rQ-MTv$gd&}4IBeQ&cgB+UR@~b*z&am-a1H# zkCW>X9fMYy3uS-oyAb!I!#p3cpI7NvAM+A<6pBBmKDYMlLX2~TR{~6H;K4xa($DLo z@Um}8!xTThtdw+Tkb5;~N3Sv8d^ZAKrtA=bFaq3b`AA2y909UEb+eN} zHzJkaKZ0{HU}*mSt<$?h zoVtYuFb7MX&c?D2ISj473biPNw{C&KTW|V6S+R(NOxKT+KeipQYs`Z`RArQ}A-&){ zBxHC#wI5mjt5Gcfm<>Mv#hl}o=mDQ~uRGuP1`w5kTS;v}1_X)pd!BCZf^W>yCE)A!~2(8$q{qj^Tzh+4V)1M|Tecs5(#K7FDW z4W!=MS-6^yW(P({owQXDU@35@fvN}nKImJWAy$m+M5+>~mrLNWw5Hu)br(8RD8}9O zp$y&6@V=e+ClB01S{7_IJ5fd_PfA98C3>9rWkX|cCV1{BAGYghM>PQnhexal=sf@0B{lbc*e+>?{!#4N-UhC!LLUE!(&DSXN_i%cCFr zVjI!uc}{^q-aHgtS|MsyTZs-54~~C4fcXpK=N{}+DL_ld84^wNO40f{>pLB@Cgk1i zSs@-%h~zAG*4{oZM5dbm=9}&}A$Bo@%&ChITbO&z{$qJaiOqW0RKE$8h^DEI;`_b# zK5xblk&QCw1^7kjaX(W~n7LlM0QL4*OOcv0k+$lv5l3Vrnm(wOEx$VtwHzET3BR3z z2&rMx^o`KZ0cwL1u z8qo81mqH$&j6(t+qSQlLGjX3HthsWn9$l^dFDLWYGvuBs%XCU18wpjb@+n)_qZ!vL zX;bO;C`)pmAFn_zYCJLYS$VAvDVj__5c%Z+)C`iJ)b;aG`=ip+Q#ExcH{z3Dr+)-& zaQ{6qK`ul$;vOEL$;ZCy^G_tNY9|867lY9#-4fLCz(b4$pD#N(-Ld@nBohv&kBuz- zEJHLRa>V`8^(d9Lp>nJw7YcX}$_cAgqUXhnm*{%&d0_dSxrF3G_-T60h$^fKx#p)i zy^d=@vUR)FbF@oA-}VS!8TQot)k>K;5J5zTE*>afz<#<}ZhtHPubBU&#OEoE=Ww4a zMW5{rt%CJi{FK4f8uXu|#B)772UMor>TTz&2HGW=k)ioo^o5PUzx!khdLMtvzc!)< z7Q8QgjOnOD0qNmVQGuKsqSecZ;9MleAG42$@;D>4 zFIJOLY}N1U;(d)E7p}J)X+lKP-bsSo$0#VcGEDWvR1-86>RTE0C>Evr;8R~?}Q*zl{Qe&*N~o1h@J$C_t>c+nuvbp z+W0@h^SnK3hsh$C*K?cWMJNJvE&B@#p^w@iL7O8H!`C>}|DbM07IQ_G=gG5U28uLaQrec)Oev{P|@gin_Y* zUS~SaDbq$?zIBoe^!qN#uwd^}2#P#Qvs8&>R3whwq$h(HWry(;RWmA;J$_yzs1)tb z-se@0jj7MXRaip{f69^h~D^m*7WsMc~UDX2);_U^z{WgXi>#e71Rnt?vwkO z!~uyKmLKGm!v0aRn$lpw}&egsMqsChyB4$+6&D<)1@6_f_cnIyU`cg zy2sF-LN#%3sS(yhEUm^xNJ#Rc*`-CPaG<4URx*ts!ra%X=^V^|kdhTjVR;h^MORc3 zj&nCa!rl54hTTNkdt@)Vbgmd(=Z3{oH^0cBG zRux*uujau`?ZN;4I#$Be?fO*l^=8!lrPF&Ys&jBT|P}N%qQqMuiZ-s3m_Dzb?D6P0h5w)o77hUD@eKA)KpO$uk+qf-{lV zzwWeGq3gvuE!6D=a4;!DU-U>OoYmUHMa^1)IE8f=gs?}gc!huO?ZPxTcq`xhS8Xw3 zo8oGAsm_NkA^!Bx&J;MOvqqjw$wxECgZ7pl$p?+dJ7><~oLjp5vwW|aY&7GXtZH7I z2k-7CNP0d@25ZL{A(hJ+DDGLV1g}mWjGG7*zrb8o%T~Md`k0UH9G%sATp0g7vtRAZ zvr@t2s&AYyAr5hOZQfCp$b-Qr5|(&V0e=|p&ac)-%^?CJ|NyZSVdb_CC%PENb^$mIe3`ENZu4KFY^ ztwSvS8_s=L+g5ZC3P4q>>U}3?G&+`Yr`G055jeJU%`(^&!|6ws&*=1G5v9Y->)?7Z zxLLsPaaGKPZt9*Xy_$eX9qyGfOQqnUlv(xXa3$pJ6>F;hos8VS@D$aZseno`7oDJ@ zDlnhB;$$G6fu8ixQxv~eVs9wzjrr5nFwv8}II@(5q{tK7FEJ0g)6XE^vbzST&)B{# z3(Q4HZ#mpeH>-hrUM1Gounrb8#l_xVDnOTYO!R3KvA=yE+)jP{&& z5qw=z4<`ns!n1D^!R)y-&4gGPGE`A^&T1sW-A0A=_}7iF)4i4D!CQ$wa13ZU&tcC7 zPkO;S((!P=%c76_30ZZw1+vp^><_7VxKCmwS)%&6^exX20=y9u>=Im&RZ# zT)E!G?ORcU#=4(2@;H(~`}0Vi%p5>fB#q*M!}$0b9p@*LNC8i}`j$O7*So9|YRlza zk498lZ=^J}!CBJQM#D6hHj`F2)SqIKhED6aXhU{Yk_3#1N(9?|3~6wm9be* zH%M@?K6!|mA#Y&&gi8<+HNNxp6w>U5JG1`N2ZkHLa-!DUSh)fBXsicovb&&Wq*&_; z=E^Qzn3E75uR}-OLZ@~nI-%n9In}NY_1Nc{|D#*E7F{V0uDdta0lS(Adhz%=btq%@ z^5^(!WL|NOiw5TsQv?=nEMR__`ZYPp&X-k)@{q=xrWW@%m<!cQm|Wm18j>kO4qny`?Ueu< z?A~r0>6I{d^xfjguX!kc(qp`IwHYkh1)1*?D&TkT7VFE=Y|O3e@>@I82xsPpUCi9e z!CG8pvGQ*Qs$Yt{-S1Zq_iR*#)x*lb+PZ6-Z!sCEtS>9)Pu9TI{DD}rl~OP~gX)F- z+9f6 zFJ!_zcdYGs5ZIiS7RJO*NNzYcV`%Mx@}ueg;}7=(SX8?E73X;Peo~9*Wx1k#B1Ou) zwBF#VXmW1;5$5Q!#J->NbVOItNqfI`PoRoPh-#R^ykBi;n&V=~H}d_zvyQ&-W$+Ve3HK@9rK(Axj<~pJN~J*^h&oEx@u%%Xzf;F_4~i$zM*!TqY&01P#o~4-FDn-AD}r zqd8ZzbDv}3NFLulhI)WNg^zzfiiAPXh8w+meG)W;nzl|`kszvP#PFkO6v(V4d+{!( zLk9hzZ`w-|>~GWmlMxdOGe0a1N6%;D>u$7`f1V7hdfF_}X$f#stD64>2llStQ-04I zPKM|cqc;<8CBum6W@g-<0&wRd0S@PV){-NsU^{y2*p>j9u67GQy8PHq|a$!kh);Ii{DMNf6+PUPo|K1R3-Owj-7VvLLCZP;`24H5g}? z?Mqc5gQ0#BPGV)k&%EI^FG@A62rR~4n8Tc!+6P|_WM{(0VbLcYS~Z~bxl{54{$09q zYcx$jAQL`M@kKF})If&~nh~KR!I_$shRxsDN0j|8fahHetTf(f-Mt5|o61U_`aMX4 zR|TP`8s}=D)=?_Xc&7y-O{N*XOr$`jHK)*QZw*NMj-?;L`-`NTe>nafONLVUr!|tH zHNa#aclhvV6D)cQn~Vh{Le1oo3F$-))WjZFJP?GqgHHCS~#cTgLYNXad)h!t3NXh-xK||MV-#FC zZtwcwaV3=L-xwGn*1$Ebb3z^|QLw;G%RZA<0VnB1c09(aVLV=bR3ae?T)v7X{?jZ6 zC9{M}rGE%;-`g#D;@f z6|}NB?RvEm4KZid6jI*eoNPp^^Q0&CS*N$3;2DpB?h7`wE9*s2{+F&T=T-$Y_jv5& zyo-f5+YbJo3PqsLklZ;vTLzhL1=xu!@zB}%r*B_wA$%A4TR!eu3R6njL~ZK?xPIxv zIX(G8C<=H>P&rrvL8nOh%5M_E+s33>1MlZv=^hE%)msG7vQOmpyCj3N{>#jXp#nJ7 zl-=nVQwW}4-+ng5d;M1~`wNUm3gFXvRS)@o0UUo`e%D|v4Z4Pg@|u4Z06A?B^>f>N znB_dl^lLr?#3c+CB18&7aJ9;o4xfK{4Mn>5(PV*b2xr4x+d@bU?2vn#kPF4hN@o>B zvVldI64^s2gfV&9QZ$?cgj#L+anl^|dpUM?bh8kii7L#g@#R3l)s@q16`21wf46u@ zz6kc)G@qP!lntN7$#WO^^5H?}>VpikBIrt4k{JAz1qG(}M;MC=fZ6}e2%U8iRP3TZ zciSxszB6#V{B^wuPQ37a{r~-C+?}=^0j4a>xtBlV!e0Unx0)Ku@bjv)J$oud$b@m} z{T_&+3@B^Dml+-wLVj0&vAumJ(5`s7-@xAYYQBpRtt|zhYhm;LnjGfoVNJPQGVXJV zaJ0&AzZ{uMh*fM{|Z_@ZZHR>V;D`jUZt+ICEYh4BQ4a+2gG<;f=4gWD)Lx5TE_H z{h-PpmJgpl7p|NM2Lkq9=PYOjEB0A+>*L-#(&?}{Y zn~fD|^$`h1`R$iFjib{Cfykqk%)BcwcH%%@mqB zl7*<^s8to){Na~8AD`AG3N)~fyE!c6po-WOUx8E3ke&EuRpKrMSerjseWuMv1J8QR zOq#S1Ide&J!B0)#k8}8wLJ;Ot874T8yr|9nl|`3qq}X z!U6{kun)=LDMj!}Df+f`bK!z?1WL^Gx9;Ynz*`b^KJABcls6)na6&EyF|Zls3=fc@ zNr>TRMHS{Je>i*o!OM7bt?A}RcN^>(`pYCP#7IC{zK2%ax06u%)s>k`3nVxhtDeB* zS&bZ~Ou7h(sfhO08^po2&5v^|@h%38{5RhW8!A zz2lka?7~d5;D4<^-BC_cquqdjtNz$zS0!Hlq90B&DC{vXI;I z(eKwMn;$w5m^Yb4_0u3a3w_S2_`{or`NPxxEwVi=DEj*dmDp4kx;>CxxgA1; zGpg*9bQOSt?|1j<;`sqsC2EdDHh^cg6G6L=gaS(@{u!HOBYO4MIp2u&uy|xLX}AUF zw%%3x?o?!>^3S!dpP1|aN6~r5Q~AGPJVZ(Jiz1Z@WhSd=xI>6aC`m~fQ4t{{TUptA z@4d%4j?HcFEmYb=RLG{~_xb(lyq?#~I?s7N_kCU0`$7#l*Q*-{7f(9zQXT9`17rOj z9tP4$VM#YYSbP>7etusp%(2843y% z#nY~m{!86;5&L;EAeoU({RB7hYuw#v^+d20u6i`?pC*3ryvm&U)C*-O{9BlXd8rjt zZ#Js^BV050*04xJ^86{QzA@rd*+%xEBOi-yWgHHmEYwmlwd3TxW+-^Gb}kG4s-z@TjKqM4Ejz6oJ+m_1~NKRN)(^ ztCYDHUGUzF)q3y2Vi@bsmw3}rg`W%GoMm?HhR090KP#t@-r%^Zq+8^EPy4VXtAVEn z@|xZ4ti?;<@CW60)%$C3>_yV8kk%f!y@`G20@1?_FSc=%wG*Bo(}pm4<6iKf=KUU8 zDuIu;U3YD?AiTV&zjjOO`e3xoXgpDd^v0ZElC5T|BRbh__LJd#uqL?VLN%d)!PYlp z7pm(}Rbu;X|E>L?Hgojf^(PcKHu}8ur6Ho|^TX#kF7(6p3%WlH{78OYP+g;A1L3^K zY+d>1)(=ZJb+`lx@91NH9Gl&(dK|uW#QQ;BKSZ-RKNPVd{bBSME#@mo{(GloM?*(H zynh&=6@P^S?IBm}f3TAIB=Bp9+pB(wb_3iuAot zPrmO-P&Dsqz{|&_2buc%p~EO|va!DeBL5CX{NrmxkIwt&DoXmnas12mo3SO(bm)L1 zw@V|IpE9{LNVp*9Z7ETFw}?KR#wJ-nc;mZT%?h@t5Wa|^OG(zg5)cVUVsks#gin-R zS+A}2K@|sw-}GoP?9k0%jW=sT=aTlf<5&8?c+zSy=~*$w?@gzg^Zf`CyZIU{5OP zEub4)60s(nv+Qr&{e`}H@FGfdUw1<@8ZLKT{Mgk2npQ?TBxQ2JZBBKl_-!*X9?5)c zaHs?FB%J1+5dUFWgHE*SYBO5bhY62G6CL$oWpAuh7JN~ylCu1-1xG6v7sL*=!`LPE zc1Dj3@V}(GX+p3CEslRo+(`IhcAt!^O{i%wdUNIsw?YfPn=+?OM7BXZz2xKlEhP82 z(<-L5RO~3!WahC|_dN1~0?5(lZLj!QXusu7vxw z;Lf5nrg8r^m~SlG`h^k+9xC-WHm9{9mxpd6M_C(;&Yj(-x-AseaXMdit!zOh1&7%` zL_ZuoFU2Vse{^bxr>;I! zty`v05W)BM*<1_SnOa4kZEuHZNuNz>Dmr-Dhc7CLt`&#t|M^;N?*P9O%}+0!bHMYz zW$x_W){2$CTb`cM=zyr0B&FarFNCrG*b=x}k!jGln%lbre%ac^^r;d4_b2W8<DGk&#q#(5^~??stJ`vK zSs)dCb&g(i4{JrY!#m6x?K=o}e!zR9cN(_-l$U6&BCm%IRJ}Uc0Y^e>H_yeSBjw6~ zJ1faYHnNFwrV#$rHEmJreK#`Du;TCfngeZU#j+TGJH8#fv`)njHf0d{=8p-QejDE0 zce}e?wjD027lm5&X5gY5MXeyG4JqSJdirB+VB=7rbj>ycf6X_t?^$gl^KO||{-ZYV zGv~6zigdjAActHB|e3x!9 zr=p*XVbY1s9k@Ze`&#{(R!FZpbZ2OHGQO*~k2q!7fu~fW2l?N&kozZ-Qz0e}1u3+y zi!VFKIcItogG&o^I63K0t3+aiaHFWdLML)%=?pt@w}5=qh-a#HFjjPy9i=boMC}Kz z?Q9LCFZoiFa%J9A?ER=P@4veXj|^lTAG+NP@mK2XSO<;K{Nq3E&7NHt_i+7v_|pV+ zJLt{VGh4xPPv1|=#P8F8pwTcgnDi!w-0~h%^#PyNXbq}*H!f@tOZ&FF2|~*2j7#Ri z;CR%gb6SPn#8(yg&my`J+Mh4IJk=8iiOv__^fB}xJuL5k#MB5H*|fhwBu|z(M3VAq zJ%}cBc6kPbKld=o-zp{pN;Q@a<@l2vq1usi$MWjo`j>>K!*V&mlIo_#R^5ZOTmwIY zYZ27G#NEGHo)3Q~m|sMX_TZ1)2fH2--GI8<#OyRx1X3!I(hKi;aQL54zT76Vhs)vH z?q*g(ILw)ovV%Rif6vx>rP)fDa=94hSV4i`p`mH3`8~+9r(>^5NjdPpJ-l{glnQdp zb*8))eaJ@0&u@NfQmQ1S3FM;>f@TX^@Nbs0GOTp~mRu{k?h z2JCv?yjw1-3_2$Ki^RG*v3t4tsw~M@biJT@-=vm7`1@z;*U^#Jy%N9M&_#mPtb@`^ z!nK3f&qdOBI!GU}%rmb`-XO!cS=aMU89e5YXT47LlDpjRyi$LD1Da#smfd0}ud`n( z-znKfd;n1?sX8ubdTreTLop2sj#1uP@wDRW3~zl#kzho&vV-k1G-$J0qz2Nr;4dcU zT=)=$1F4C3^~#7|=ykY~exM1()=Am?3rxhSYE&-fC%K4-FO!^sjR?-09U?cSVye%n zX$Hc1Sz7wIgHfgdpA`6?;uK29aPH?arTJE8hiFn3flQp#jBT>!F{ljy!@X=F@U*Kl4Gjt8#zu?npQkTr0f+f(SqKx^Vo)LWuf(fw`}X^e|S2 z^jr^!h5MZ6KObu;0+tcGe)CTma33~kDfOm;zotY$@XiuwwetI7uaFCLexKh{RkPti z19$lck~=s(*zrB*a{*lwDnko_^`4d+L@wwQ%G`t)VtQ71kaIU;fra^jm*@y=G2?$ervv881^IeZwWa z<9gNLbvys$^E;$3IJeJ+jqrl5Ftosjt{RYJ4(W8<+yK0a_nxU=A-Rg4pB%r~>L4UW zEsM{t0XCL!zX>LNN4zvc9(@G_+l)SVM2OVh=ugKOzgY3U#uQ(KAYE}xf4Cs zYe{6hmjdSmg}m<9)q_4w_Qu_P4G=gP6u#g_0i&Vh;XRicz)p_+lAV1$@ECBEyxd2D zPYmt68WRm5dA;i8OF<;LbTh*@86|ML;C+V+$!*ve7U`6%5+56V$o03ZC2+I<+bb2t zCaBcSu2Q$C0<4fpb1^A~GqZ;$1GY88`Mly2F-hf6u`yIPS*{59#Kd{7&oskBbCoWU zq*6G#jn&-wNded=RXm*d(gMHw0}uRuQUYrZTc+ru@<7Q=(5-pC71Y{lgBm0}wfT&0YOL2*y<@INxmyhsmn5oD9zgz&l#Tlv{yt>8va| zUmOSnAGiB@Q?Y|kU|wuERuqK-*UFEuYlXs?o_6u6n?vxLbMfX0jK-^OE%vYPg@Oe} zj_&4o4*w~$-DvlSMzfs*{F+8#kj~AYmfQXu`am==XLl4zonXl{h6uRTcm$j$J7XDz8dAA>~TknV@C%%U#Gy&Hm2&-v!g&U75XgKX@<5nqMN!! z(t#2%^;q6x6tvQ%4w7~UP`b2EQ_3w9yhxgxK7SM#((dS}Ej)7L7nG3hP^6q`3j)I_L$C4p^5L7>5Z{CO)1>f`4 z+a-j;;NHZdL>-y`WS6rxn&^+hg`|_p7uh3W<^JfnTtFdw%lmV`jdK(ZlqsyO@I=GG zL+QqRWWS(Pz$)upKLYk@n>T1H#K4BQx57)gh49B_;%BG!2#gvX4e>XQ0V%bW>eJH& zkY?!4eBk3S$f2W-qE9ru`uuu@R-6wnpGEaE7!1Rtpse_goJg3ZH*U@(zG`V&sQk89 z&*84u`^H`UVW3j|ZRX!ZHYl9azFB+WIq@BIdueYB26I`R=lvd;;Om+vX;(7@1D$fF z&5d59x8wZI)yXt?!ol*nMO27r|?X zLTrMkD|L zhG`aeLIZOjYrwN|thc=7Emjc(CAux;S2lG*30(qpVr_8hM*V!&Vh`dm$SJ3Kq0;+jxWgL;yRVys<>kg@yT#$OWc5MDGwn^LdC z4~!Z|jvP(}$rla*A&JCyxnVRVd4ik+Ze-WVO{9Z-id&8pIakk|wqtFstw-y!vc81K zEYjzeVjJz$3eg{bxNY@nz~XF&qfdEqVZ=p{-+6|dlNFdgZBuK+B ze{XC?GbVJ`D&!w20h4jVcV4|s5U1e&UBk2mfi5;ZY_IB!~DR4rGcUFn`j#l@(ZkPGqigGDjTOSi{*QRoNg^!Aju-OE*B&D?B`NP+0(#uI6 zK>kJQ#nuL}_;tB)RIMGOKa}qZ7A*xedfT*hDh*J7r*bLdXFI|~o5V~)Daho=y^JP2 zMT}a=YVhd5XO+8xh8StEKc4IM8|`{%Jr$EUv#}Gwq|%6XkK_ut>Zk0x5FEZ7YFc*a z#A)wibzWUG5Pj71F=?(2{<=!!roHII?Y5g)jtQ4RpK{(Q^TTyubdlj#7B}(vw+e4K z>0buho3t!U%xXb-_~-B1i(NQ**@{o)JGuVTjsd#n8rWJ9BJX#*i}b7KTy;8E4j9p? z)_RoWJQb>%a<#fpw3XL7Cbb;6(M3d&Rt@}#-oL8_314Nx{6E%}a>)0u+e*D$4ewr7 zgjl}m#Eo2vCj^u$AY%PvpFLZvf!XqfM!ab!ns@UnE(TNpoAu`?f$=Jc`%(Ah9`U6Y zb&GeUcUFM@XTG3KZ>qpah*{K>=J|`~zb- z;esx|I~ZCIIdyvv&%{E{VXE-g&YqAMmG)Y?{#v_|MlYb@bl41!1L zwCp*jeCT}?{PO=qF$u?9EJxPnZa5-8I+8>l!eLlZzA)D0JGp@hh3DOVH7+(Q*b!8hrCYx zpdz?67q)-;J9zbuKa?2lF&&9$gli>FbpBDuxytLJy2GS3ge@ihTp;&pRvYcB87&_o z4h&voc=Ql8>kr+Cc+&v3&RWZE+y(G*FfCX3)iW%5pD388+W@=Uqa^j)_! zBe3m#tITjyJ+vpPp1z}>56^pIG(trau&ZRWW>${c*;uS$kF~`ZgwC|EEEIg-?tE|VSRqJ%FB}dR4~KGlcU#vS3U2c+uO8sd z1+g6>aYk9eu-s_>lY{t`CU10pli!;Ody|jM;fybs)MT*Ur%|!{${=gRfmFEH-n^^Q zz?1OkPZ%BJEyYXj|LHW|iHE}FQ%SYx2Fpj9q*vStA0<@b18;gbge2dcNR@Da9k1&D zee5blPwMp>rx|=f>`y1lZF(D6pMG1-wYPQ$d; zm3s*>y7>2uUd_0SC1~E#^;;r7zVI0hYYD15>IlCI%T6cPZ%yevP4w?>3FSC`i6G4D zv^R7TwuSchOSb>{lw$N(d!D5E2-MLz=E|Dy2-@uPY1^4fksLK=72gGmA*;4S@Kw$o_?oI<&hia*%h zD?t&_7fyNE#2<|FZP9B%@VD#?_h->!EZTE5rEYU3eioefw{8f9>bSH)=lBAYGFbR< z;zuT)o(#=l_l7Y+1(Q{yirDB^%=)M@b;1SGxLt4+*|J>`?|2O z);~5F`L~-pK`ax>%5=xxHk}1o3lY=S0c&89(=l$W$pQ=Atp7qy&EV(H*68r#!Ej5K z>E1fW9B|zIo$rE;4cz~Or#v{~VXv>&Q{G2;ud?eX1dxGzKHz-gc6^+q`o*CbZ!GA3)Grs}?k z72#iezfAW<-#-zbGuCVEUm-j^9q`yIQVki&(8fTxhfh3T1s1=p2L|o+$?W90&E^

eH=y=$Q_kt$tjJ-?BbmksE3x>E&P^`d9Vv*&x?B;8Ho-i5iRl`Pc}J zmVF;j9BTl+h_KLQlFzO_wqu7(b0h3Z`1o|nlJp%|M%OdV)L>56w9gjXMmUzEZ*kDC z0bUM6PIM|_>*Cgdj^zfJ?%^NlcWZ##$$JgViN7x}kRjqKIWOJgwv8*%Y=Hb1OW*4+ zHsXfNSG%-K>tRQmjJKiYNaql#;*So#PHc*)pVGIdmj<%id~w&KHWKYuA*ApW?`E*fvIk(|T{=d+z;U%ltbg3n5A5uBiSe5@q@ zFR|v261ODUF!zrg<#I+gSTemc>5eOhX#OkFk~i8gwk0mj;Xw-VUGIx5&Z2?cHHY-D zJ8dZ9m&nw8KO7d+wPF)Xs6Y)_5sALqhK+ye4cEQ4hgZWD=CutaaPZdoq(1RB+~s5z zvV6b=^#jAq)a#0XN#umj#s#^YM;}Qg+hlAm zQCp_wWy7?V>7geMt@w6##9KbzOq{9XH1NEi0bP3-A6*u2#mv~`gz8IqSSj;ldYS03 zqHK0w8NRn5?y!n*m@mSB*}G3C{}LV9s#}&di}0kQ#%=jFQ1F0B@&k{g7`W>aTdQ%m z1@qtJhu05KQH0sULN7cV*iTx$^A>Hv7_YO{^@Ph;%*P^FogM^zsmE_s|7k|6$)mrY z<(DB{*QxAh$zI?vQ|-gtNB)nDVW*vmuc2^qc;1xT3EVPxIHuB@aqRr~(SJo1D6_u* zre~fB@UT1V)pcsdz|HT{orx~`=f(G<480fd-0lnIuQZ!+x94!*EK?PBKQCD**k^@* zj~mA}@in8EXPX4YxeCV|>90h^x#C`_7McmWaC-KU=f}t#6|Xw2yek+(&-^M$-_wL|S;9iX z<*HH0F@nW$ODI0qZ8^$a(}=$dbM@azRHG5n7IY%Quqw;Sc9y))yB1^mZ*Qr_uRk1L zPUMB7HRlygufYb~_bkKLvZo4XgBm(C?$1~?&9w{ z{0e_LS<5Rhma0ix>cZ05Ap3YAwH1f-v$jA z%kbB>nY&|M!Kl~GQu=2P@qaN^9&h|Y!+lZ8z3(0epqrPjY3*nwo;Th?$5lb{CxdSs z9m0LkXWMZ`?br&GSY|ruYfeRTm5Mgn8`2MXuB(jIq#W}Ecis6+&LhJtxw{r3?UC!x z=by_^hEo+@+p@^H=AXh|&3QdToXPQ@8ahPgV428uY;1+t?)CTb>yaBE6>;QA++Oni zHXnTNG){7MbbIq`BVTME=c-ygqU0^~*~; z^j;hcnBS|AJz9*_wFM0Kmc#L9%LRs$=E)%RAcLOMst7H1SO~xS<^{PE-R0|!=K=47tZgnnh4@?lGiyT< z;U$)ZPt6+SgJI?_-czJ+Y@tAC%9HctPS-*8BdH+mbXNi{7eKgyHsho6VxqT7c~^*KK!Ll`U{hN@h*_Gw z<08GiK^_7e)_bx+b$+}wY9tS?N{#lbml1#7Is5F2@mx6NFq^yoSuS)wnb*%gM!|IF zQdqhP&999s#* z=s($fb~+u7ZHjyK&yR{V!SuVC2nS+K`-j+;{8YmCvE0rxPDK;*-GB4nP~gv^R`8@+ zGI*UfuHX?b#nfLiH%@yI&iz7vhj(inxLy5uh@13+ESS%jt1^^=?vJkTA0{JVr-kBX z)|65V;_lgGbh#Aj6|W}??+Jw=!IX$~ZNyKRdCyVUwiGVMSK0WE`NFQ%aeeF0rI>qz zC&kvR6uwbgzVf_qhyN71!n6OBB6mCI2&Z%@s3fQIR=HZi6~ zF9V`~ut%OgQ7RdU5`7j!LNCjZS5-A$k&filJA`~ocgJ8~hTX3Y)pFeW=v?vI<{aRf z&6s+!D;@=O>sO82%aKzjyIXx{7SP=}c!uXx66U?X8mz2dfwsko2Y&6#0FMVZdG*ex zAX~^VQ`@@=G>m`ioqIS9JSvx`c5$YmhU0<5H0w$%Yl&l-J(>b1Mfa3iGH0NVe7_{u z#wvVGUvmAlT_UXWHd+_Lm4z2yJcGan%N z>Uf!>#6wF^L_iuy&BXf-j(EYcR`OM@9t1572~t@nn!tS zuzbDv@4qk31C#DHKQ6;kOnID=D^IJ&@;513D$=U>_91)p$P2>lNelI1CZErBm2o3) zJ8xk#1C{@lAo0gC3tWG5qY7nDG;ccIYlK#GJfE7#^ErNt4PV$}!sB5a8bPi*7~SRk zRM?(|wi!aaGENn^_u*K`o95fdV*5c%(VK?r&-Y~>cuv3F-<0__^lqDB3T}FO-pX=^ z59rT`UCnGMM>FBZg8!^3_+ajhu%t&2@HTDXDgH+KpAT$Ogqsvp*D>)7poM|vr)7HM zn^oBSbQkYRJehN+IGaBVMnUdK$H$4iBzM+r5v@n&T&E`I3NMy;@E^GyI&zroKWBWl zoDnI-`FypM6f$q0xNj@4U8Wwjm>ta=9ccJ?k3pyTg;bC|@)~078jvkce23xAa!i(b z`>oC_9V$DON-A0#Npo7mG)df}^{b8he|cs?wkD738doz0Dbx10(N`n&vt>tqL^cc* zzBXAUd&`f9r((H|62Ik%JePN|B;WJiR-`Yt6&aOd4~pMKG#HRqnGMf}f#Vd8cinB6 zz`dLQc~?CaD8K8y>rn`=EM@1-+uAWyXsgzRkp|>2w!1zjSqvhf`JTEV9T-{jdjE&6 zM(mtWbJ6B0f#WHBvf4bII9Y3&_c*f&<$c`DbGA_6O2i;tynQEr-#>3zrr(U|PV^BE z7f5dP^j`7$K*EtIf2_dzyBQho9A7IXdb~sBD;F{2PCU*Nz!qfLg2&5EjN6G0{oLyI zq3=W&*P!{XX0)`RgVXzf@?aV;?EG-h)T9H~3X3l+ue9J|6mPDJA<@4N8s64PY)9z@ zkH(){TCvXg*XJ1FatOY!({!V_4L8(RxOi`9MN^^0(=8KZzT($i_cXf|4=TMmI6KjT zwfq5JzJyi4$+bdeT4)P~xfJTl(FnhL=-61WKqVM)du&?o*o;*wxvZxxT5!TffIQYJ zVf~vfqg@Z0@VU;@`WcQEGZx_w+ zwLlY!e@M>x`L7bRChvSTA~+~YHOH`kMoIX*qSc6myDCb6Y)13D0=luqg+Q ztT`wnuiJ>+Pdc=lSD+ zI==q8;Z4q$OYbd9&y|AT?}CX+l5aB7`1wtCLpj!te;9G$pu)Y-2Pd|_ufsT*2es3d zrP#_N^Y<>{Bf2ZCNQ-sW;W^d7tB*!Xu!~zwpSPeG{=`P9XC~L-g1aYgfo~z|7aT5- z{8tE{D=D_aCUuxtsc~mDF$ZVU>;--jUs{Y*dq&}*Ivm@`b7l|uyk}8#>vl`Yh0BBc z&11jR;u_uYhK5hcXt0M*KZ%wNJK_(&Z^*Aj<=a{;hMutq#ujc7bcC;>e1ebiq!tsp zZvWR}5RTW4_ZGbM%YcB7c_XT(wP@DtVnFE*#LW&-wR}41ASbqy=4w)lt8?6XZ?|}( z{xvmDk*dphneol9?*VEzTa0+n+xP2J8i?1MI60FZj+=T%v!fgyW2=B7*X8JR2-#xmqE}D)nSW_jr87C> zLf-FLMfD6wb;+Spx7J|G6Qg9KEH|tUc(feyCxdXLlCe^d^u?%JURpf)6q~Zghc^ag z!o)u&_gKOaIq0_cme6%Cq%vz8@BEz!?0*itGwmhM@5O^Zj&b`UOWTSG{qZa~^hCr| zShpNCqfPpzG6M1WjKj^4Q(3T@neB6daJTl+4q9rjh2YY^&n|D6v%uDjX3NS_iiHIk zah^LPaMSQ!-N58buy@h8v2v1v?Q(k<<3pn{|K#m%K_-!M$aW2V`3|B?MyzN=Lw$L&1HN2PtLBBJe>k}JwNz+ z5`T^0=VN@mg4vjTUHn-lM>3=fTlH@L7mcCK5-bCyIe1}(`tWCG0vsIr_etnLIITl0D|}b6zLoK(|G7oeJS~UF6v{+)mBI^D{a%Vph?x@cba}mrKv^M}y;t`o?^m zabeAtyAc5e;p6l293ChyExvl|RUWFB@N!-H7y=7!>fvA1+;HQ!$eGuK16^x&d(d*y z4}KX1PBs)c;^g-;l{?0Aa9|5nQ;q2LF%nauYqUUS%31BJ;of1WjE)RRQ#OFDdYCS3BN6dleRSd+29;4~$x+?q2<@h(LUH z>BYQVb3De5ZPxVu`4rFa`?|Nia=^!uZ{RS=O=uZhGyA;R3!erbGAui-4W8wT&5cQUWMAH^Q1qp_1lL&7m8l#22^U`EpNnlOd_J}me}0yVn;YjOQsVt_C?x*q zS*=XC9q8)6V;A9k?+I3~9`r}0;_Q}p<2i8r@r8gDu?jRF%3fuy^v6$2Wr-6!1#mlP z=B>MI73zIUZG3LzkJCLay)NsEfm>dQG9^=k3jw1x_49uC@fu7Bo-cv@>xNu!AFM-# zWg8ApFF#Zhf8*gm{M4tHChxQ_A*!uUZh3mf52YE8J^xAemCtUc{Z1s$8@<|zi-#2b zFyqjNZfDXDH8rhTd709HZiy;wW2JuhGJZJs=*v>L`$DDP+N}|5ZQeIn=lT=FUZSpr z2@PB<3J<9%HzBih6vLoQARhioDfmnJ3GKrc30uug1D*(E3uqx9Jy1agvd3A;?@cfL-PJ_F5#K}on)pF1%rM1|lN_OXd! zohY|G>IFT?^%OOUDn8gvfuNJ)2Tu{bvqb1nyKq?&W}N1RpA*H<5v?(a1LdtCCsv3h_uda*>OXSF{Oveq@A(Kk|gvXIWD@`-9;oW;gVcT;lpJjy{X; z#P2a9boQ&PH<;gJkXrMpLp5CEn;J-f%x|Y@KOQ(h^ZZszPr~0c;MrDqj6WUjEI<4c z8g>ITEoY@3c$Z;b@qco4$vL1>HGVy{>@JRd`xNn-^kAL67P(#G6xnks_(t0&yJ91| z`1cpuh1io9u=gb4G7C8Nzh+E%h8*XzxJ<`LpTl5K^)YE0%vi7#-xv?UhrwHYPqPtj zSg}%q{CGK(e2QrZf++lc;!+cZD;A#yzN9JMuYwkThWm2U@%X2=YI-0t1ee3Mcs(nv z0VOUe^{=ie`1)ox&70Q~mxMHVZkN@;sKO0L-`aHS=#wxzy=aZk0z;g9iBF9~&Rur= zNH)ghPaoMdB|OzdiYV7K2$#ZCFFCy0mN=kZ?6k3!ukE| zn?D|Y2=mv!rUgA~09}bk10q!72eI~-<7Kl31x5=-;m`(n?L5m}o=H9!s977l)ea%38dmU&>N4%^=Zi0*t+ z4@?1J3sqk#aI+ov@9L=AIN3Cucq#)SsVyUV`C1j0t+a93fIa49m>4oL)`3M`+MS>< zvfmVtRaPAJ#C2|eM`wsHAb|QYAT*HpMCx;rA_x!si<9}4;A2%Fm(BlTO0gD|Zh<7p@;m8PWjH-;Os3kqVf4I)rCE||Db^Pz>NnTyZ_Q#!xS}e$JJvVhG4aL44 z`LX8%6}UeBs>YYKs3A2z$Q74`T^v@fX>BDSmNmt2DvWRlboRWRk|n%_W47(7&P8x_ zWn?$w-dfzSbdP2eRE#ngk0n^f<-yT?zSr5^YS47}4Op;K(ORxZBXS`N?l5ikdfifu zUlvdQxROnHVt;(^ZA6WR2qiJ;llLnyv*+HGD585LIr!)L z<%NT@qr_58LOI^dU6))&dXbDKd@O#OhrmZ;$^Sw=mSKfb1Gjy`6+0Wn|`<)O2!mTUv_cx`rH{)}wPjkU`exS6=#!P6c6!Qnves4X} zf*gI_iwwyc-`R&X(x>JpjnehI={tJzs)p)IHU9BT| zPFWUlpBDG9n>g-hG%nyduM zz_rTAKVUn_#dx;qrYcwBu(5O2Qa9m4RsBpXINX9+Z0}f@uT@}&6MK!BQ91n1u5A6b zm*_k8zUjlE<;W<1FpXup984Z?RG*q}#?CL&oS*)cp?s<1fSO4K>7C#i4#;lCK^k}O zom9ddxM6v6k#LOG@N;?rnTsWO->jrPDMR1lUhmypm0%n4xZ!$r6AI=m>AR+tA)Ig+ zlDb$4@7+)L?c{F43q4mixRUuYdk@3O3wo90zBqS}$)XX{M-Q<4D=bI3Ikx|VRmgn2 zmG-2qr~z+>^sWnyu0SoT$I_)6E8)2Q!8VEUdc5|-_$#%(lH~h4U3NuR05u}1l#BFN zjUA1+e(yjv^41qL@XVJ(j&E!PN&ceGvfjsS)EeB;yMANN&TKqWc-M zI;`E*CDgXA3|e*UE=Js|#`(lo8ms&3vF%6K$E@N~Fi*I8X>7INV7HI4zBn5 zyAD%fV_A-66(=S>HsOG`S$A%3}y4Kar7_;H5S1es71iBj4dhIU7 z;msUhce%Bo^|cn+9G(=olCQVbLWYWWYrVDhinOA669@O}1JNLA@Vt`Kl!8v4$+895 zif=-g7+6jHK-+YO*Z9BheN~DvXs1iCGucB07pE*Z*MwlX#Bq&k*&^gUd-(RkR2#lk@!Nj6F%B~{ zY8NjM9?}LEOODyaHjMvZ)D)7DiY5vP+a3pzxkhyO!`tyTED?`4Yvjnn@xSY7#sYab z-n8QTsHqJX1NSm_k*}3fLLS;vb5LwPqA5PG4bSUq?QV~ADV2QNg7-}Z+vnp-@#)>& zbRFbedHd+w@-O7`lU2+yQ<3;i6bk=9e@ZO={v9lA%h-Z1-QEq|Av!_tfyHZzxskZx zXnH4oSTphr*Sn-rOYuXH>L>m3Q1n;!S5Vy3j7CL9O#3tm=hAayCqFd+wKrAi1SB`1 zEc?F&b+R88KUSys{;U_Ouj{6L-$y>*swJ6wc2dz|Z}0wh0WSDaU}W-AWFs=CZ7AQU zN+s8S~s2Eh;8+lB)6#D^}G;oh}6!w#T&z(0KL(>ob~undZa?LEFaIDy{7B5%Mw!N z7J3~U>M->XophvkE^gTLK>W=eJoaC_ANE$< z2mlkY)izCybd*2Dc3xkiko0k{_^00r2d+&!lJ(rOu+irbSNMh^;y zv=P4$oo4~o@fTx9?paNN`9yfbln*V0V-k4Xy3F-YF{+xHZKCT<0p8;GdcMqrPb19! zS^8%QDlFD&pBN+lY;Eh!Hv~%Xzw}J2Q}Yyby};3PDl!8uN67Fu|3^XExR*JtP~p zxPCDfy+p;}ij@Oz6w2^^#@K;?j%-ji3HelVl<+}BBF{J{lp(wFgD;(l*&w}{Ue2PA zf+BN%-0Mgmm*ivHNpB zzN2BcvFq=QxeUJQe8{MGbUfJ zPr0W8TV&7aUadSla`m}e*ii~b36I~kyPOP(-X~5}>15*rKN+LytHo$DYrSDdNgOx} zX7YH8We|TtlFxqgd|X?K(KXG1?k-HQHu$R!eW6^B@y&cx!N>|ybmjkkbrFDDOCTk(3&u;@x} z03K9(|LF8{JFE>#@SW^^f?S$~YKGVEqsZHr;lGCb3IEocXY=uU_vrCv_JUg;?Af)G)i(Pv;@6+IKC+tE}4o=db}(`)0`_~5<8+m z*l8|fsH_m&VtRwtrBIOf_-I->OB@KY-5qPPD*-mP9b5En((uLoCRI+qMA+(k%3Xrw zhdM*7^DVh5@W~UAi)Jk(2XildqsEU?cvB&RKUnL#`G-LMidQ-jSaY%4%=**-IlQeY%CTz-;s0or|-(|1tim< zII=!sdqV}hwrAi9O>V}6w|>|>e~|_QDq8RQ11lhV++gUeZws!~vTZ*CX~1%$$FQ9A z24wE*{L!V=ic%e$1`W(oLD6GMNt0R*Z~l0NUtZTn_D0Onj0RN%npQomZQSO9u;(L=|kWe+Z=ToAG$6yCVVh z?e@8gZC1abMnMxtxe-xc{SX5mX#T8Le3_=B!us}iu6r|aRAR?U#7N{T+Qc9^v zhe&sK_t3fN?h@=EY>)T3+!HGzGC!Z4keliRuu0}=) z`<6ibv3zMm@;pU}O-Xv(5um~-wMUb=6!N)3Pkzkt!_jrVr9V}X@RWa7RC5-|olxOt zedp_rZzp2*l0@vF@=x^Y&dLUN~3R>>rT)s*0CoPbY zN=Jc^_AoEq@6}L2T`?nbIT>c_$6T+SDF*hJr*gY82xrvATI6S9GJL;a^X}oP5;#)* zul7HeS}6E-vZEs+8S;3!+4tX_Z39b7 ze~B#SKoI4rWXvJ=F+=~}w-okvxF08xTwde{hNYZ&lKjP>v$&c~L(>6~B~TL-+US>cnK^Z~8O7oFUnDbUPe7j&Shlk`(A9^=vWhP{Gf2Ykr> zB`;aI^fLq^=U`(U8?eAThjH$fv| zg|jc99KO`wUz+LagJrFAVHx#WctQ3{k?_3=5F79P_lL0`j{CJfbN*z5Uye?ndB#}@ ztc=I%Ekyf4`Iq&Ln7giMs%4|{y{8h2)!tCs>GZ?dP_=CWUwo0Wpd5EhvkLxpdnlhU z?S~*i+RX~QA?U!V@nugT@gHAV{9I$#4<668?$Gx{A~heErVPnDsa!fL;`X#3zTRYS zC_%!N5_h>6MAjQ7=#@Gh`oVQF^Ssj|QXl=QV!c{W1&phbes3-MLHEzpl3G|Ao;WvB zIG5VcRn|($ieli%Wcwg6(Az| zI{6`2KWuL}a&e60^6IJ2aM*9EfZ2WDPu5WN!-JrKmE#G8Xtmw-zT;#Wyolvk^UCQ1 zMNR2jsy#)Rw3NwnGQAYygP(1-m+1p$Q;Wlqy%fA_tjqL*%*)Ts#>L#}=!K@f(_A94 z#mHSg(p)q|fy(c$wl9Hjb^N^M-tduy57i>j<4Q?9mf8ac!q`Psd`eK!%fPYF zrvUuDv^TCTb;A|A?z(5GCHQZ%)e9YmT%g<5Ugjgz4Z@C3ITzhZu$alRBHo#BI2kry zIz(~?7L{D1M|sJ)H8JE*NKrcIEKsLDu_r!3v+up($;E_sSUb?fk_v;e{i*^_I$$WP z+dX8Kf)!`EvRMa`!1wFImp0>e&^b}sT)|Gk3(p8Kr6d6;FYB{MrAgkx`&+7|VntZB z_k?Y_do0*1C+Th9(h7ykKKvp|h4?{=E321{aH4s#txgp*Lum5dXK6M0s7ARe+DH7R z(;D}tg^2%p_V0;XGxND9@v{j8n7}&X6IS1S3F3@rIM8Fs22sTar zdN6vbyLWCd3$u2#&__i_0zK!Ya=+b#L-kDJxxvd!!e?~iVLcKJyrRt=5LyZ4Bf5OP zgcsm`S<%2$B^JiM8NU}^DFw@TV;$|3bR3g@aZP4l0;JHAiLN9C*xk0h&s$3)x>P$+ zHohbfrq?9-^to`U-!jA6GYz$8cbhEIrU25FQvIY!1K*%Sm$ik{F#gbJm;Qk?IPUNH zRsV7{=tRt@n-RSNPej|^{EHcICvE3e=}~u3IO^!kzLbhdG1ZGg@iCT| zC!KX#PQ|4v^D_4LIpC;U|Dc>93^ijV+3(P#Vd6E}v{d1ISaA(yPZLkZ5sCY3k{pDK zVoa?Pf2k1uro8>nq$UgLYP}DCR7}H+;+z5pQ^Ff4=d6%@UWnXHoz3W&M*2X9bXGkn z@cZ_OuX_KAv0?g~)@o52PH^0N#!oo083RLF8p`DuuZ?#s=hBcdH+I*0cnM^Arj$Lm zs=|(M*<^{QYi5jWM?<5#goSHZ#K$(2;XL} zslVx%vzbMVO1K<$%nO{J)@#6><16lsRvCE1Eb4apBFWooD7jbf(};qP<7XBBWnlDw ze}jrrE8sWpKDSq-@1d#Jqjo(i6MYPIBwxr?!qqbgmIZ`Y#CtMX&y&pY&7Ve ztM$$I$NXE+N@VNa$NRI97b^xE2}j-YweLw6<5tq&4RyUia@mc~o$@gLTm_Asu>vQE zuHTL?Xyw5K(Zw@t)uq#`hW>pl%qg>ND5V#tesn4qb@zI173r!boZegGrYY_CiiTtU z`9dD9nZ?fkI8WwCj~`t6quhaAj6Vck?JU4!k_J*L@nl`##y)v6*HaXFH;VM+T+V1k z2UN9Su)i(rT5u;Ot!Arjk0tAEGM!a-Yk`JOaXN^vi}cIKeW#8T5uVQaf%2wWm@%)m z+}lO+nG*V!K9by$(aE$>wc~X__rPBCrC~QRI%~KZ?4n?iS_Mau8_C0Mo(|XA=tc#X zJsX?NC@6Y+lhfX*I&i)k&iEj*2i4+&s`V-;*s(3)_mCoj!?yjk_xO9!e{7aV;Wq`p zo*4YdM%uGh-zrkOTYGWP?Q(4Y&SDIr{j_Z>V?CrC=ejwo*N2ihYcsoPi}95^V+prP zJyjNAs7P}Ac#GAP7#rZUD%D+;#(wmw(A{j`QiNVlte;!zk$KmFrcSZ}xGnkMIp5OLg#a=1MBMd(WD?3N?Xp%^3P< z4kWKzBj)NX$u>~gVV}~ z%Rfe9^sD)ei3o^HLDkPSiO57xCOI-B75_Q7{|+XgY!;q6(4YG2$H zY1PO*)&!j#j0p>`2T{`HakqoF3tG1<5JX}VWL*3zBlCk?|50SO=qXFgh^#BxKSDS` zjn#~PD}z`pKsVem#s`;uTe=@KHNhJW!$kHiLwMjR=dMm=OQ^lP-=reF3D$02(@~)% zxksa{eZ9rcAmT{F`ixT(h#k-qGov3u>*2k>qvOc=&9LUcK_!x(5`9E(X#WtdWg2c% zbn}5_F7DV%dz!#@dZwY5c?e6#f{hNR`hmX?(@I@SBXp%k3#A+y!kKTO)?Why;Rsd# z9x_0O$ofkHwugt1gXj4|Fnuu8%WM%aInW5ha=&T~$U38&<_)I@AzA;c$6?M>BZ*CsFX$Vgi+|$|b91BU!0uxF#wGbnp@t}KQ5O=qk?o_Rehi9pGQt4W1 zAd4$EBz8Rj`NS$hYi-L9`2|Db}P*gR{7y{8x|UP2`yV{N_aRlL|M& zAC;yBKaS9TmWIdX_==%pkg`O-UDR&4$Bz z_gC~C%7KwHd1veT0Cu?im-2`3O_J><9F$1T3h&>qk9s->aDUQ)wi22=a1p-cy+rbw zKi?EuoDCkpgY0Zh<(Ko}_lblpNwj4k8|CzE=;{DU)@xvyd;v^c39zR`lmhGWTUCxj z11NvSu;Th+0o3cRc^k75?h)sJ>ciLl_-4q3afIZbB_-6J=-~hD?PYNLP^L`Hp!m&||J}ekV-;XqNa@HFv`9QzH zWUw!Qa0HW<4GxC&;lcUacfSOXyqtHlrxc5dAW#**bZ_*cg52i>X^-=vhMz;35y?sB?3Q21{(ly|Nh zd7Lw?L%0(_;AW58$Bb;Cf3w^3z~OFO`ZV1l<(5J;NE$b6K(&JA$HHXKju^IxJaBKE*#$IrMu#F z+bEILLoM%DgW8Zh@>(6qelprK{biw?=s>=_@?JaCihmZe-#%bTL9e$iLP>4mU^?>n zN2@C-5hVY!{q-*k|7r>3*3bll2)7y&O?M-T#2^0rknojz-Bi{3cKZTHXW`xOzx61( zi|2hZ@y&XRzIs|2=}Phf9c+Gc)Zx?N?c4eZ2eV52ndi$FkKt|E_*-ScD!ibnnfjQv z8a>^y{DcO!eK11Fl*I|azO7@+re|GDadq5b^AJXGYW33C4rSQDsWgf z1-}bNUD5hBwZ|H}^#6}YqFxr!s+UA-Tm-P4K!d&*?$%iQsxQI|14s~hrO5+Ou4655M$H^Kch-RzIoksB*#X8rEKMHVX9pW-Y%t)rA{o_n!JN zJE2D3OGVZBQb>uLvC;|c#?v{wO~$J2@K)@jirkt?h@x&k(81AzErJ^SKT9p~$&2lb zadx%v@bmWLJ~2ILcJ{?!c;g+6XYMFpBRM`{Zw6vYmU=L8_ng3XFKN`Dtu;P-tr0wr zls>l+=|yI-4iTz)P2kej`nj3D83I^*?7tcGk~|JYVgxsWGV6mc70OzmC~)%*)knQ3 zz0!FocF1CSM?kmMA%U<+;v@i6kye;I|7)|{sZimNfK9!8udT~f2bjUp4 z5gOB`ip;1wLB4L<<^*pqDt)}iArj~WQi{D=z|#d{Rl{XZzxSX`bQCT!x`5WuL)jJ1 zZulFTIT97#gVxuO{>o=puwY*3s$b}aVfVe+-F!WGVeqW8%m;VSVMy^R4(x&OUz_-i z%es;NqQv|uF)whTOk00l>46#l7kk@zx=|diRCgYI0q?a0m{!oV&^-&=lNc!*+M zb+^tB_N(vXZ6ND~^t{a_?>li`dsA~ea}cOlw0@oY+XE$syLcnmJ5kADGRLVS1fJbK z6z>_`0~GcH@)K$uNMB^s_i-tl7@4C%gbz(Gpt&FNYr{4{m z6HZKZdbeSaQl9_ChIrtqJgM+Hs0+3(KYVT*)QSe~Q?YI7Nx*E^z0)J769jE84_J_T z7Tp+F{~byNyS376!;%izHPeu4K)4n>eOEJrOUSN)i3Sg)cOX+N=3M70lzE zR@(wU*bARdR3d6_RIginDTG!Jz26_kn?cVQ7smOB{w0QgQu-nVGFuy_IB1(eI+~H6 z$FB+pkMlqL8C49jo^(rRwVS{l&Qxw2C`U(Yt01`v!spxat+unO5w7IB99AH@6FdfC zbL?eseXuaZQL+&_S?z6INF5s^t}A#{u^i^kKACAGJcqZP4rvLy^07qb-}_?HuaIFW zT3RALXd_kI_G_;)uxugfHj7y$JU_kbvAInH-2ZN*-|UivKNZi{UN)$LpHWK{uJ;J1 zOn;6x?o2o~+!I|2lC6fquW5U`Od25b=3wm2Xwu*4j2jv{Py_u(Pg9?9ZGgWq1ya3# zOkpS2tIp*yqK9fswxUaK09bpys<WW(KMh=j=!%wB@6n`v;nWl$Q z1nPicwN9^bgZP}Mn{NMnn*vJ)O2dhrbs(^(tI3VG5w>guI!%jZL9NQ#sb5zS6b^?O zeNk-$7Wz%z51H~I_*co0-D?D;suTOQJSSHIQ^CdgXLt#}Ek;{A z#tdOUb-^12(!bYY>Xv%RPu}l*hW3BqwZLO+y^H%~5%9}?N?|9jKVbXHVa}1{v_DlA z%oELr_g&l04;^fPxUhEtgDjO$q^9@gVtE!+F&ab`{i}yD0qX{pQv{M%|Ai;)m{dF;#6RKi0&&yp7zfSLjuD*G-L!L-M*)9K~u zC|&#D*?TTuw7qfI=N3yoNQInrDzwi;hCA4~Wy%8!ADw@c=AH#?vY|ewyRwi$>G=m+ zPG=0-t~uM+l?tc#FTaE8Y+N*4tZcM>gtwoc$oAfp2z9f)<=$kzS{@)}rBY!)a&*Q z^??6WQ?kzzASOq|^-0O^nfUr!!JmwAFR>-<{{2iV?Dg+f>;yasKwzH&ZMxpwvzH zTjuX{j2&B_6PM4xlEs&-bmcE$RdHFg?{_9%in=-DWI}Z8V&-+9UI&0Ub$mL5b2h%5 zk&p8y`2xRP-hGQ53j*bWRXx>|9Lz2--~GNS72mUFT<+iv1>E}*oPuoXl!G*6UN7_@n=Lal1D!{1 z|K|Cdf>zh<;+*lx>W@N4x=&vXONgIyW5+iwfl^Sn6LX9T z2uJFvR6Ui46l`vsFmYBa1EV);Qp%Yj_;>8`mHvw)4~6>q&>y*SVB)&}pp7>OZzg2L zz9DsNX+=)z*+Uh;Kf>#NRnZ?`7+1IoGFPC$A?LT%WNy6g7GI;epf3i>lwNG!sKn@u zqr55SNlxa`eUm1;d@#8{SMAgY;RcLtePd=*2}g_j?j5Z5!Vs77IIfqq$YB)m^&(lf z$~$6HamWh`yGE40Gb8%{Wu|&`mT)S%WA&~7dg3)_1)EzU^%!NOnZ%G!=2|L$hW8)! zLiU!;#>ZRg@#2a1Om-9HV5O}2BTK^z1L_%^)=93@-5%$;nc*^c6=Ksjpyh?l-Fx>5 z*pQr?)Gd0VmP%oR?&g@GkR}}9a|&1$i1V7 z{D77M`GNlKJD$4Zr|Uy;soD*wY*2O(J{Q1QgO8OA=Uwp$<1^E?%?y%tqF(u$TBUE#{r(o}=<+HkqfO8Vo^ zYRvIzbN32=fFkW77V}^Uo>3Yrp-xpOm%LN`gj66(9W|ebih2U&yn`1cSSxX@$hjl< zMI6a@+nkUV=>{pKGVi8`%5gl)xR=?9_>phlZoNnJxir*EPoi_m(B@vs%t47Lzn{UhDxy0#9TwJy9E6vp^Kuwa5sr?4wjktUtOxkl5kB61-2NFRg)S{7B5Dr zuGbG|jq8x=DEH*`&vEed^Hu6-(vSPL*X*fWbv>H7A7`#oB6G;?erd^>6m%`O4>J~S zMDYf_Se>LKC@mOa*SSMMrgm;N_sk}I-r)A`>`XEo9&~L^rKO;*Ad}OsJuOJnzLW9c z`BY%dZ#^6pUWD}UkB{?yD{lGx-6zj34HT}N>T+Ew#3*aW|2QaZxHIM?y$PvTxo%9# zJv>^7BClnwO@6lHM|0|5Hor4qS^D^T($Rc$JF7LL%g~9}JekBUab>|w1+Dmfj~x7A zep{H4y$jn6P9Isgn+@j%_eV<-&Q{8&#*mC%-RS4~O(!EI2i_-z`suExVy}~urRi`t zrk+%pZvUDK31Vz1<&sHw&MmiAj_{+~6F%5Yoy&(jA72Kp^l02SbiUSjv*jBxz7mpY7<|&yLLhir#(n~iz(MqS@!hNm>xqd3j{UlsjB|RI) z83#)go$+kkp4fw8+BcSNR1&_+J>B6qRt6Av$WJ1Jwgu4*1W1k90 zXDAZxd7TjXVc&qC>Q>y|l$O9IKi+%P%~62eUdC0jh_{y4EN$Efk1i^a+j=bq)GjJ` zx29C%_R5C^di*8e=3HNRZaN;WIWwmy>e}(I0FaoncsfePza?eX{zE^bK$j=OU^KP?k$bo7Wn8^0K3)9m(LUy z0Jpnp1l>X`Zj&w5D8G>hn^!#5nY@cYK|*m)nqwF`Sk=)b?aKkqnhCxmr;0(>f%8PH zfj_E@cYkg#&IHS~VajYt3AF4MNZobB9V4Zjm&7lo!$Ag$O4hzI_?Aq&@{hwF_pfvD zTXm;^?9EEsNGOMx8&6J83mBv9`|E1Ab(3IdN=YQ{R0V9F((a9)Rl+Xs=B*Q7;~+-J z!mD|N?BhZGZigJDpkVCL10l62m{4Tcc2lGhde+%jmc}D2<-a z0Dk}Div04^9afSWY2ElM;LO&HEa9cQz_Y%#wTa3ZFgqnx?m;=ozZ(4f=ch4D`3VUM z)Y=2%0j*QKr2i+jT`)fKp(S*!tSpU5kh(1E&8H~)QegjJ)gN=hmh}5*pNdvl!|V8B zXZkyYk3rp*ORQmSai#d`H`dKuhS!cpwRMq^Xm`EsSB)^#}xt|Lo2dV96VxoX0NT{y* za}XT#56t$3K?msxmoKWt>U~!Vj6BYi zSjf#JIv|eGn_fw9ze7djEzy${NLNf8{hI-iFEdtIMv|fI>TiYo`5fppsQ=v+lmTxP zW3zb{h+a+a75?QTpS!V>-~CYrv{66FZ2y=Fb$nUc)b2&M zEV~J(b)o+1V?CnFn(dYwVMvC*I(f}X%1zLGQ$gk5xniP^t3MT6ng~g+7)B14G{JUZ ziykkk5;#$Ci?vxT9(sem#%6792HleUv}+9|u%qngWsg_UK>J#FQBAlRx_=F6(Gvf= zV?#x0)0PPM^)LMZ_0?ub>neKKvtA0%3cr0Wc^eG!P7C`*?>2+TzB-nxwq>9reLKSZ z-AmBldm!oSt!6Ni=Vf@;R|eA758Y@(++g;>H!m^eW>9`VR>Qob9Mmm#D4pK^2v{@e z6{-Z9;gbrB;oT$UaEgvCEuW4HcKW9Aec#&*JN7*enb=njhW8|j#l@_#rc7A-(vK$i z+-Nv9O7sYd7dGi|inwC86UeN#HbK?;4DW#uk~fh0?el!$3*406&o-LY1ZEV)m;352y42JU|;h9<9j4?^1_QP9qVfkwXxcA2%WQ{GX)`clXv!}cgVe5?9- z((NV?x_mp&hf)Nc!@4@QKceuoVczuDyG@`I^Rs$HzYywgMc>-T8->adcS;&fnqXtQ z^Z05{9^qu}JtFHJfm!#@3#3_**AF|<<$Gp>j`y7*s~usuP;8qt__zrUzb7Z=Z|UGL zpev+M6@)C}4PNHt^Q#DW>OEOV2GPoa1EJc!=r|K^R70-+X1T^=mqr}?*fg5Z{)Xh9 zX>k10(`kayC;KiH?GFX@C-k-F>dml~%Y*F{ncpRTt|?-6cL)D=+0`W4JMf|J>wiI8 zo51SvTi&bw^hAmKXLN9%3&D-q|tQrA~h;=sE*pf)PI0TNU4RAegCuxFo+ zQNYz?hK z%JCNayBB<8WuSC#rPoEZ54rb~* z=5ORsAa|bcn2b#s#_(;|-%4K(mtzDbm|93~(m9^(6-P>umYelr=c{_6e{z+ta>;}5 zPp8zV{fn{j;3K1N-VNZAQvK9QJPSAmHtVsr7h$G`*-Gq@M&M6ocX?Hj3fWi3L_b#) z;F0BBjxS;wVaNKOO{p6Rup`>K>3jh>R|cAm4=**sAMaDNCxpVmr~IP951$NN=&_#x z{w8P>xveO7+Z!JC_{!k*6daXF_Z7I*1QQkP&jO?ML3~`+^{Zh#8qk(dPYXA}Nzs=h zwqwsR^zkh-ErD<}^K?9Sj@)O}j2@+bF$hmt_w0Hp_Yx%;Y2)(q8{zuWF|%Qo82qm^ zP+nll9^XdPUvv;^gcnl99};Jiuq}E-E09AMlyUeuZw$#*^U=t8MRXi)yNn7A;z%Do zfmZMHr+QeaZ53m6&%((Gr`a33gW&Di4}LSW^*|e6qFfQ4i$*U6^lCpw!m{_t=)b~s zaImBH!jmHfh>v^n#?2BzK5|t3C3g)BecdO1&#w@#Hr-2l=$Z<$519lk<|-lc-qBqS z7l>k=LHMCfNha`*1_UQWmV-g8?5prxlB524H)kYO9t>2b$%!2+C7kItmYe-#&TldQ zTdt%KE|{BJwT4k()1E!1T?IwRe2{OK577h9M?8P0Fkb-H;uE|RDn(ekQjwIwT?#?h z6Ca<-%7%}9KmEHYg=jpM_(uC?IZSz&QD*hhz=OSrf2y$n#Va4&tbbk!dCK2;{SG7o z^ZB=_HH~>#{G|NUSCk9rjUYH%pcW? zjnu;zC+n&v>HsVWl)m-lMk4MCao)u%(*U7IS|1FkN1%J@{_3!g(HL^3cTv~90bcGs z%ko+$9_1s{O!-fQVd3D#Q?5~@AHMg|y9KAqH)`YXk=%6Ip^EMUf z6C>nS8r{+17n>EcXan3)=T9kEOGm0d@pO-tAESZ(pH$`MdZ2u_lID)j#Dc|F>>#3w z=e9`6%pI?X+)2}wETSiJ+^UG(*B^j5`{iYa(mFU|{bpyoZZ-xTeVUmw{{)z&ZkTty zA~`!-|~jb0x^ttQueq3N3RHkPYIXD2jP3na7kiG1vw{hlfz=wZ>9l`5iU8z?q3X^xnrzIl{na-Qq#`8U-A+?Svu{(uu#Z zR%5$d6u930`(Te!Es05mAcltn}h3JD$R^TRLn#WM84vE9=@2tw6r^mS#xyfYsamd=lNw@GpFHb>emv z?t5a!<-p_zxo$%)qNiGcwW~aJX}KEtYnw0bkq8E5lTYR;ifu5ZpCdB0RD(wo%eg;% z4}D1u(y$!V4tsIR$OX>Hp}39w&LYzZr@$dP51~K&zu$>3bjG^{^b+DKa}7O zr@DrZO_?yRZV?xt)C%UQCzd!hDY(+5So!r=HkAK5%~vef0@Hj^H|x|2uzqV`=Ytb@ zu+@=8$)2Yf^6NB76kQg6Yo1*dH7bDlH?wa7wh(>Gm;=70JQuo$T>11hqqco31$|!qar0q4O(MaG4oAUhmHb-^13Y z>Dv;a`c2THHFq`C-+ol$xHktR&(vOK^iG6bRZEvyPE~{Ks|xGH&6yDRWdV1a6hz11NK{A>N(ehOEC zc}k;J@b6fl>pOTTgDVW?LUBG2V|yNe-> z<{(==dmMiL^!IIpaS{f}f8X7|r5LnlKJXfGC!u=ojy5W(RP5C1W6(H7fv=}726nio z;8F2acjdlxRCF;xD=31Xe{7S9F=$mzZ=YP z<3T3a9k9Jq_9Gkn`I(rHe9cEu=ZNN4+tc7h{g3-E9_C=w-s4m+BMZl$ZJbZ!VsA!y()<`7%z%`3lqgb^d5dWTOv2RNb z#%(z}c!Q@9CwA=kobc5NLZ!;p_2sfjetMSW{0XAZHnG-AWxq@6yXJjba#{G{@wbE_ zrb28G6fmcZ`e272^Q$r1Ow>P=vYC@oNaxmO>00%FUsO<)V)t zA45`e5^mkB(eRtRuK=6oYnR4C6jT;DM$MdvG}{l^tcw!vyU@$paP?yBSzf=LIUkE* zW=*RXj0^Eak#X5jODP)hsnhw9bJBjrS2M1Og-CmH?$J-;gS*pC6BT$m0*yu0t3o~$ z;z9AsOA;DYxb@Jg>yDmKY|-OXpb+ll-Q;kU4C5LUu3<_a7!Ss>^vw5orwIT3*zxeT zejQHHUT28Z55j5Lww)&NMM%4ivAUVH9_c;>ZGCDIh*dk7lPyU775mnC!*0DE6XKS3 zw66r%bR{ghphaJKE1)7Ko0| zX^L)bqoCco;>U+~n$XVmm~!)A5S|e|qbBmJh~(IRPn2M5#<8V&Di-|^)Fc_6A(cgV z^o^|gv!Q0>-}yo}MkNgG3r4+Gjf;?{;FD^OE8!7jfZ(YY5xDEJiL&H>g?Kq^@$?(s zRy@k0e)sNb6ppt})n6q4&v?yt`mx?tte?^DnedH8TcZ~uat{hn9X)0EOxy5IZRo8g zmIU(LI#%Xim51guQ%}`5wWGMa!!&hAB6jwOhMZ~6!9Q)b)a8Edc-d5|M}bzhc1kIyC_b( zkc46zza-OMxu9vu?UJtzU8p%O^kG6X5ev7)UU1lZ7Z1?uCx%jWW50n)?oR7itT?V* zTT5dJZ6o><^J3k2B**;Xl6(Z7{`NS7=7u{Id9n^XG3iDpF{Ryy1%gnYiSaP)ezLF9 zn-&=acH_r0hi%er-H|);_w@F{FsL8pG=7rPjr<=KLTX3uVvE>S(b%Ki1#T z_b?Lb?@$t|b5p_OjJb2YZ#OD!DJ|yPp9H(i+kVeaq{F7cXOm7>yK(Z?=7kKZba1rY z`SbC3jUtQwn8sed6n^igBldfOV3ODdhWoLK>ql%@5i&?fx8>F8#zjvDw-CqU7kCOXiO zNluBgjfmP$qVBiWfVahMsc-wLp<|dz$O#GGBvnb`@WUFoDD-roiKhlEQh(9YyVl`+ zgYkuj4MZn%B(2ZjSS^^&$_Mq^RpW;eqX~wlDmeao^ZDk*S~wObCBSD|fq^NtV%~O@ zU|IU-YHvav@C@Hj%e`NUT4(OxJTzGjj=SX8{a6rK1l|dD*;CMzbL@08`8(M?mPa}t zAh5>2U9;6Jz#EVCBp&T9A^FE@8ed2ZZc(4a`Gg(WDCO0hGWo6u{9ZB}2tG#0)icpF z;7mhGc5SA}i2@J}>DyB;j8Ob6)8>6eA_f>Ua3on~1ABz~`&&bGP+xgi*DEp#Kg0<6 z@2g9LLp#TL&a2eH{bQ#a#`}Vi=g8R)S=>o5_~-r6X9cxjS7Lc)PV5Dq%Za;rlk|hH zQ0z=A*K0tmUfyT+KW97{>@HvC5(Lk9_e4fqtO0jRrN=TJHc07TQghUFha34XO=LW( z;Y+GfN@j`yV)vhjpX%mdIQ4aFcSjZRI|pZO-+Laz0!<2vrEZgbnnqgUKo#hl`Cr<; zd1hjs%OA*!FS|6N;vHnbC)+Iq{9v-e4@U zcMkR-KFT>PQcbG516r}2tD^OxSdgZ#lJcVrB3#dmv79u5oi`HqEBJ(y{r`$iz`2duBBnsPL+LqN)%AuB|m6#AQ-4eI^2ScGVq0^j7qtF5vad8 z)vO>N3Y{aTt;e#mu%A^@nMJb@^a2C5H|d4L9oUz2oIMvajLdetzLXCppBXglh`%~2 zPoHrR^D)qC^h>QNlDg!@Dt6fSo% zo}AOBQqp1x=OJF9d(o^6i{vFL7!)EPpeKBdRVD#~uWU}rt0~8{)nI1UJAu$?{8%iw zB>~bk{LTa{RA3AH_L9{-Zot;(8`^w05eD+~PutK{;db#IZa$X@w|SXcGfIcdHImL7 zitVY!vHAPu+n+u}8)cbns)R(K9-KK>_Ny9e=q+CcJa@;m)*=17R7udnD|itLYjDW! zcU!{CK$I)EuE^n^1cBc<`CjYQ;#ybrVtrjW?%tT;q^Kstt29RT<=I-CwI6!-`co{b zJhd*W(MW-B+HIpt_I0@FF%^%za}vHTHVxNIN(E198ES$5>M*j=!f-G!6{Evs2EAnn z2lPQ{FS9-3agDl%S;@qwVHKYFS2PnA<3G>W5x$chEt9QW5#erbx|J^GolSHRLp$1K z>rvp~UPj5{Jlw~~Z&bvc2kPnfGHF8Uv7Jx+-4^9Sd~mXSZz<8A=&dmYDtxa;rgIei zvsp#>MMa2|-$lSueTlI^u>p^m?}{t`OhJ{Xi_g-viy_qe?fLlf2CS+5T`KmA9JawfkKcMo=SU6(1vs#jlBepggL zXSc_rk@HRX@8N~%Ew-hYe=6YIS!eQ`(B8Ahu(b)-UM;$dsFWhpj?_;jLN##zmPYDd zy=E*>E?m`UDM8Ws=8>EIwV>=1`{n6eGn(8on8Y!n6PTtm$dE^fJ#@If_C*V({0$!P z@gZEkAJfW{3iS}7%JRYWXe&CHUYP=hx=NpgVWV`Lyh$JO#qr$ReXVU6(joDdb2$ZfGs?ac=xc!0 zb87E~F0>FqVh@XeKS2~Qo z1N)hu@XY?S!!&*0*~p9rI7vM%WpSqipUA{IT@$ngZ8o{ilh=t}Fz8ggeNqR~D8$nJ zYzTyQ1|w$sKcqk2tTeK@rvrVpn5J&tj{(?`Ch)|p9uyP4&H8=mz-v>VKMkiQ!()%v zTwh{|Zn3R=XFFN<9FP2YkezVsZ}F!YovVY=tiVx^?hYKG#B$Wo=Rg*{{%wn-8c+*0 z|FS)<1F34Fie0Vp;p&LETi}l>nEdghilWtl6JPVc4#yDRLXOPh(F2vR@BDW^(fM{% zv*c-+E-Zrc_c>+mbCd(y(zPw-_GF&lmt7t~=6<}g2U>WEFCzV^>Z-~_8`j;utWUK_ zfuN2nv<91tNefSxGE4YP!&H-$axy;`O|G7u9w`LxXUjJoEL$ z{~+<=B= zCGv871@QT<|I6{Bmk^kvYed?RXk2{UsA4!5ZizHKxlQc=+b0D#-}R}%=+f{7}p7>|mF@QuFI8y=B39eAUY zt0Wz7(eDXL6^?>nje7aOld(9$v3y2aCLZ^seJVEG848NWf33QW$KwZ=3$JI^{4hmX z`PX^yhZZJN&N`Ju^q!DB9qG#nAw4mb9Gg7gU8P&cYHcDmdKG6*Gx)=l)(hJYWKQ08 zr$x4)ArWhb&wCo)h=YH>%s+0J7=V$@3k}V?iI^sIF)7404H^{vwyUIHL&4B0Lz(Ld z_{YuQwNFzH)NIhKQ7zk`)34i?26W@F`LIn1iMn0i-D1~FxIy?17d{H&#cy}6x;^fA$aK0<$a8xMs zP?%{TmIaz_D<1Bv^e5q|o=bWM#_a-LgcWnxQlz}>Ic7duC*K$?!$*r>v$C z)?UB!@y`1y2sVHHd+i+INgg%A-p%q5xZd5mEtb?n1KI6wE5p(9pwV4BqSNxKUZPoL zu7dEOPu#{g!?1g?=zeqUQ*fWo={31s38Rh*2epC*>&q`fCw(5bgk!(8KpZbwJxCY&5U7|}rzUAJnxknhS zv13WpBM_LqH-a?n@%op(IdZyU#x zq9PeZAxcFW8dgOvMQPf?k3=*OS(Q=t-h1!8_g>dI_9jw9X^{v?St-x`{ChgDtaHBS z{$AJT^M1eXmJNXloq63^nj(nFTS|RYkOJ&hGgmBzf}t-{@T$R?LXfS~D%dKU1)R3u zeeco)19e0y!0=cB;pqh4-1j#hPJZ8aDzz;TCW_1tu}kH{fLe&uL!DySE4jrw#ljz` zOY^sn0JF0LB)9k8ar-~SGMi?F&2uC<$f9%3(q9%s*1J~=Av7HZbr zw(~H=f0hz>=S}9UJsOWb&5>Mvdik2Jvo=!x>K#^IE(F6v;jC1WdpG{_Cpos@5z?q` zWlL2pg5IZxE}OSCz*kRR)uqo?_(In2QF(X~NK>=8naJLbS;DzGc-R&V_uqd{TTuk% zC)e*DU1@+#-W}^>Cmc~oKY%@p_JeA-2@4V?-r;hM!FV zXME7d?1ooFT>-pdjxMChAwIK@j*VJA{-}H0B4nI3A6QRHZXb#xc?wtSoTURnII_=L zNnJP>x}vtV$yL-r%8N?VZ&D%Xe)eF*_mkO>r@-!*lu!Jpo8SCNj1I$dCo@ozHxpj} zyzsU>kmTf_E=vxbjl}%;N7^1N>F`-oyLy4-c366N<$rO-;7G#0J1u)sVPM7Jj?<+w z5U|nKeG2iI%^bU`ESC({rM#Rx$4j77!;U_-k8q+!)K9e%NnNwqiM}C{*Pj_@xMUQc zjE^-&Ra>p&fm^Eo@Lj8X(95dKE_F}ER%1)|LtL>SzMG-Kvojm|(p~0w+|$wJxLNdm zp=iPp`Z7JQoB{Q&Cd{;?-+lWnC&z!Oks!vhS8pe6Dm>o$$||Ee8-)uEp7%Y7faeuA zTyOU!f@YCQY3z6|E`J#wd!-c)MqSpl$2DRgi(9F&pREAxlKm^=bizO&l;iKctzl5I zg?&snp%9O4sU0|dJrpDjer@vO@qMEiO2;v#*XA-!Rfjf>OaC^?lYccDVzXeiXr(lr`dy@9I3jFAF_0=BPJ{N zes6-u`$)cd*JX*{mdNMa(Ed-p1n(ZcE%lzM51aO}m$^|N!pGJCd!D=^l%G-EKhV>Q z$|+yNCKTO3q3v$g?&<i~0SGu@^V(9-e>D z90A>Fvy*nV#Cm#P>iuFu52Em>F}*+>SO`aV_)RC{p8kDw+JrN(%JI|f${W&CUD>0` zB@>JH1P;_DQo8Yqz?n0@a*|>HmJ`9h)q-&%Tk?T~}&^Z5HM|6~D z`S^9Z3*CS5x+Josf%(hC$1z8Bp*16P;0Kux7OA}a9G9O4l*khnj#oV4q_AxCyl5BR zi<{RsUPy!D1JT#2*TX&I3lQ1B%fC3Jw9ca0HR}#0xSic$mgdsnV66U zZ<B1S*1bdFHg_6q)#^}szb6xJePgJza`o%U7egSAYw!1fntb?5zqm`_E9p=2p00}isRJblKG$bE` zHvbL9XrUke8F}#N=d&K%blj#=5t1TheiACpU1lBEye~w>E z>%r4f-0vCjarQa!D$SmD5SJ*!vWVxqiv`M1rYa>lBDWoBP3I56ORsJ@3Hf@vr)~tdc(JuR-2VOJ$hx!+(p-feMUJFMhChwF#M(oA<_e zm*JX_fgZ)P0)q@(7GC~tMD@1RuWp39skkfYlsauCdKwQHw9Yo5j^?<@P5DxM()PF0 zKB^MsZyb`(oS9 zP%52h#?-6xm03>|Va z-?dqgB3*WO~H8$`il|l#P6s6@EnU#F+M1b`=RPe z#Tgy$hpcTSxN#~v(C}FazA|IVxhmFxU6+Lq9?K}kO%=N;2RllUGgE7YeXIe?tde(a zD=$LM100{j)Cn)XqkZ=k+eTFN>Y9H~J_Ne%sXxqTti;lIhR$l*CUj&F%Gj!3h-d$@ zF5Y}yg%7^P^kzS6!dUJDBbj8s=`V40GCQFL71U4dUhQwfsvk1`S{?=XGIRGhpK2XB z_g;4wWNXHY>6P5CbqWxEIGo`5NcM)Emu@SGH6zQO$ycIw1^8t%XR!ts1shY|xEz*f zM$_GGVtua)(EEzWxs+52R&4w7lWl)9y1DaTJ#)Gc2St<0JhxEsYE`c4*RM?&e|oy4 zFQ^d5orQm0zC=YP8yV4sfF}GzW0NROSA?R`ofB+YR6Jvla(jFa;lHzqyUzI*;i7Jn zW<8m&O}Nl6MUnZ#cdNJ{#{q-lWxBa-(n{|wW zb~bydVH2gOd3wfniTJa`AIahF)AeW;VL3INNc@U5|8!10tHagZJ`0KOYjE(WY=-@< za->AL@cj`ZK0mI5hsSlRP&`Op-*O}ItBQrJcFtF$$e+$l!`0;dW&WdCIe~Z)`6_aZ z3aaqy&ZV;Bvn5!#hvh;R$wNwNOJ3)GR*5o$QQB0(?G^J-;^Zdhp;gXgYf0j1j^Q-p z>g~%xgA&S*hVe?=`MzBz;ym#OEM=%A-%rEl^N|C}U z>io3#RN>KqR}VrTm*U=StQR!=1Mt9^1J?1&l{n|a{mHz#1aljf0=>6uq0mTJ15IHi z8WhzI%n6oYA8+#?>pNc19<4L_QMwYX;$Nu|IbDqWZ~l=_*H3oO0f*ZS0W;xI~AkHyI&30P0HXdUR^LWC`CGoM~rJ@F{)kp5lL5gR-mGQn3^y!*&*`ieoQ7@ZS&e#`YX3A5RH{^P&N$WtQFeg~0z2~2{t0a)tzbFYZ)s-~f6xrGcT3hnNRBeJO||I=`ME7k{5?|~ zTHu1`s;KGN9Q+{u(m(l21r|-`A8EB{1r2L?H@aV0SQnbVBZB-r?@7ol7@lu~z4b9% zW7JIiu)p0edt)_LnC`cC9&H1cc9VJDN zc>hYQ#qRSbI9z?(Vf;z9zR}$@e61X1QGK``l?JZSIYqXEf`YhIxO6J=r0Q2R49F@xlLi{^s+~G z%&wJqoOJrFG8$m`?!S#(fk8O<@K$h8L>q>gGZmfPO!AHo2;DJB}Cc>v^(*QoNB<3bOlsv zaOF%{=%aW2Jafc`F5EaaC>!ox0(xx2pPiF5pms5X+s&#Att77bzRE0sfxb=oVT?~9 zd1=((U`ZEd#tRgbnq|V;K;w6@&(08X``n!qm0jeVq9e*_p9F8eAGqBa>J4loH}4la zcHxPFz9XA@!l2{LH_bAdAV@lX!{H=D7oMNw41c)j3`eS;RAu^x!marQ-W2stydicr zQhDh%ZjzR>6?YAjVtx*1gZm19|BNg_rUC%>f z=Lzk__7qTIH%hWI&q9e?KOG+%k^Ho_RSRH#~d`5+-8Y8Otal%S#nWeyr$v7i4;hw-SK*X z%)!Q2uv~|n11E00sA~~Sfmf@G*$;WbVd7GgS;lA&a+jQ(>dHeU)?-b~NBV_6`l>^7LH}5dGmWp(P zdx6_06<(CJRjO+g0^7bU&TFL4|0r8e_b>6>?Tbikv+*v5SN#TS%Gq%!@}6>Ln9O_J zUQYL0k-ne(*KR5CT@grc%d12)nGTV5^RIb~%OOVc@6dPW0IYv@R3N)J17>)4{uJI{ z3E5@r#ZqtW@iRS(kA^n!D$-2kFO^n-9QR+#fAI>iJ!L#cy%$h*E04xh513|2mwS zM;S9=>R#D7-8c0h+tKal1f@53Vx}0$nMf#dZ{j50 zC6(ts?b3FQ}5Vl3KZqv;=$gp^J zM!L-jO+K_n?j?Jxzt#tCPwqnaleL}qFPYz+;!V-7X{UlK-vC)=b_Lsg@Np;K&w<+7Z-mDYX3n-=sgjNQ0wybpN>m8$ z_^{r+m&_}}W$F$P&fu*Qr|bJzs2~yZCC}fPJYKHa-~6u_rL{`^D6M3FHzTq0WN!l` z@ERJvnkmEKDS3v)rxX~&?B5HUNN*^y{Wkk>CGmKKx@+zubIL^5ZK{VFA@uIB)`OZF zEc1x{mgYnl0 zRu6}=pG=4BY6Ruf_@2lWDh6wY_%~jtgRZhV!5?!CP&_BcX(Z8zzXh^SJ+r8Vd}Y5y z*V+b9WYf9%$gl}BLk-{kiLQa4cKn{%&l|v`@0P2rBjG(ty+5*6Sq;7aMKR}`YJi?N zr4+vxEts*m$8-bPPxz`kU+N{C;+u1N*)z9WF;`b=Uw&sLbRKtERCJ(1$o>86T)b^~ ztnjH{S4{R_@O4dg#h!fEhJkaA zA2S`(LE2m1*L#@kM+%y0KB=^!q{`5KG3ONEzQpqK)>tJBh^!>sFKI=t=X7BZz(>twz9c4+{vrtYTC5^|j*{M;ZFJVRFtV4X|8CX%+Y8(p#cc#%mB8uIs-#yn zjhOYX#`{i#6BJfU?AX#?4BFmHwu>Jd(1-nO^v^ykcu^~4XY6=`5?Ly9H1hDrD_$Nx@OO<@(g4M)))D z-x`-?9s~|{Z+&5eSlxWUsD9%U&2iBIbDZMY?P# zI=kQhPC+e>XHLbAH8>!x+@Tn=luU@6sPB+7tHI=M8^JR&PDp}9yFPi7KIaLao2O)n zC-v~%GXGj9><>-<+1O5cnXDI!ivl1FX$!$ft zOFuH;Hm@Ti_q{S)7SufBy>buBhi@G@rI`iWofRjZB$c9jZhBML;mv3yShHn7C|W_g?^sZZLaeLK>NIBsOVcU z+NZR;Mjmp5f_+=XYITa>&^WSI2Nfej{EefAWRJEWajx9vZ86zfY2NbquNd`OQlc|B zLLjipmRn!96ee+}Pqu6^j>>Q?o47}SlV#Vc`0UPckjDT0tqsHC%KU_sWD2 zSxilrI|ye6QIvT-nv>JX?b*u%1m13JRSH>zikGMXL<^S=w61MI7dv?c$QvA7W z@#bhX;kx9m{!q-SfMEIbLnqFc;5VmVF>(^+)=vWK9Q5g#L| zBGB&65AVH^hf~&x5jM}HK+ckrh-ULa_4V`yag%J^GW(!GfY}b+|7qTvx|9P~r6oB# zjY%&isDY*|)CYg;Nl~lyBY6w?YmUb1shHgz>+XL)6wN9FO7^v+K%pny78^3xv&hXl zIQ}3Sg;Z?5ydFz{xA$6ZmpzC@>RE^M6Nw3U^ww)_>aIxWvI)EJ$}=2~E*=iNv5J0hoL-MsTm&eo3JHk1=b$*^79{9#3Y~IN?mE@~gII3J( z$>;RjV>+DnIG8!3%ru>fIu+Jzcl#Z2X7JUyH%6v-R{vtJc5*6ej2{&I^f?f1itA+b zd2V9RXyBwzQ3@^*Kh$8p@J%=y8R)jR>TMPnR$;f73*ORv^2?c-53LR$D1?u@^ zX`jvnymKTspVmAL<+XQ*&}!-cZ)*#;rf4)?Ip|^;*P4ZKG(O7$Mwj6o>y80^?-1jSe|m;*n1}8MDhq7@p|td78Tf zX%0VH=;d@wAlllybTIpv3$?JH-1s|z=Ghg)Ms<`V|6acqEgfHBxDJPuA9A}#i zp;%!TPc>7CCjIHHG$z+7F`Dr}N3c>fb{*CI?2wQQ|LXJZjHgs#d4zT;FX8merW{t` zlFkI`ZuTeMlxj>kt53)LI|apyd`Is8%L7(E#RR438hrWcXi$bl2FlJ{A5xnje%!O4 z?M#l<;<-QTf#RfpU?=|Z?5UnopgU{1w85$tk2%uS6{+T<`d0;qI|UVxpc2Ki-K-X$ zzAjvMe^rR|aq?09PSr5%)iOW0pLi`*56pI27GuDy=D5`PIuP^e8QbPpgX#{PwmDl% z(I~v`;K~rf%Kq|W9TnB6Z{ZaZ5LJfm%HzBD@RReIlqbXUY%(|GSbWNOxB}0o@%}t0 z*8ne0_;PPCtHgSXZNF5jE0JrbaQlDP8^Oh)ng8Uj3Y;r8Kkz`U8r^8OKmIDz1e;qa zxAQa0Fxq!RgU{a@M6G0bq1h(5C3<3q(z#L$xGBKLOy-%?)y3Dl+?ye6b^lF{kz(wh z+5P32Bcij76U)DaW{^9b$!JOV(6qZJGmqp`aG(D-+t;Ek5OH^Yi$_2qIt8sC%TJ-A z@0lMj4qR)2+E>rF=6V$%`_%m>3GoeR_~>fi+KCoO*IQ#dO1Sv0|E(}H#WrHoXS*`~ zug!qAMvM!3`Ium}r`3q$gM{^k_Wpg`4DI^*BVz0MXh_p46&KKqC;2`YCUiEz+~(v@ z-=qi+e#1Y7N8~&ft9M0^VXYB1#{6LNv?#*033GW5avpR03~gJ;xznuUj`?BE61=6s zu2ON7a7~?0csPHhLKf%e@de^hx$NfOaO4Z|+-wm~vm*O*s-?}HhP(2`@r+AOp;4}NtcqbaH0VZy=Yxo@9w~Ny_PE*rApv=+HeD*M17{gq$5_~NL8<7|R{Ha;cmT(~ zKhW;L)z{`k2bKX1@5JR3DQ);x`yy47aKbfMFDES`*_TL#4EGY=9lGmR;HV081_mNwKV-0S-JT_k8f zb^We%v>R*LMEWYvwqi*VYueCcIHc|1c5`U&#s?{P4`0x3LA5dlTN$NrXkIM-r77Hl zLI+E&4GAw*_CpBEhox{3KTv$$(XfZiBc-KZc{QOZeZ4|+StO{ryE@34^x#_+mJ<$f zjriO!S=#AN4D{a>XV#SNLB0`fC@yKh3HIQdb*=F*ko#Bj`Il~#quIwB(L=>+<(ui) z^paq!pygc?t!^}M6El^Yqu?8VtNF;_6zE|-Ynz(hg;G(cQd4$O@blH#g}m`JIJQl= z^>!=ShxMHBU~#I)Eo1ciA73MTxNF~|g6li*ZIQ%W?no^Lvz%()Q<@D^9eivX{n{~4 zl)`*pvqaQR1*8aLS+ zNAh2eVR>H&7W9tT6}_#ok;PNbWQFN?X;XFE*lr>Gr5Vwo>E@TD#WG zR067(lrIe3qT-lfjF24@;j>FnodUQ@Vd%Y$^|NaOMGQezBRjO zk@$JXnDi%QwR3Pr>%FydcO2-HJm?wTABcwli9_U2|Qq1{k z0j_ZMcZUSRU-}U@H&Zu|uHfgB7p#LCiBDf9Bog4r6mPbfbuh>{1~bu$)I*KV6m&?W zgV1o2ntZL*IGX@vf0ODnj#8jp&t^Kwu@Ih)X1`9N zO9m!7v){>;6!=!J(lkc=1&wOOdE65z5a*Sm{f^{Lqqo|-ER*}KEe2iFBa&&5T~x|H zLhko?uKs8{cB%{#_A0BYlX-}u_uXo?Ck@cYRp=l&R0et%zJ1^~O$Uwj{H0ZvMo1{T za+!st97d|&eHYS82i_g8wf~ef!d`}beoExN=7_Pxue+;hP_e$r9<-WZIpC($Zq+h4 z;j}56<9Zs5yAM8Ypl=37`C^8rk4vG+zBlZ^y;LyV!`-mIsu`FQ=eiWg^`mc9n*E+; z3it;Fj>ns}!1=0ky2~9!U=#89bB}m39H`q*`NZE!&hY~^6y8F3dGwsf5-Vwg3Nn=;+wEIT}YQf+!^!N;a zDS4cRE>!0yndb)fT`<2E1c%Cc#mioGK_&x}W#XkM+-IcshW%V1$q&XgWejye;F`vB zch*Gww@Ul&%6)&>{eD!QmC^;c`Hpd!Yzq3WbsbH7;0qj99al$vx?pDdOrDNdI-c^= zj#GN>4Jp=)&%U1Tf=^1EmP!+um>8*==UnIssbVc3-VSvVKa`@Juu2X#YB5(W?eu`Z z)a)&6x}8w%q*j>sJP#A(cM7&Oxpo* zS44dFZw|+Nbc1n?-z;|?wZYTnzs$n?WY5W-?N<2F11^}InqeAfg@tJ^yHev~H0Ai9 z$2{Z>GHOevN2SSLA>(TCES_>)ie3Nf&vC--rswF&4}4zu6hU4)&yvhznfNiV;(!uo(>6KD%;XxUAA zde5IfJ-&Z;612*>#Ql5O2tpZlJ6?+v;QGSXCGqTJu=|=Beeo)p6Y*=?QOW%F>bbSI z()6hi>>;vipr`@7#P+F|-_OB#=Yob4d($8~(6dL2BeEA&{@Rc-M&*Ot>@SXXD(9ZR0IMTRjvN0qY zMZzX#&+JWw&(8EWUp7?2iKmkq^785<+C*6Rz-r3K27dGsI2g~3O^(qJ@h zQE}eQ7(Rx+9r}4P1pX_#rKI+Wcy0~}^st_>1}<2?~Pfz z3+yO2j1?bufwKB5+AWs@KzecAW}0}d?6wP5XMK7CmzJ{^xut?YxU&7~#UxuW(&E%% ztGW$VBZpGcii1Hn;HQ$g=o6^0Wr6|G8#sb)+Fop-pgw+{ zq*#zV58vFxeX9o$IS^M|%4mvpx;Nr{K83@h%Cf|Jez&1UW%x{w%VYfe^v@i{A`&?7 z9cGa=x(d8(O_uyrBYa!ndphGpH1s-%3#1)Cfv@wVTwSi|Vqr9OXg^;p>|7n8rPWkL z`{T1=d%kht+eW?}2j$~ozlnv3hxA>f74KE1@ae!I zc>+Z@zq@TEeDAt78Fq(6Go)CS9Qd-|3H&u5FZ`lUfw{i|-6y*(vGH-*$0i0(*kZr? z??#(cNOS7pP}F*gQaV2~p6v^O3Jp=#GsJ89T@Y4z_gLfRURvD%<`8(V6L%!uI0GK* zMGs~TTH`I3-lmR+;ozwAbRy~0;M3b}XB94FL!*uOvR3g^ zgqfM@??SP_Gj^#bI4}oN6?l5MV=eLP4tlpS!+0?M{PTiRODkEcq(U$bz$Nb>MsT$W%@_d(!=akizP?$=}I?=S-4O+XzmSYG9 z^83Pn`-~>S;hYYimZ_92C_ga|>i$K}kGb+YyL=nMaH3^Dr5 z<593E?!#Dk{t~jDt5h|LD1@+3I^&z)qMUs22tSG~9F)R{&tXh- zxNoa9-j-QZu;MO+%|{LI$xp<<+_r75cc<)8f7|sX3hB36?yDRy{p3Fb+%<+79%98ORGB6Utrv#R+etL#3*{5m_5iW$&F$DrD zihv2Opc|bkkC7u;HnC429|G){e<)Lkca&?9)+$H?T`!6pEqa&_#}{|+bkHEamQ>HW zySa*B+VDCpaws3Z{jsj?V-JDRWZ{BYYZC~0P}f-agmC5bQpO|p1VjIqsEtaDHgMH! z+gRq_Lb!3r+48eP5U8fto!qMI1l;i;uT1jT%xQ0S3p@yd7Q@l=jQ(!$-nP{EB1;jR zZTi4+;ad=d$6YBNX7+--R8fYlkww7sWVBn4D+KEA*4y8z@qr%-%HzYlq$e}*^R49e zFfbWkQTSlv2gb||%woyJ-)UzQZ#aEJ-75i@7fXk^Sp7hMg1Ydqvjj%EuYG-cJ{eL1%PETId>}P5 ze)jnq@uxbnAmgSqsEaod>Mi$#&C>_Ay<#kd&}V1wac#{6YnF$se)(>2^XAYg{*@9q z=&x3=Lox^KII6Wc6r5oyra7DsOJM!+%kNR%`7nInR^)x?3&;_cRkpre0&l;h@W%Zp z1nbyAzJ1wGVSKE2q@Q@}==p4zABU5k(S|Hxu`6aUR97qXiLV%3n0ch19xo;5p`XX2 z%I<;5!i5#N8%3~UZuI6*~l3%Ry@VPh_Eu*ufbYgNIqlHNB~zty4V?jG70y)3x6 zt{yd?XLsW+sH8mJQ!`cLd)FxV0>z%8xZ{R?!Fj|-}#Xe7+V1ycVa)Q#ggl6X5IoHcM|4j+uKehmP5uZ+wp^y zMdTdyUv_kEDvIds^4%9x297)lb&**maN}E>xc>P}tz! z<>2|T>ulHDN?>QF%;s;w70`9T?9whd!q=L2=v=ZdhLM1=JzdVk)0V)aRI6TuSMHdP zlsOdvP3~lFuVD=cYZpiL{V7JC^6!GD$@_BG$?(muW$M75=_i+{cPT!0+wT&sTL6nU z$NzOPA{02M{ipJ`4F9{4mM}og1D+{RmC>a@;3->K8&XLnoC+Q` zkY#6AiSt}xS7m=>!>`&#?;SH#7->=b{pNWUHWwzzoUh7)pOtFY+hZF*a(sP#N}(F- z!)Y(~#b!d-?A@6J3F0ZWmMYltvl`O_4)KnLWB{e^t3z&EBXnw3g)HmU;92!$`h(a;^3MM(brnuk6xzTCxoZiZBYfcla zy$MDJ9zFSgW^9<{U>J4(D-Vr zl51l%QWtZ+DRL%(--@vJ2ES$y-E&2rSFjrUUNB4xko`GOvJ62JF{;j2V;&sD- z`rQ1dxk@wqOkJ){q?V)G@n0_e?m@sAe$haSrx~nvZhx{)EkjL(_T~G(y&;zQnC$vU z6R@UDU;bN5@}BjYrguV|Au(BN$4kE^c&-qy)K*@Crh(hr6SrEycdIvpBBF$w*-!J& zrlc4Z7ymf?j=T&8e^0D_8EAyD#FhCMBnL^kDeCHJ{s>o|9Ty2OZiL1qi?H*Jg(zXU ze_!ONJvOl~KL7W(0fd)iN?%nLAmhm})orGPcV6eaHsRXO#2) zd7RaGQ1f*b>KxP9U@jJghU=^s=SkkctWwTqu`v@>*#va2yo|x?rjE4tH7Gz6-B$AU zeFly``BBi#9*;RS+&go|5WenzruS7K18pKM22l|`Y&=Ij4GeJSRJ2^>f8fk zX8noyg|0?yLcJc^cygJ)lKzF2cCk;dbrOn8y^=Ias)GUdOz$41bZisSu6@6pgxhtW zzxeXA7AXFC?&dV)`F)d8v#QCMaD4ab$7{8~xO2|)@lN6!@cs7K+dml%Eal^!$#sjp zz3n0!`TtGMy{4PVNGAWTO2wwB=_`$7G@OCH&!#?J{FR73j9%g+ z3FS~s>#-$HApG*0xJyX1B0>Z!FD%#|_r6{v+ z3~bVI_OywRb3`0+W=K73(F?XiOnd=K)J#YaYS9^IiI9Gs=_k(bmH#DUu&UKQ1+Ora z8MyA>N}B^`@-KJ`eoMrGFN}%&Cqr=as<`ufGU1!Mk-Y{b9!INwb+yz4;))0tmlS_0 zjGo-&Hy06uTkg;gd)@KH!aI-mc||3{PP@+L50;U*a3dqenbQN;%CBtfVvB|akCU@0 zCSiE;ZT&5i948!(pnEF0H3URd3PYk}gK?AfiD^e}Ys@a!hzQX3grn6?{T(|4vF_PV zU6I*`s6O(h-N5Q8{EZygG1TsZ2aWCCrF~$<=?{wLHBuLmc5jxJ#}Q9_rIWk)B%2}Z z-xj1YchClH|GVT}tLTP1f(K`!g>6BAfn|fmH+S@^Vnj1xmWKkT;cfnCH-TY z0x{cds&Ge>69({IrF?zl3zlns1D@YPkoJxooAj6?ZqAj6@dzTkIa`rKK6@h2v?@4{ zSR$K zXCp~IP5sk{Q_g#0QCZae?pY28th$%|T=+&RG_UukZao%@evBrR`_vbhHvQ}fT_NEo zkEs0mY7~R=!6W;tp4j2%nU-K5!WuGS{n#9~ z`+_`DOrvTAn#w>@v1$6M5Bw4FHDQm##B5({lT_{IfFWI zIa216Y!w3hw`-E5+ymk1>+A)`xAnl#wfmd)tvGN$rp-Sm83wyEd9J_PM6Odk6N;nT zQo-%{*yn5KNnX&jWlHV|1(^DyGOzSxL0ZY%tKk+2&}(q{4b)OVTg)LuW}*Nxyv&ZD zyPFKZpG@ESK1=}_6KiT3ZwYW0jy{fHNCT&RT*+O16mYCOH}Oli92Way(ihV+Ad#8a zOw%avOf5W%o%Y}HEEkOSngmJHQ$Q&A zS@0$%3b5bh8>jl`Ly+!tZN@c(gG00Km7!F~|N2bj<%vR&GdS|>iF-Z#xq0kD)22pn z@RIh4pDTo_=0wwi{yKQjup|4BW)taouVrRB7r|5oOP8 z4mD?&R(#3%``^R+`PCYAa5~%XjlqTv&|SU1;C`wQ;=Zmt+&f$cp|9$ubd);azhk<8 zSc39llx^g4&%JthBwm)4;MD;fOlSAho99A@>+X0PgMsjL~Rmm2uuZ)kjD#NA!5xk?!-+B(6g-;2tMq9 z(Y87N-U}ojY^ZI>>#FjMTF_ zCn&qw1Fs<;Z4UX)EWU#38Rmx}FE|Pf`0z&qcJg!qv*Y zbU)1`ym_MguoCf=mF}Rs@INA-!9zYPJRRSZJ*1ey3sW zy!9n+))L77{^;Rx+ZK@3(-v>-%D`PbTZ0U83&AP2PjY~!1*Thzy|}JsA^#`w=QbyE z!S;%v>L!n7kQ{iJCvrC%yGPQx?i8lO@^9gAIfiC%q03gvWywJ*zn#v-u|!~{vis-< zHbKRA$Ll&|j=iz#BCCLR7)0c)H0{{k1d3M_O?L6;V86s08@4?1`?fe&!xxIvoZOT=AKqVD7Je(Max5+~x z(^+fI0V?#yc$`z*n2g)`Qyq>AlKe>zr>}De;o8a!%?|yJ$1=K!I}Dy>$S(gey-kPY zyt6%ywFF1uJ5|xc`}-@Aw!cegvnUmAF>C!Q{~3Z-&9v29H`JobXZ?XY>{KXt^ggIm z-51;c7KE&AMJyfqC-`k66~@oG4yvR%qUw$5do;f&m}aE1{lh8+Uf$klIMl6=rPr^p z{JheD^h`TvBL7ifb3H}>j*$`c`qkSxJ2axKx93|kCgO!N&Q+-W;sn>{)fn%GG@hdOLPd-)b^>3UTDF~FSHGsyh#rs zhnigP5DBq*PZT^}wV=Sy+NW=NsNm8OL(!p+1MSUIQB0z(`2OA{Q8mJ^KHu(fbVE=g z^v|$7;n8bFzjlsY@9i7lK@oeYs%|n|JylMhuHK5@&MO|P|JDGjIrk?HPo)6ss^p=j z-L2SgkjyZNUH3LtIB@kbZEY%$;Z3WiNRVpi$#3M5Bfu3Wq z7GKZDwulL}LBlH<&YnF9z}X|1f7-noTf2{Fh{U$R&rj=7A{^16r!4a4nsz1ntm-~# z|I-E!?B#cA*oVT!0^yq!y>jGJSWBzA)(&B&x6eH2^92zSv+<2DMJCE!_6GNMklgoQ zfMlx!Tp2HW7RynB8VRj*?Ro7`{jQ?-X}$_DrTz%J(p!WMF_*sA)wP3Rr@!0my{Fi6 z>~khhb0HoPdVREzcpb$PPq{mGdg7VAbF$yQ7htvWsqn$TcIc8BoYdMBf@}9`Pra=r z`4($6ZmMEC@kfNKJ(Z6_HI+~MO=j{izK>nx!9p9Hl@rr4<4Hi%a;fQA(>(ms^WxVr zYr^eSmuAR1oQw+3*_jWX%)>iEkALhMYX!APx%IpHsTj^Z1;)#d zo@$>;$Ai-ekF^Ezu>41Han7w4cu<=^an*zP%s!VKls=P(L2qsh#Tzw)R_K%7e$ty% zlHZhjLz+B4?AIe1@;WJC@;m%FHxqLtj`akRuWS6d&^$?@5e|kPx#;yI6TPS7Ew$Ei z(X;i#7A}DX;Glkv`)vJ({*8^@(6BMnJKW+EjiC8KU+R(51$Mj}#HDA`#hd+)s+d%JBiLL`d% zYA7R3+4cMU{ylZMT%L2z^L+06{eHbZb~F-?U69b=&C>-)Unr@2V7vi3ODYX4Lenuy zTCZSUI3JHO>ifS}sskV1sp;y)6r}r*KH+ZK>l~2*8B>Cv_glWn!S;73Raz z6v)tXqaNyZz?Y>;-Mj9kBQ$S^O z3p@gzyAjgu`bl_h$+zFGHXYpejfEvzN5D$K^uxvgTWSk9BUK2eguY++- za*tpe>pfUC`02vvn-5HM>@V6>eX&I~ecDY@1HUOuuZ27*hDcSXAA6f!F_7^lUP5;) zdbj@I^I0-4HL|m?P`-i7LCM^U{z1s}r{tnFb2)fLeL02~mEo!IcCMd3;h07nV6QY( z0ngko95!UT3%a>GO5XCsAQju3XP#{pU?>0loA`&Y{N%`Sd*%cbIy(N~FUcFrTeDl) zcKSg^)#ds@rDU8o+M~sEq86re92faN2ZPI%SuOkol6++6hcU%UkIM<(|sRosYxg9i+lmIT%_a9xx&&yUoHyuQio=QjF30H_lIKNl*5g}c z6X1&DeeuuFqp&OWcx?JG;Vbez5*DW>`Ag;9Z*%Cw@ZO;Bxrqby;H=y*TX;DhEb?vg zw}$#-jL713b;3W+pvd+f5r~7O;!JU!bTT(oD)m_ws)g52xF1NRkaN=x%Lz|yQIsp3 z9Ie?>10r?vR~UgQ%H5!P}NXVbX#6ye^qDUo%X9x}EX_dS=g=UE_&{<*a0O&fGG>SBV?Y>JNa& z4%b&5y5eE)$+_wbMY2zM7IpRMUSAk5yyLsjlMFwye{EQOECI!L7yjM4=K(Y~{C+Ak zra^mUnOlls5!f-un}iPEgXO&*%*K>2pl@6xsch{_tBgz&pi5A9iXXEMOy>~@2n z-*Vw>K?slLvK1IO*Ld?ZWWaaLnd5#OIWTvlW&Gw-b6~YAPNgIFIaQZlW-6EWemy+GGMY=eb0DfAWXTJ4lZ`4K+GmBLszxVzMXj>nJ&7QD$wk84`{qBzyh*@1Qo=b9nhg%(5@)t~ z#)7hO5NiZWBB(1~y8CA|2Y#HJD5a)Kg17PV5`*FiP^a(LzF#O0mUjO;-aVEIpJoQW z-3pBdwrziwOUU;C`-@rL65`!?De2vOjNBJ{#n`0h2MVB(Xro>fWkEnw>JU?39QbGk zslM4%1ixR3?FrqR3o`0Tr#=+M!DIgeIyyUw;n$GlrZW3{(Bdv?x>OqnU!>{eOPW=ZeASk(A1sK|C<8+Bsj@N&%JT`S+t9 z6p&6`=apQI2hNPllS{l5csR%|^zcC`bnfvszBQZxBD+>kZ8}7OKss8r4>p9``ZQ?C z@M|Je?p}TTavKFs|C*eP)FOM2-z>Z4RFdIX_sw5Cc_k1~t4*gZS^=91tYYexQ{W=A zvN+eC|9k2GOgS-Ef_-CocKcE)NIu)yF`-)w$x;db@&2iV2Zu)gZr_&<8kchq9&|4v z-raV_ys0X1EK1{b)6W1Z8mgOvj|$;~m$KyMH`VaEI@p7^E)#y*rU(kT6+rIEziVOB zBp)Dc^!=xBHt$^;^!O~JNiRjAff^KQ}4zet8)?vX zqVJ`eb_zaLUi`~5JWc^O)`wf>-6J4cG_Kjmza1{stX=#6 zb#gM3P`%yw7$WF35B)yh0n0uf5|7B9@1;s3w|b5j=zQ>cwDofb6!NRl{SGb$jW+h+ z1qMqPT951=c+d$C>#K5`^^4&4js&qd(_6Us@+#k+zvSG0JZ$aoTmcvvlw|bL`J#HC zK%Syi7g)Nt>&PnQ1LG4z&ZVJHJUp*N-O|_v2kKTh>O69xzR)zwpoZ{}zg~W6wblh{ zr|X`4N+tcddJ9RZxMb87T%lg%>4v-EqQOiJnUJElRyLNGj&lc&^3N2c_NeKE?voKAdn*!1 z9KK|^PSPPoDG-$_NfG%(z(@^ahN z3IxNq&)k_iL87?9?)Iq+2<@J&Vi>GIPRpW_%b&>gm2&xXzcdRBer$VPW<+woIweYU z4ISWrXg|_Blk4*3T0say6?uNjTz^dV9NN=~bG3I1KwNo~hWKO^M$s@ZnceFE)vU|= z*dmG{pofqE$Eq=o?=01K{SKHgV*B^s2MUO>?7yt>uLf_Ld|8ntdzUym{PFQ@6+{+MoW@Qd8h0O3dOg(+{2Bh2^?7Sxga5{ere8DqnP&X?P81#e zVKF??fnIa->FZIt$0!~SbV~>9TsjyhHi?j zgMW_Hn?~%~kTZYdg^6}M)HVKhV)sHFG6(RnoqsOi~Y-24Y@1Fvh zKFwa-_B4%N!-w<_DN^kM8O4xzoBhXw@Lqh7Cbs;jt^rE>7l)MC3!rpay??l>7k%v6 zF1r(-RRQH#k8E)c{M_~-F~6x7x6&3Bk=OJm54|YEAOnRdr z79Ja!mhPI)Y3rv$rDF#5vAYD)}AeAVKU+8zv{J${kX=Q^>aX-c5pCmgbN zUHVk?<}o>sWc)m!(1Bc$CyIGSAH(mm)6}Iup2DZW0uEjIcDyYtYt6IEAM$BO%#@hP z{Jvc!AnRNk>KnX@pY0~OFMY4jxV%Vk`oTaObD|Zs@9-4ltb0SUXRhyjehjR>s*Mrk zY{CB3=uW?QU%1KGn6Q;T0d}&9jP%fvoOjk0&0OyQ*xWPCL5;~!kkWmGb*d5V&Sj~; z^$#I_$F>^N>uK=M{8F1-c0I1Sm2i9!j{tiSx#OxNHy*biQnk!#vD5Zbq1cvK==^S> zQ2H$kHuRVeHxN!3eUZ>lTdyPtj8U|_;F${(rY}DwG*;mBV0q2$t~5xgt5?cWB7G!M zqogt-c}uQal;0@Pu!jH&9iY>Y0fsRf)@KyjzL?(ai5N|v3a3@TPl?gM82+u^hrM_ZtEt9r?7Dt zd~^kQV_WLm=W5|*)jn$V!_8n8&t#$78whK;r+=&Z)Pcgb1H4XKS|I-~7hmPWaH!34 zI@pm%xba4e_wSMZvU=-xD=N)xd8c9b%ZIe@YJdHEZhsf71AonQE|33#byX%f8J z;DXBw*Y__;P9yM3Oq4bP@Slk_BmP2uuf_P?;%UJB>zpu&|AJ27CbRe(G#+RJyVlk}6xlSm!F_RohP>`~Ks_liw-q>|OU!?h^T&^qM`8On|meg>==fO3EPMjNvF(tk0v6ky1Pg3Dn{WZSxYh*9meQZ@N zrWqbO-Lkx6oeIKh0~2AMP4M*jCBfs)2vMa>fg28_NBdlepXWy-NDFl*?#*rlnH~S_ z45~{74&m#UhBX>N(5v^78R_v3pV8EnznliU-hPO(xdoHXEs*}Xf~DG!XgYM2 zr5hTo)PwF36B{YE8u)o)s9fMd2AuHS_F4E+JI#0;&3;4Bm`7 z;BkC#{z6d&$h%yNWERZ<^GVuab=o>etFnv!LU_PV;aUd8sU%lpSKg`ZS_@`JnKqWv zOQE~)%n5DtLilmg>%IaNd7m_$Yjc&O!0X2GgBKl22&}I&L^8PsESOd<)vgplIeP57 zV@$s9sKe_nXxD(6WY+SFumZ>_i2JyOjd0j+B-}PUTmu8*)r-;>^I*ic7eBwRfSu3H zHg4^zfx(0AeH-jK@VxWW0p+49P%Npj+Rah}Th(7^X47QBL0fxqgF7`~_ir_Nj(D_M zQqRRWQIo!m+&k+|lAHNH=5^b}pa!B}=+JfUNrO-O@bXA~J*1rYvElKuO`Kv7dD!g#(JlK90APbk#EeTUO$O=F&d|IK&KkC|KG&`@-J;{7^^ z@4q*rvMU6tD^p6XIZ404Z1UdotUB1_UHela`3YRI+U-)evjtpE-@44#Q3qoSzhl0f z2m$}Q0uKwnGy~Uy-j~jCa$gttHM&;x6w2Q4kA2B)hRrt%Ze09W2Y2^hcB@zph2Cs+ zUR|wbIAv%Ma`96g>=o=36Cio~oQDm2Wk$%}WkvX}^kf}`aSijiY>R{|`4z>7-Zg=N z(C`u8J~DT~;a)0|NmB;cs#9x z-)Red`D?M@$E34VW>gP5u(b88X&t*Jl?^ z0DWe)?`Mi?fU9;zrsYj7aISC$oG(cLe@P~~PqNjp-Nfpbsz)s-oH3u(%}9WnLucsy z2P$Edb&pNR_F9Ph7H;^RDgkh7&RvBo6_9A9Qhna12HtG_QoFZ-oLiNg`M8J5;8w_& z+dC%79(Mh@-lgX;Aoxd{y;ps(W{^26;DUOrV}4W=*fBL%~73G^Czmn z?di^kvA@D#o^}xgcnitrzc6fwuM*5hQW<}8K8DKgxzX%>xlnfX;lHxqG{Mm@Y9|axhr804(&yUH}{k8H~CW$gKVXs-&*UaE2N4EPkreH zl@p=!lFwxPbTQna?cHx;c^_Y;Y`386iUg|Y!(5gM1widkYxh7n2*v$0J@wB8fu`lG z#c$ml2-=Z*PCPaOXR-y8)gC%Q{)KmEZ*gakoX7RUG0O3%Ufr_3nRsGGKME>tC=f1n zv%)KmkW{>~^MlvX{k|Bc(n%N59RX=)`)}Rcl!@oH6_px%!!S0fE666x2XQ)&iY9}zEjLooue#RwP1qx3I8!lIW>bt$EfXD< zdehPH_Ln*#wP<|Ns->y_i-Ki76N0{xSt!vp-BZ??iZM$S`E{jbnDX1KL}E)WzF1HB zrEo7BPfD~oi4Z=XRlRuFfxY?IvFFmniclfW?b8}ME>VSiXP=Iik=&X~gKUH0Hwv0x zJ2K-)SA(W!p6zhwEW&v%-wxfTa;#vNv>p6Vi;haclevTw?%Y88Ox3*#t>ujcxAc)- z=KjF?F~0U-4eXLOZ(#=NpGbT3`U0a?lL2rXRQ4hi!3z@!3dvr%Djz;NU>1L*&y@AEf zFQ;2Da~bb!6=}mcQQgDwk`z4kqA-xm$8qYDv@^d!JNnqJy9wN*;CJ;g{Pve{5_UWo zTMq8Pn}+v~S`Jc>>EdDa&kb$(yCM0jZc8UJK9}V6Qzu+Gmd00nrtNt7dE2qXc7Sw__x)epcFX!kLf?D-xeB!))59B`K2*On=e$uF|*%d;VSHprNlI zo(_%+51R-#uAy{t%)b}!6trm;-yu1@@5Om3be$NPmGz-8y$^l%Ok|dFRO8M{Wj9l~ zPF(knD$6VA$M(-VmgHG$F@J}I(A3>dtj|w5wLkee1_yk;?QpFg_2X6kNJMqwk-5Dk z+D-%bm@)Qs)j}hN{j%AcUfPNBs_U=r?;S+9T#uQs8_h^lbb*nlrxT~sd%hW&4B~9^ zBR|{K7G&Pc!0R#9iC=3fWZa_%@p1dAcod}#ZR;yeh_7~{&BmQ?7pe!b>aQ4ovR?;k z3$ib3?d?K^25a81mO->OJ9}f+u?r=7ENIlky71c0hM=U1LE@Q^eK6)iyaUY1u*Ikg zMUwUy@P-be>JZLxCgD}$KTp|g86tsj$>7OlTEbfIBx5YvZE zgXH?L9MGv6z=t1V!yA5ep)B}memXUP8)nx{*WV5zbCLKpQ=x9OkKb*vPwF|!#}4n( zeKmyJ`Ii%VEW7c?PA<`-T>bdrn29?(zQFPmx0W?iyD{hfg>l1=y%-_A(xVVIjJ_A2 zJP{n}MuEXM1@NQ?<3i+Z1(Zk7!FbQrOH|J=Jua8}Dd#i1s4=~(@%;#%$=Y`0Blk1> zvqwmlJ+%vIS@(E#>%T;I8vnhTXP%+KU;393%$>M{j<%PpQ zY{w!!C;8#GFY!!^(HSja^8Y`0-`e@96;oGD9|_IAM1hZKr=^L{!ORcSpAf#^R=KDR zeDM;$2rS_6f898D$$P!|7GkF9S#^nomze%V?Xz8SH|`Jg9W+&IK+7fTt7jBnV&M5| z51vci*x{g{a!$Dx)%{B@{d_%wyyc%c+`n{T<`6|D!MF;&mSWrf>W^R%AE(t_mo9YO zL9dh+TaK)EPkfr{9mbhsl|6zRop|f|zt1;`XY5-}fcdP*FeZBxPW^D{ME3aw85+hS zv=a0_`6l!QMj09@Gc9!B`J6|7!QQ!8^`>)TdTt0kuJ?B(8Fk<#^~F&)y-d<~N>mAx zA3{Yd?=knjcH+5n`+O`c6-V{0B8yVU^{ot`Sctb1?r_27X0>=sTYonH?au(_o9P%= zXOsPMxW<$0laVN=ds@t<{5eYeeUt0U(uTDrF(YA~PtZkY?@xQDeiSOY$QA#n6@x}7 zYK>z)=&yO!i~U?5{(1K$;Qyb4jM%MDZ3~<+d0SB-J$)~Je`Rxl_ihVz+20cXz0DZ! zMO0r1ee(=+W{s2fZD@Lu&zWViNJ!tQI}oIodAvEG z3w09GsIGJ)4n}c9@-Qa3{Q^|x0 zjx5SXDzz7HqeRY6s;60HI8^AZAKhI>d~8AwPl6}r9kq#=yGX$gRPy!(8Kqd+Q}@mI zV<4tHpLA2&T8JYK*SU)QC@4U$vYvA~9P!!MCYPcdG!QMTa{N$?jk3?2izZ_*?B98D z-slV*obH~Eds&EE;$yDIOeW#W<-c)3Nhzp16sJn}nRvsc#MssMq$5q+LJvb{EGAvP zxvs~aM>x|LURCL4VMf2Da#3wK&IEPtR3!KBt7%jxS1NMxcUo6_H&Za49J$cZL`C+% z-qr7CxeHPFVBfyxJKkuq()~)MG80d%wQ${zDZ#%3*N=RbzlY`5I5l?0Wnkd%U2MjW zh}XHtRccd+HHukmFJdT8$4Bh-`unBGX(7`wYf9b#4Goh_ulz~F&*^Sdw?0>(^!81m zFOI8XunDb}wqqKm*Zr0%^{zr@fl2PhaW#xenq9~cOv8-H?-pOT*5D}(i#>{a4AE3k zST~+64b@l2HTCY+qBqAgzmU(?$oPYCJzO~ro%CXc>}%^VNVQC^N!J-q9}JEFCsqs&O_I>Au67O37ZY#c|PW!081sv`YxN! zaDsT;-iiBOxu1teT1`z@C5SKbx5!dVMiVZtEz8Y!7U0D(Y?1LR!!frLQA6fUNaJv~ zKd8S5d4Cj%Sd5pWtijfO8i$+k!REHwqs9O9f{}iYq>aGP$Pzi2h5%6Cp_6I*{Zi>-m|}W!|_o} zBj!i%yg;KzxVODOYUDZ_@aA61yRGGoD6UMoKYqOg#cp<|N)0sP0Mo>8a%jaZcVz7T z?|qySS~#FjqF)-*TZ}a6n=o~S;q&I!0$iZ|Q&ka(IDcP3j!v3fuR9msl#sj=)1i{J zjl<12BrTS~>e7VzA<6a{`*X0}+0akHsTofl__Ft4NfX|4vUa8R%fu}bJI+v5HsjbK z)exHZO(=6n)-Qi74L@)AtHEJOn1rcS^xXAMqa3I~M8+ACy%*P&vJ;1>IOCxh*vj^&WJ;mlAPCi?h!(eaZ9a zCr@v4CmF=ke0#)9N)2#R=FO*LgUxuA%d*Y)2;#Ml$ezYTUD$r>jd@R6GZu>SeG}V` zc+i30`p)Y+FdzOi?x=M$=H0kr68NnN2?+JY0<$ZOFC;wd6>P@u?Tx=|hnsL;+1c-U z&mThF-y|b{a=&0Y-zOGQ--I)5BUOPryugIBz~<(0M7jpMbH@2iXl2Jbd@0@w)a>L^ z|M@rJ`%AV1VQEd|^GQj6e$)$M^Y+lRzHCIbzmPvoUT+z&E_n0K1EN2S&(yP$=S0yY zW{m=JU7p=_$vgW1+S>KzJyjae$$0m?WJ43G8ac#%9K8o2lRtSbIoBg~;g8RXFUafS z{~aq9b^sxM$2W{&b$B4`wsgfz6EaA9&V0LV3mhIyrneHwIl*;MqhX^7HK|me7vxw# z=ZiM|nP|exJ*2MrihLgb#9j2-rNFfFCg?q?D32JRU>?Va*ZAQ^Tz|ss zzw+-6T$K`Nv9T}4qwoIvWFp&ulU_XQ>?9A)nmfR$#YyIuH`WIu`N{n@w~~9s;{nL1 z)llEc&mr6l*&S{pwRq#z>VE}xUN8{iv3uYCOfrA<=O|aI!5&L*(ZGCP$nUySE^VKR zhD)_eX@11dq!*WceApk-ykyR(y2YWW?c>!WAr*Km;qguG7eV0TqdR+iOE^|=M*9j{ zmZ8qbM)hRm6A%siS!~GXhjLL})kj!KPD)3rFM*cyGy8`4?I>2*Wu5p+>~aBeS6C&_ z?F)mgN5pf0;SSX9?Gu)g%tlX@8DYhLVIVkeRaeIH2t;}ctD|<3p23H*das&rl9xU! zc6uxf#Q!bX$alryTd_0RjKsqu-KOkw+&mVTe>A3U6Aeb;m?fikX%TRXzi_Cefb`ij zCc>t*ZzKB~y`A1e5x}Azn$vYP9g<>`)Re}Y;0=e9a~OGjp5a13fPz$%$hh>5kEzfbL(GW zcGT^BUpzsxzfp8zsT$5nco@deWZ1I)2Ou1VRP*e@pw`{wOLb0gPuzA6aMO8J>6Z`JdzjZ*|_}e zJel+I9Zwc{=3|O9jGH>mi<@C$;92iY&NK)P`(jEJZjN*gdC~h6TVOoGbNga(uigY^GLV%^E4c+pHZzgjI8u zO!A?%J$$jG|1LcJ*Svl=r5$c_oqx~WQUJp975CIFo#FAHA=zTWV>&0b_n6a2-#d_B(Jq^F8te7opPTmM_{3VH~k zUN(vz6Yan=9Fv{-ycjAvuKv~-dkCxdk?lrJJA4j|@HyXD4BKc4n+)VU2_lH zVeQ2aq*f*Qj_{ZNoJQ}1Nx-f1jwjmT>^X`%r*9FsU1#FiJLUol;Vjoj``h6CAJY;> z%RB0(hfnz~&%x7h2`@dCP}Lp7kXLIGE>w$-&zU z-u2e7t8K?nu4F3&)p|ahP0oRo#6-EhdZA5a<2K~+zjodCy%t=1ef{@P$HS-mgD^(x42e!^V!47fK+UvGWQcH_LZ6FN zCe6FUB#bzo)vSVxf}K%e*J43@C^>nXy${3&Rqps{UI7vZuauj+#)93a<{m$V064Xn zXdYx*2IpKqe>=e+2bx0m_(gXO9l?cc=w(m(9=`Y!C^`pg_Bw%N?+I&(z3S`f#kKO#84wt)F_uE#b zfb`$hsKwD}@UR-%G@zXbU6{7JZZZ|#ZXCbZG8+TuhBOvdQp2Hf?7%qRNE&=gZLA); z6$`ev0}MIaN&b9SPrd;q9X46&w_mvw3;Dk|A4ZfYqxT`>s|q(Vpz@|mQnE)3$Zj@I z4#@K*y`0{iyXG?pmsRHd22C{Vd}^t!kr074;mMtkBr{=s=i`dUQxPyK)57{GC=nel zDx8+q$OMC6N$ErEVW3gn^qW3_@u%Tn(EO1#e!{FOPhl1|O&ozu1y<3#;FL6kvT@iXJgC=A3_0!LQKeXq%`f-m#A9 zh&fP>9Ro`4a~!E~fa+DigX4i%S9iVZv;grpspW>8D@}%0le$f*t)Uore0A5uEtSL@ z{>4?zA_<;2ye(p+qiJlAeJ_o21 zVN?$*?l#AfJjttU1;Z*l^kG|1C0io&W5$U`dlOK}cAdHXI^pv_exEouk_ar_;{UiT z640jCRng^i72c-0d7)P<8P<%CJ;;lV#|c5k?4*~KC_62)Lg7sXHA-?YS5_?6tPPBc zD_7$F;}Sl79%=BkOJ=`NKos7)*QAco6&Td*eWpe*1JWE4SD2N;un@NnFLadS*u~+8 z(QH|eax`C)p9F5rmf}z90nKM*kEO6t zxxy)|M|in!wX4Xy_h-NETiX4FP(owfYQx|II^1{J4$YNdsfcf{bZRl2ZP-;Kxhotd z!gn=KY%0e74{E_85fpf*`b&_8ApvwL6}zd4&*{pMGaa`5r9i{8dD{T_K9Ez;fCAEqsOXpvF;LG;WOF_X#Flf>26p6XI4ZCmsxT!a<}Wp zYkw+${vMy${_YY`I{q=m+A|Bi=l9TGX{v;}pp7RRe@cOu|KNJ$LIyTzDZO;it%9%W zN4|KyE{EsYT6=9s?=VfSoF^Zv;6MKA$NRl2;o^IHwWg+24CedeW%-^Nseo}Z+x-&76kCu^Y%uTbpw;$g5E ztbn;sj#q-L2v;wUdf&w-L3k_bwRZMA$p_~O-TfF+4PyaL|2;|f#XCcZyMmSp&x_xF zXzSG~m|{OQQTXp6{wVd7{6lsxC9Lb*B_gd`eT#GXvJxM>kLiinWa{uJ2ew9H| z)!JJ4;vF1X6F9>uNrA5Doo_AQQQ$G-g{X?pw{TzH171nG5;!m^uyg245m@LszUTgR z3yqg+)1 z|5gZ{+&quAl04l z)E0ZlhwSOK4|r)j!8-|;%(gif!wpsX%V(Pl~=yKQqNBz@QI z@Q}*GGtXy5c=r$wMb^QT?{_L;%B1J5DQyAnnD$$BaLBf5!=bMU{?PWP^!N}!WwqC9(5gndkFzvgDLar20Y#&}sJwDf$(=}*Pzk|$u`%$SXD zOji;uNiJFA)H4&#x)SU>D0+HzEEDD5&r#(pSAaod&s9N^f7?Cp8FkJi1LvN5SBL3U zz;CG*l4YUbsBDx^KxG=r&TKoD7*-BbHH`r5{ zLFPqoaPBu>h)>G6ku#f$9PiXOiLb1l-*V?jtYNVU-J$;pcAtIDU zbA_9*b)3s0BG46id=%%?&7yFx?CE(QYmq`x&*Ifw580nerkoV;i z?hW^ymDRwatCinNxZ2M%=zkk9m0*-mA={!L@!pmqRvW9Nsl;)4TQNSrcT4`}j4V{XGWYe6$m7#MgfM-VNJ!vXTT_&?VjMPHNf-;WNSx5D>eXs_OP zs~aT0D=)=%&^;X^gK0Cn{aqj{;)&o_fo^zHv%>a!ISXy-&3u1-a)B4OjkdD(bwOc6 z7i+Io9tP1;4sy1;K=Ug`ad!1CnB#FeOfms@WG@f4#kzp?{)7?Z%1)?T7FePp``!oL zZh6(CE+8FQBheR3VG)#rBh#-jG&7vthKm z6@*gx6}>vE(b&KARG!Ks_%15La`ZzpoU4(Ey1%~`*(gWM{;UMSxvcDYx624LZYK>V z2p=Vf|2J)nUMRFPSJ=M92B4vgIysovu$bphYsBT;LtFmKNQGNU z2SO5j%Rtd4=zz~kBj&JKOAa|_fTr@X`EP6#U}BLy{gkx{|8czE!%X^wI$P4&uMywk z1)II6f|na{PI!%tgDM}46Z+%}rE}nuta5ild?ViN*k4jsQv@=2t>z#f@z7k%blUZ| z0pD0iUg9Lr4H;!pwl z)2M{j;E4pim{8c!GD^ECU znTFi~b}jV_7HOncs1oeT^}GSDtMbd!bm(J5^~w3~uSpJ(p>$xug7mZhlhipP>yGYv zUUQo3Wq8o2r%GbI8QyBMc5hS!;Lj@znRqb{0v0-Jq=P*Y$gPTo)OXL^>5^AV@7l(BVz{^EPt zV~=ytZ{ePz#>rSr&8=*q%I|`BT|eol^nA4OF&}tM=6gKHhqYz4cf9M!P{f${C@KH@%H$g`3oA|;J<8B7S3CS$+M%3vbzjW zc5>jz1JQ0s&5cy1Ctkh3a-#?4o>>9J=G4KDF3`E;G^1iuiMKglC%D(IhecP*E-w+1>0+RRRt)1Aizd&_c?tIA9gr!?et)I89(U51vjj;d!eaV}$m<0%r!i`0&XZ`wqs-k_ zUaP5aEjroWgQFdm{I@FUWHsS4&yzvdXfmN*v#+LCp$(pewPtYsLu_Xsh~$yV0hz_7 zp5a@qz-WKot~tFK%W@5wXJhi=UHPvX{V?)9{{7rFcZn9SxT7CZlL~x?$}&WG$gsZw|3q-?3M6ptCvQI0ohLy)eteYl zQ;tTuiany>!`__p=_GN6L^sb~LB(ZqF2CP>a{r zl1zd+y`-CR-_yukVowJ{X*~Kq8MdUUh=8rsI!abuiNM$3<;9y4gCUib(x=vaAbaKF z^&KivKrJOi$9^Fi&Gj~0Gu-2bMXrI9zgdIfRe{`DJK{y?^!ph7AlnD8FtQ%)^mm4$ zKf0`LYOxr*;kbHvECN52X~ocon&Aw4M%?c^38>7+aJ`Z2o9(C7k4~BSBHxb`?ZTE6 zOy+j!5}C=s4YsbA=ih}Pud`_kTTnXMUpS!TGn9+RCh3?(rQt%5^H2_`k~Ea4hSWqi3Sd zO1)V&K5fh4U6i0;=2@5C3TNU$E#$-(2l7yS-bqzRs0=fe?y8p9Rb%|$i+rn(3UK50 z$AkUc6C>QPir=hcU< zCVX3)dP6+A6j_d(XfR-D#ABnYM+pubBVONCH2FdLIZFd}y&+_;xMz=9`I%B9-cD7} zaao2IY~c9v{@@F;e{`#JA0}MjFlx7W8J8CP_<$oSK=@&WgTXoy_ zrUkD)sBhj)_K%)-SugRiS73E`PN-CP3ts7a`hFs|8P|if?^jJ#pxEID)oPMt56aS2 zlOIAn2r=caHxE>z`W3poBV)~|mDf}Lhx|PSJhz`RovOmx33h`-vcD8H`*i7=1^IV_ z#Pt`U{B5hm7CR9}ZC z1`oZ(W*YIH%z*CX6-2?HF8+;!4Y;*U^7pmZghP?`g!`3E6UM2$d&_>m5z|}C_dIE< z$Ix1ndm++fUw&(Q#4YlEp;`~Ub}p+9FI`(wJl<1}4J-5WTuX@MzAY=~J&4!y=jwfP z+By`HzHgoF(Tu|@C9GlUHTc1OK(6d}HR@mUH~&lWJCR(*gP&Nd(ahp~aa0WP&~Lwz z=_%fVWkr5pZx2^u#k#Dq#P2dx2`jFqy4ixdF{_N~UKJP-y!6X-HwASA?|fBqY{6^R zdM*^sauj~9kfyejhpN5|KLiY0@PqJ&-zSPnvHWl1XKv>V#_eYKz2|Hi8X6#iq>na{0`GoeXCw#d~ zA?|3B-D4%h=hn|Rxkc#hGEM^S6O`?$ zEDb0a>nJaAI~n)bGIlA8XF-Mob3vbA9Tr@3G?m{KgYk`9_ZhhtK)Um&>en4Lm>KRY zI;8g$eWj#N-maoRxIwAlz3xg(YN)cDEAqsF!uhqUgwwe(aG60uw;XpDCrtV|XyQzb zxqR#PD)^Rp8{tk(D-4B{rbw*V^^P zn)IiC(p?odBfZY$h{(N6p`iC>)Xk|b1GwVNE=fl=!vT+;*?7l9cshDE2w$4z9oN2Bi1blz)oRPJqpmnm_lHe@Ox zzf-Smknjp#2W+-2^k{_ZyH$*9CweO73dy_2CMq>@xx$KBL~}Udz6pnU zKHEgy3@2UZ)(cd{@YtW}qVjtMpgPW>9e$d4;F!NzE1h>oqZr$JL$X=W^0FXNSg{!v zix-r+Xr5rA*20l}CP`q@T4Xyf-V9pRBdvCGQD`c{QZC8z6lR2O9;_lgw(abVF_%1( zkfZzSA8K|DIIR@-ivS#;y(gdNRYE$>M{#^iS`Egi%*QufXb~QV=o+iZjJRHm>JGNvOWR8@`|1J% zeMbYN9gCB6=P$)mKd1FU!1$WiEdOKZyrZ#x!!RCcDAG`ohB8t_Mk3=*p@mXWlv$A?BeJr~%-(zN&1;X_ zc^c?H}IySZP&Oov zMv70Fndl(J!r4F9D-c{C{V~iToSD@5RaTL55UH6d4fU(S@%8T}LBxkxsw*PW?@E^X zr}uVnG9Vtc;^BA_-iqEOw?{-7D&Q#nmt;3$pe=aL?;8_xPWch#X`&WXgU zYTbB?mUEBuP&M3503qejI$DH2c-do}m8iuvtmCfX`)K`yhlh`-;B)-Mb>>Woq4%PwF z6qA24I~6az>A5qU{1$)S>`7l~tOMof`PHp=i0?a7<{q!dTijCKHTvjrJqS?OpE+4k z(dXY0-}BesV%+DeCEu3oAxHa&@PG>ytxR}_p8xAc>69xw&FrXTikQ;RMZW(v?*O;C zcQ?{yj=$lWq5@y6TEOCMD*ktV*ObuqZuDP@clMTOfL*ESv^EE*$QIZ2@BVZr_DWA` zhnbRm?SM-cXG=Y<2ruaRBzK_K7g4u-_XgMyBelYyTaRq{@kuvi+cBRvJnF4|1DGB- zb^Os}9ge$4>*;p3;y$YjLsxG$K)S1$Xz`soTzsGPH2D(gRb-IeafY@5GHbh(B1>w~ zI_s9jg~BErY{56je5l~?oAb+uEu>exZt;mT@gKKmij+w&)B_{i-kE(@iJ$&exY)V@ z@!39FalAn|uK9zKo9EW6QT(fSep^W$D$|UAFV`gJIcH4qglZMqz4iCkTP5og!}((u zbV;w1)$k|ohzc}5_4cXwe8(vv9a$M4^#8f2LpY*; z3NOqgLelD3NCi&{zEnGH=V;&w#=U&eJwj0+@5r6b^DY5-bv^VstfF9$y4@;s(GOBP z_TROUi$zABR{0l=$xz?iQQ#_U4QJVG#Y)A(vCy}bv^}`Nq#AAE%O+H^*-*} zuNRXs`CEy8z+(&WZs!_``L720X^VFBai^hp|HQzf7#A30s0-Uncm+x;mnOqIGBCHa zneXbYH?ZTcrdrIodWaL8;x3oXMw#>rKNp__fF1YTb9x>su&S13)Q09FYsJ2)8~!11 z8svBi{-XjXUGCWW*F4-D%#z^{76Ggin!m=~8o=k}#oBZK@=<{j?IC3y1Ls7RW$Kq2 zK+r*FABCK7YH|AMTR&{hie=)I!y_a;Dp&3@%@y++{E-mefs z=DHbSX8Uz4li;s%$08H?+_K@W!Qa2ccYO58X71%=xUS9Xw;a`eRBj5O%n%Of0-+W-mCHflm)rTEUpZ-Q$uo#fV% z%fDY}fa5n}#-D4JVS>if2aJC*;IZX#O>-(0T6U}LP1;+IcZwbSCe||H&|eFuS44NT zzqOlHs0n0lapqhi?ERI#bV;=^nDXP=G1p3T)T!H* zDW3=5SceP;XKLW``uhl_!b+rA|2ZWSoZUQo7^t;DRY%e`l8^1*q}uI7pE3Q#&N zwDVy_1-@(=S#%G`hjry+Ou?e%aEnG{#&)S3zmK3wb85L8NdV7m4Kt7X^~ zMsp z3YW6*0%etr#Xkv>#E);#_e+K0L?yqg3TY^RBBe+#nQ-KKCCtyXB*DXhk+y8TBpe-6 zvQzOVJ`L->f=HeOcyH`ha5yCnuSd*(oIUIV3vvgOwRK{lBusgCJ%0rL;|kmLU-WZ$ z*e~Z{(HH?kCXElY2tO+{uaxG>>vMyTo)z*` z7j@uQuT{%_l7p(sO)S~M@@T~- z82IsK`pGy7awM~v-Wz;`;zoRBTV+B(XoilzPplBlh8S(^-WuV3%lD;4pF>EvJgl2~ zKOf~HPUwWrKga0yeOhe5Ll!~XrMUZl@#{Hfvf05sa~mH4MD6#UETeORyFz>~W^cl>G$!9A6p^mV&J zVb=D;WK*dtY&}@QAUPh1Hk&$IpVEhr-lbhak^G^cPdP1lwj&PD$n4ns(=Q0jOMq^X zH69}U6Far$67hnhU3o@C0H}JeM`s-(Jzh+V#<{msQE7JUI`2V0@E>}hTjWQ2dnsPL zI{#%L25%XtXZHlQs^ZtJq;F!=sHT2ZW)4ntdkR0FBRP~`F%u$h^T6=>^V^jd@^M>B zN@$jq1-xcYj@rgv0DPgnV})l5@l}A;&UxvpAX!ivZ^>B*?B>B9Wygy!TYve%_NykC zaq(@_i7$mw&&} z3JiV5+`}d1NTJ`hX;MEBJ>`SWs&-M}iNu3T+WM9FH&9Ja{A3v6p3gQMY@|RLbK$)+ z%T>6n##WEN`Czl0`ULB^3{bN$Yc)V|$a`io30YsTR z+NhpihsT(P4`yh`Vaqk|+;E+IaDObmgYvfy@pNIpz(^E291M;6l#>S`|7i=p6RJl> z1BvQ_ZU-ZOfn#t$MED{lK-0z7RlYAX$GDCwpTJW z)8KdR8J&aW^{AgQVYRB~3G6}V_avT5f$-m-7avvC6CF!q;mN@eXkOuw{y3HhZP}&q z_T>9g(aPK2^TmQk(SLi7JI2F6+`Stg^6OEO`uo^E_9TeucphcS76S!3bZlvf_4sgN z-M=k74S0$gB6!%tf!`|e-X_0#bgY;()cBnROm+o7d0B$skDlLf^NV`S*R}C_<3svg zp6ygMWAyzy0xZ`z!FD$l+in=gqS-gJJ(I3TQlg&u%GT z4iDB6UtHc)kFEO-B#zD(0qxV_$X0a@5R9_sk?gL+7sV->J-Q`usoS?n-`)&A)Amc{ z``00L_0)O{$<6z=Z+Ud?g)=tjy;2mpT!-&ZmxY^qmVu;oPI8~P7aI30nH>2=bi}@6 z)knq4VWcTeYOuf`)d~k!ioI*m?94|2iI{S@*PON7tQU-LV;{U%XRSr9rQJVbip$|r zA64*aTo_h;^V@ru!@Cn+Vr4>aH-A;P-c4!H1EjrK= zwyzLoiaBo>iALb(W0I09=0(`Zzg1j*JrArC_ofb4h9KY9h%0cKtn<}#6WJ}Z;n>8# zh9HFi>>uIhlqT;Pw|9BE{wZnjbxOO%a>xUjieFh{XcqogAOCnEG7-|G*gS-?Z162( zao50uR2={FXw70ZgD<2Mkt6I&ua?y@Z;FnL&@FNW0 zN$%Vm!DR<5gQ^*uC;ecX)@pIfRxdQ;*?%{6uMxh8W~oy>76IjPde52^G%)AVft+Ol zZyY_@(=xtDdPw}XPF|BH{Pyd8oAus=V*$hO`YFO=$l78RM1L~`tp7T9a^{_K7!|k$jrfx%cm1|06n@$nst9%v3Oae>o>%e>M(2P&_u=R0#bG z2Tl6vNp4-}RdlRWKIZ3lREk9r|JwIOhZkZ6u;vl*o8!MiY|d|GqL`GyyRS|m0#A#; zoJIGGe`qn$jnCWrNms&5P<(v~xh^NX7;-*B8TLe;-7vmZ4GqdXd0vGTpeCgA`}3Cy zEWbiwH}9+S|i(o1(LryV%!ao4XE4u*{bYhGjCN*Gh%CCJ>4~fsASi^cPxDn*; z7RuHPHsW6K`@gOc&a{Wu-7$CdCaCW;tfZxHMvL5fX_didNaazdFI;K@-p{pdBd1!B z=6X`9x^WBq7_bw!dEN{R>|xV1ms_#kCw*o1M+>;C{GM!UCfsT}uNO?JZP@nUM*m^L z3%}xV^T;#8w;g-G{Z*1`JE}5F>9NMO!u#o@$W1$1z>i9|`Q+se%-%Pb$2QmsITF>C zA2zmtJgc_B!4sYM_^jjx`3-H*X2fV&_^BDLD*6vsEOw&e{q<6-J#DaWj*GoItr@uC z)LzwsE_}x|@$Ecw8=~5wxXjpvl~0?9x(4nZUu)?5Baj|O~CR+h;`;eH#Ro=u3b}Y zg+!ySNxPq+pU>E5ErHQG31Bf<+G`ekzE zTqB$i-}%&#eD1r`xwW>V8S1&mm4~MqKs#r)!*9MD>qdVTS(1762iM$i^XTgqm95S6dG6~&;YW(4ygq^?#AlO z6^)uXDmWK*C~DI+K&z4-7tg_Nqz*8+O-9y((|mm9;3q0Xc5P#@bm_vpgLA@_gzJ2J ze51O0JrxoIUhR8Na=#8KOnTp)iO+{+!0}}|6@+z7=UQ4x?z{a0_W|!JI2-*T`L-Vw zzD4dX?rLerIAZ^|8ZU$9k{^eH%&Blm@|A#jK^sc%-ZyTwrx+yZARzZ9(S5p>Y45nU zqJQ_6_Y(r7$Lc1Z{5UritQK_2b%`F6n*R0jPyZ~q`<7)UeVY8<2HV}Wi%rP;(LAc` zQxeF`7Wh{u*25K5{#P^MjU)$rY;*c3>Ct;qzxxH5b4S6(uD;U^Xs|RE#rVnt9J1ZD z#@^RKc)n+HDU$c0Fr&oN1W~kO*}A@TwGMuF$MOkXt;0Qf3(UJ*-0^(3o1#NzEohlK zMxN-Y!2>(tiCRktGA=FdmtP>d+t%Lma`n}yqZ>pQ{5}>(SorfQ`D&oi=5nXfbOrKC z?Jk#1O+-n_KexK$t4R+5i<2pT89uZ=ATS-Cf+a?bN~c;YVQtz-tk9eIqkBAxG^lB4 zVG*(@`Jo)Ri)8C_cTv!Fr%Dhze+C+G&fcZ#D201_%-iT{^0CA4{njtz8F+q`#j`M{ z7+iv6ue?4-{9VT58?5It@a9o^Yc6{V3=GIxzE;b`TN*ODGEXxwe#`vj5{Uw6Oyb*P zFqVo(uRRMq_aGhb(eqklwdca7=(=f@o+Ml`Fl;iMPQ~lo9cL2AKCdl&DEf=JO$hvMF0Il$7mn+DC7EfdG3dV5Bssz8O8E2d9HBP^k0=g}y!jT6jzzt}SAQv@ z<15^7Ha)h~hh7e>Wh_nH z*-P-#ZT9}mB4@nF#waz|_y9(7owYBXEytdrw;fg+ta)gkTdck$n+Qz3TT#s4SCBk-=eC)l&r z;SJBJTC0jAur~K?iPaCspEeqfpXJFMJNXOU54U*u`&s^T9$h4+W^%k*R3rW1f~v~= za*@E(IOoTpapDfpW_krZ*ckudKkp0@hL&BRst9#>@x5e{o?$IdE zXDZ#bhk{c9y9O3NMWAU$^PQ=VC_IuWzU#|C9zLzPN)wooh@$(L-8|DG@iw#4zFplJ z_{ih&U-zkWWZ9j<(9RY?_Tvqljc$oJ{aIM|AU&CnnmXJII2DF$(qxL0s7gb!4?1A9DYDx+%gF4_a9G0XjB?PPR-D2Bi-W3;Y z2n;T|OM2rHl}c7m9zxu$UjIvw(+16Jzesdv=EI`Lk+=zs8eFvN(Z5}%kDoItPkQhc z0k6n`DM7kgG(Puy_OF&41hU3w{-;q25K|{I=1_}ie^q)9Juro{IkuMk!WAHO^~;Cv zUA6e;63yB(R!5lSb#8Wuu7dDwACx%eYq8ajIwk7v2Hrv?=k5Fvt{wGl+CE*2FC(22 zo^JF7?r3dIRhJqV-u)|@sj?PV7g;|9C9TOAk+E5&<0u#eQh z_Rgad{%j(mr+S6MFja1-%3Tx zDp3Ee#sVwJNA=1K^(T2%0b5T-`KvEwcyQ&A>#eB_LP7mpFyLGPe_@}+g>A%VX4`N} zJSGQDx{L^1zE}o6%+o7_XNyT-d%{KkQ9c;`s@z0BTnzg)f*C(s6RuG~BaKdZA#B!E zc+a3kf$XU3FU*DtFeu9FM~-4Kgt^t(xAx`3C5ww|g^%*F$|q{YgRKl=_VhIR#pXcP z$9-}ekL00pPN1mM!AkgXedEdQlyuwrWB$7~tDuBb6zW)sUF>OxPzrm` z_Fp?#+t<8frcFei4_u*1!KqlRvQPRawH<_WEZR;MCSjkA&-ZIZsVGR@d_F*{9deHq zF!LNw!S^4JtYxjGqUQbh4YXBlaCU)x6QfQlPUx7(^4X^$NAXSi@{v|p3zX)kK1{ z$j*4@n!`dP%<{at)qXbvwH2fHv+HD|6n|PyxO@Z5SEqG8Da^p}s`nckO>^;(7ti;H z&+1{KX)o)qpBZ?WhJ$-@IuGBBZLy`ZsD+fcsEsFgXQHj^y2=(M;@f$jnP<>Y4d?In z9?CtKiLJ7xlSX}oqz7(#-vy^~h~0C;G?nzva2ftxqjxF7tLkNkp9m7a;F7B`?XL_x zd)89OREhX6Yl1k0zZ0&RY~7=W)fpIi@lwNGA(AWCP^1ra$b<;GuIQ(h8JIDe+kKkk z(DRHF95#3+!f~w>^Y%j-nAf#oB%YJ_t&C~JU3tSGqAM%-QeirFQY`%Kk0Q2ZJ^%B3 z`4xy98yVOnkxqDK?PeQ2iLa-6Qr0^5KDq{chX2aa$h=SG(P8Ua!uwJ6T|eT1d_O=) zPBabAbnT0yQ>(+jkCnsunuD=4egEB@(o|dG+q~Pz4?@sk?Dfk~PeGIR712)O@V>G!wl5*5k8#kq5SK~pdzd-}~)Qa*+%BNvB z*Zt~WcByEoX>(=Gq5&tuPi3YIrs3zvebRm8_ZMY6IN_kxfFcLNH$E0i$JDTQE*b*q z_(k02kQ`3~%8hQy>b6YBi;FC;yhx8wic&xd%;+rc8{86>{3D zM@3O}tDvFTbd<{7zs=!BHr|P@dUyFtJ+842-0fA$z$*tIuDzVe!KRdJi!`_Ek%^n9 z&AKlG6S77EpI*wt?-x$|m?^JA!Ed+OivlunNxkQC9q}z+luPMOJzR&5{o(sFy@)^l zoV)kd`h3i?bZT{ZRZEy=iUR75*;rF|Nc@a?0U8L47D><5V4&TR{)2MFmxqr%hg%C! z{XF;XrpGndI&5+Fn@b*U82k0FiGlbRjt_L0ek9xsQInbW*ZJrx-zhH4T1fQgIQ^_G zh%YvuITn;$fEG_h>Lh;@pl)gcU$9Cw-k9TXFd8ky5bFv}dg5cFS+5SAY^*|k|D=CUp_Xn$&Oj6SD^&o1I=Q>JrN!=x*MkP*3U1#tbZ@ ze)yb?o~LMwJMlew08o=9VL3jVw1&>vS>iEHhq(RXfDA=hpu%c_fs_`cgmL6{up zcR>1FkVQ3KUX4{*R)|G=4QFfXrb@K7ap`~e9C6bbs+`TAP+T4BqwXT#pLO!78sw-! z(ZHVNBdLBEsABr(b8aPW*mQ1^{zVNw+5G9$61@xl$T{ay;a*Aj7~RT7IW?G|rQ|*E z@)6Fp^?w(*Qi<9IE1{8XHE8jV#WiZi2+Tw0OSaBb;MPwc>vj-dVCA=q&H`#KuyQ^6 zgrG$QdU4O!ZZ53BE~?G)k-a|9aQdLq+Hg4*|GpQRK>T?eovU9XTLa&(r-#X ze~e{Zum;tn_|GqVCi9GFJsz#QWw=Ex=q6Vzk&(ClsA#!C`ZauJ`7&yehH2*>b>r_Cw$U^f_}xRTnt!o8IegSMhU4~Z#6igNWbvd$szh2e7wFaSGA!S z4LUf~G8Dr>AvzUw3Od`rW_C36hS${s<%b4R@l1JE4C6NnHZ*7Cybpd2>2vJD zyU0E{`ee3+*(`<3&#&>_d~6GM-TNb7nkHlR%S)DVJBqO7w>J~lUwxpBnl;;@m4v1n zwE3C};iltY)^?_~$H5^+G~pXTKABIJLHzq!Rs2tR1y?*romJo;rivOA{; zwVNWhHe7v)-@e_RtMrM-tt~-vK3|Ja=mAQED7)aSRKPRtsyH-VpL_wtU-8UGZIIu~ z4SQ>w=cX58@hay>!3$7~MJr19ugMejqx>!uhY+3jOrr9dN->^b>{UIz%^T;NI7O%L zM`P;=Ciflc#aKS4@G;|o4?YcV`*==~=)b!;Y6>qCA2`1e=doWt_#@E$ZZheMlsRCr zMe#^6ejU}BpBeSRP)F;%MMV)fSIj)}dZ-AKxbCb7>iXbP^DxHoMj*r6&!S5l)4k;n#__E|M+AO`A>) zibzMId^9^<*`@&0s^@h78Ig=nVnjPXR>tC=(Y!03@jfVBnpwbVpMX^#Ma@Rdh_6kp z;+E`bcT~@kjP-gKga4vHv_vHtr+nThGPFBl>Bmd;spDZ-=r8b@hpdyfysw|;7Bu+a>;S2i|S>sHlc;YNJ@d%jryO7nvJVTzY%unESOaG%&{ zUxb=<%d!0|0WkNEx4wVm5$@>y2ZwA*a4lDE^WDF}Fi-i}C6@RApM5^-y1}Xp^}YCt z2b9C%YVXBjv8E?Dqh-YM*qro2&$#~8r;h@QojWHTaxL(=^!+EPhE=%s;6=mYmKfmw zed@s3>rTk2`Ni(4CYj$^9?5W%j0HHo9Lv1yfh^YzlKm5F@TAkNl+?&runK#8eL^(= zQ$-%`2qQk|n3w`B{IHbn#Lo_X=Fe&j(J(&u#f zemxH9C6<toM;R=C) z8wMsR`PgarapxhfCanCi#=@TP0?g~T`YbpX;t`wN1ktJ{oTrLX--!5JWZ@_O`u!Fh6m;JHjoiO=QOA#d;w?kRjT{QCgs}w#H3XGvofsQ zPg{n0-BMgbJ}vlE>zhTZ(1v;eorgT5w`?!+@NAHqJRI8q<;IeD)Xb zS1(ywkn?TCrE8P9Nc}I2x`pr*)TgH~zOor*HD3Mx!;p^)R)f6BtrYC#E-O=2Y{p#v z4SFeS`N%PIV?a`{5X1VmHMh4np~-l3-%?`%mg)8c(LB$`eyvZ#=2A^4@PaN=Mz0XN zw!~|4oFTo~2HlN4@r0YYG#|k^Qiz*0wfb-CW#Zh9Fh#$W26UNQ=FSnM;7!A^-{HPw zUE6=!^U#e3q;cdGI{Ju$vH9P}t~4fM{HN$M&WP>DSzn)12= z?GCB-AJ8Pcjo2gG?=4uuu7Pr|bfPQTTs@w#I9P;lH+dzI=|uCgSPS#R5&9U zQg8bh+HyL~6d8-ieQzSk@uU>D#%N5jTHS^8%Q2=kjfFTK$a|`fxs0suB$+;cJc(=3Ytx;p$0WUbmajz&Fl!q)pD}ql)lk+B1oAq+uM!K&l}g`_j3pzabBg zz0=|KOfARn+wb)$AF;qrHmjEw&e^!>z2Ew&*>YSyZ~T`g+7|O2)jsT|&BR5zb|HqH z6?o*+=DW_bq?ft*WJkPB8h$UHxum_Z0{3}doEP2nig5Cxzl2UCVJu_&-& z@*lSwZW9-}n@jvVfm}zHGs*gil~<;8#L5$YY*-lUw1`8eedjM9X)D7^r3@D>Ief79 zb=@l?wn#kp=%H=wjxyZ)jkdMxxIelDak>q!1)*`{ke0kaDJrEDPJQtY#Gq%#t@^pV zG5K8SZJRp0VCNvy(KJT9U=&wM0l!{Mh z{!-9%G;K~kh)R_pupc@KFTE+inH}Pc zwtb`@{Z+@ycO^j(J`?1cpqP&a-Y-sk<4wki&2gf)-$lajVwY#iJMz%#dYjvY@Kl`N zsGg*!77r?|C%1k{%tpOl<7X^;GVq-9Q3JWSB%o+Le|t$h6F;#sd|>y@BDp^&1Chd1 zFmU}6a($BYEJojsmfe(#>%U~IWjr&$^6mCG{*n}wn7#Z{rIh3-4byyd*t5ZxHLu^H zJPAKC+0%7>%}1-(JqzE=azV;MK4_HW%{~EJn%gd-J6`=#yk0~4oF+4urbzy?ILJ3l zl=xH|mp2Xzq~(JF&5LM*Xu=n%ow$GCUJ>ekg(*84n40ku>tV#eZMASB2-)M1#zYiy`&b#|4zkL>=0upIh{+ zF>>%dkIcam5WFmZixQNB+l_BMJF11K@+HT+jr0&I5C2r^+LMnzSPLt59wGT3|D$J* zwvyff)71l6a|JlYbn}=7$=}Er>LuB{Ed%~Q!yi*0DVVgo%WOku4f1o$Z{7Zn@a;EW zSEqeT^u6al`P{eG;!I2<)klW(K6Ci~mTMOa{SEL-e=gIM&^xq{Tt{fvzUq zF1-_q>Fn&?bsB^tcQiQP*1r{Fu837k*LWk{&tk2kq;H|~`{%O5?^;mk&u-d7wl-+G z!QA}&y=oY~8Y;RnMR?w9MjbP)s_;~Cn{@bi1z4W0=(s)7gjd496d&|(2J_D%I&3m! zp#1pN^GZr1;W(e{{q(~R!aj&AcG?$1QVnbOxLE_1o?hP2rAPF!cee7@iG|RZ<&v#@ znE3wb#!GIO#lk7!Cyggd@?h7JOziW@I(*3SGPl7j5x(Bo5ti>ldjB-~d~V*X#ngqm z9M^>u@KGpk^XP{e?4NM;v zHGY2$gl+#Fh%jX<$0wP-d)OTFNN-HjoxTT7u-P?ymS435FVzkI$F#EmRQSb{_dJIVDhy8?(GI8Fl5R5bb5f~)aIKLrUK{~`43LF6riK5BU>ur?mdp*G|6(K0@(hGuEiS2->U1esB$sKPXBYyMJM4m*Kg!`p@a?LZ6$(yAU!D-^j|M5Jg>!i} z<~y_Y0>3}cw{`wkjN309 zoIfv~2P(_1Ds;z-VN0N^>p`g!q`mW&YhPDB9BG?cT_At2pBK_UO8AtZPvE$iiee#L z?YgaEl|}wN*YobnC|UQ6^+8Dv1sqj{f@IYSfSs;4p_07U2Q0iPEz?DC_joIh!+IXP zJ2id3#kv%OPutO#(UpM0jpFvdS99T<$HDA|(o)>B*Q~R5x&$6L^Xc&=W`W;tPs=-# zrD(n;Ho7&b6fEy=>Mz@q0V!Wq2U%81QAi>0=5~%UFxQH_xFszWc0Z)~v}L{&-RuDp z^vi(#;F;AIPm?1D7tCimd}4sL$npB=);#nXW;j?vlLItryl1w! z$H5o5UZ#P;Ty)pAaFi*@0RPPF%|V+JAmiS2vY1v5?yUH9$M-=hC{WYhFJ~u$HkVsA z%c*QU7J9NzV=dG20#)vSi`Kz>35z#dhGJp9BZGGT>v4jhAjy7M71JoA;^QfJ13Ran#ot z5VPYVr$BBt#z(M7#5}h^cb@;w?u<I_r>0{eQhlZ`w<>4gtDqavN{X_u zr`)nCY=G<+E(p=Mh7gY3(0_rQXpizQ`Cr=Zrr-vi>%YPSa!_OCo=1|8FIu|B>I^m-ZqQEqoi#&+nk%zOL4`)y6zj*uHJk%itJnSv_s6M6NgavGNh( zw#Hb4zouo5320sMjDL%AA-akf-uH6N$HY0ohowr%$TsrydQ3tAdMDAlY7sq#$LpHw zOj;@?N<8{hU6GH|I;<9~w)seDPyNB_nvP2bs^6m{@=)yX)wbs+@==x5*hq6U0~x;V zdbe(ugS(Z-JhD>=XYp;#If=YX)U2u(zIH1UWr|#UJxI^W#@otgbr&*`HOupZKzS-M z(3Z0o2;`uuL)5N|`I)%&*`TIjc_O+Nt2^m(WMN#!ey1Yh=SjI>-IrMvgRFFnnnmqo zzVsj4va3%zex#+yl|Kzefm~zCP2p6W4LY(KK#nWL?Diz#yc;U#FKswX^iRg>ZF_2- zCF6=8jr%OmUECHf!gc*F;nPd}%3Gx*phZZJNSUh>(C#g?*hlon1u?e9NTFC{dL1y> zL>CAvR?eC1iNSb({Iq7(tuUh7aBqLg91XXU)eY}Bcw@j%_s0g)ez<$5uVsU7BKTXL zYjr5IN9vOk8}D6lMnN;n&hk+>B#f-37^n`$Tv`~AadtNy*D(8(d)%h@_{|XH1y|SFswcMH2=pb z1XwwLOWG3u`{fLskOGXM0}nrA>g68dd>$ z!pC}=v+V7knF62Y&qr;eCXweMBh9YcZ#^=Mvi2+}kpmf+j*;#SmWHIcm8rP5NEd+rA z`&(o_3acBk4u5Mef(@kTSDyIZ%pc_a5Hm>!rm*WYS&~H%$=H`1qgo1YIu!5es-{6G z_qI|_M+z`(x))3nQ4XI@7kd5;CH;$eb9cgH3ZclfO3b*Atl#Iyo>j{x0aUeb42&&+ zghzSmK!(MUJ%pE193hx>JCrR zD|ccqON2@=Sl*_nH<{)@%RhYsX7f6@=(ja5zt{_;CK5m0Wy%7Bi-8(@uhhehpz9XC zgfC@koMS9dWC0D@~D(um?>!Pc92hW65{zKcI4I8Z zX`W$j1i!THYhf`__*88@;YbZ!k^M^Kg_nj7 ziTFB!Wt@8@5_{(xSj;|C!T*#QN9}Yxb}Fb&TK$VfpRwVnv4>RXXWx0@fGp{mziGc+ zZ8RP;v==WK^w-1h|7`PKABx5qO`whGeCKN|={3}WY3V?;vaq!m6G%m#eTTmV^VNdO zv|Rjo4L@X4nige9Bt2dan740!QbQIsHGa3kz0h-3f>QW$ z_LhKwbjR7b77J7x5=six4nwPi?tno3A`oY**d{SEN1jj-vwSb zB^&CleoM&S+#0J;oCS;l>?da&g&=r~Wt$6+7l_{Z^6&n?G?;lU)fj2>5R8LgO`oF# zL4Vt-rTnR6sAT$nv{1zY)Pnqtf3Zda2~Vsf--!nS5tmVlfD_ahCrhbaj)V7-!@C|c zM1t&Vog@2v-J#0N;hXe}1Xzju=y53^5Lhg0QbQE{z_D(V{RhI28m6syAl>N>`lVf& zX6`}2%J_>kWF$eJnZ>Q>cP~I__eF!HzAz}bVU!VlG#RX}bl+=_6~)aXqP!n=MT5bK zs6)l6Nl<8i+REDS1wJk_V%X;q2jx3X(MmWcf<)^%7P&STEPZ>b)LbnAqHgUPJy{+P zdrTFQr1?G3$>ry|{8S=%1#VTjR~iG%6y+f$E*~u4z05OtG8rt|Xhx6y3mBD^Kut-lnVKF%`OFgKau(H!pjnAec7vrd@PWG5t7-5lVRhv zizY{2dt;?%^KG5-V<7Y`!Qs?I63}dkNQ~o5F=C+hmi$$@|-( zNTv|b|DYMp+FpRKQ%aNey)81WM92cVn^T|Ur7A9 zGM^z`jM{w|d`314bQHqhFYWdOo0bv-=gJc72`|-l5XmN^(7~Cs+}B{-9hD}?REBl4 zof8^&vLVNO)5cpToxxp|{rBlJ|2L-lHARp7|&%6;@7E+J|zt%p!eo$d{IuP% z?$6}SEiP4fxN~iX$j&enfBr9vug@C;#SFgu^{>L=ZQ3^k&qgC-kl`Yor$0t^B)c<^ z9vT&+P?zQ9IE>EWs$=;Vi0Uia_u9Wz;iHo1cf|sUDAMcqKSSpoPvski@j@XhC8dZY zWMot*>5)hpb~2(=GP9LcvSshR_uh`}KF2YREhA-AWR+4z{bbbd`Pawie9n8`_kEt{ zzVGY$UKQ~ov5-+MaH;oP3s~J}&D?c42V`HVNZK8a2S)V*n~!lVpy<#2J`Hnt+3gKk z{Hqh7{Bn2#g%yC+l`n~5cL8t>F&x(4l>`fhr^P850K5Gn<2axYiobk)oc|{YrUU<@ zXFW*-EB&vjw&ulPvOhXqF&*o{SDKtuvCd*_X({6(=3XZklUL=|lfks@k_b2EWZ0=+ zdAi|;bqM`EOKSMS