-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathPlayerAI_3.py
174 lines (152 loc) · 5.93 KB
/
PlayerAI_3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
import time
import math
from random import randint
import logging
from sys import maxsize
from BaseAI_3 import BaseAI
(PLAYER_TURN, COMPUTER_TURN) = (0, 1)
vecIndex = [UP, DOWN, LEFT, RIGHT] = range(4)
DEPTH = 4
class PlayerAI(BaseAI):
def __init__(self):
"""create and configure logger for file writing"""
logging.basicConfig(filename="./PlayerAI.log",level=logging.DEBUG)
self._logger = logging.getLogger()
self._logger.info("="*90+"\n"+"="*100)
self._logger.info("Heuristic is: return len(grid.getAvailableCells())")
"""stats that will be used to assess heuristic"""
self._no_of_moves = 0
self._no_of_leaves = 0
self._avg_move_time = 0
self._move_time = 0
self._depth_limit = DEPTH
self._max_move_depth = 0
self._time = 0 #will be used to cut off the search
def getMove(self, grid):
self._max_move_depth = 0
self._move_time = self._time = time.clock()
self._no_of_moves+=1
best_value = alpha = maxsize*-1
beta = maxsize
max_value = maxsize*-1
for move in grid.getAvailableMoves():
temp_grid = grid.clone()
temp_grid.move(move)
value = self.min(Node(move=move,grid=temp_grid,depth=DEPTH-1),alpha,beta)
alpha = max(value,alpha)
if value > max_value:
max_value = value
best_move = move
if alpha >= beta:
return best_move
""" keep track of info in order to assess the heuristic"""
self._move_time = time.clock() - self._move_time
self._avg_move_time += self._move_time
self._logger.info("Move number={}, number of leaves={},max depth{}, time to find={}".format(self._no_of_moves,self._no_of_leaves,self._max_move_depth,self._move_time))
#Safety net. Will help to identify bugs
if best_move is None:
raise ValueError("MOVE CANNOT BE NONE")
return best_move
def max(self,node,alpha,beta):
"""i dont use a seperate is_leaf(node) function to evaluate if the node is a leaf
because that would require to call the get_children functions twice in a
min or max node, which is expensive"""
"""checking if the node is a leaf node"""
self._max_move_depth = min(node._depth,self._max_move_depth)
if (node._depth <= 0):
return evaluate(node._grid)
children = node.get_max_children()
if len(children) == 0: # if node is a leaf then STOP
self._no_of_leaves+=1
return evaluate(node._grid)
"""if it not a leaf node procced"""
max_value = maxsize*-1
for child in children:
max_value = max(max_value,self.min(child,alpha,beta))
alpha = max(max_value,alpha)
if alpha >= beta:
return max_value
return max_value
def min(self,node,alpha,beta):
"""i dont use a seperate is_leaf(node) function to evaluate if the node is a leaf
because that would require to call the get_children functions twice in a
min or max node, which is expensive"""
"""checking if the node is a leaf node"""
if node._depth > self._max_move_depth:
self._max_move_depth = node._depth
if (node._depth <= 0):
return evaluate(node._grid)
children = node.get_min_children()
if len(children) == 0: # if node is a leaf then STOP
self._no_of_leaves+=1
return evaluate(node._grid)
"""if it not a leaf node procced"""
min_value = maxsize
for child in children:
min_value = min(min_value,self.max(child,alpha,beta))
if min_value <= alpha:
return min_value
beta = min(min_value,beta)
return min_value
def evaluate(grid):
heur_vec = []
"""1st Heuristic: Number of empty tiles"""
number_of_blank_tiles = len(grid.getAvailableCells())
heur_vec.append(number_of_blank_tiles)
# print(number_of_blank_tiles)
"""2nd Heuristic: Monotonicity of board"""
# code to generate mask:
grid_mask = [[4096,1024,256,64],
[1024,256,64,16],
[256,64,16,4],
[64,16,4,1]]
monotonicity_score = 0
# apply grid_mask
for row in range(3):
for column in range(3):
monotonicity_score += grid.map[row][column] * grid_mask[row][column]
# print(monotonicity_score)
heur_vec.append(monotonicity_score)
"""3rd Heuristic: Max tile on corner"""
bonus = 0
if grid.map[0][0] == grid.getMaxTile():
bonus+=10
elif grid.map[0][3] == grid.getMaxTile():
bonus+=10
elif grid.map[3][0] == grid.getMaxTile():
bonus+=10
elif grid.map[3][3] == grid.getMaxTile():
bonus+=10
heur_vec.append(bonus)
"""calculate final heuristic score"""
# weight vetor
weight_vec = [1] * len(heur_vec)
weight_vec = [2,1,1]
sum = 0
for i in range(len(heur_vec)):
sum+=heur_vec[i] * weight_vec[i] #apply weights
# print(sum)
return sum
class Node:
def __init__(self,move=None,grid=None,depth=None):
self._move = move
if grid is None:
raise ValueError("GRID CANNOT BE NONE")
self._grid = grid
self._depth = depth
def get_max_children(self):
children = []
for move in self._grid.getAvailableMoves():
grid=self._grid.clone()
grid.move(move)
children.append(Node(move=move,grid=grid,depth=self._depth-1))
return children
def get_min_children(self):
children = []
for cell in self._grid.getAvailableCells():
grid=self._grid.clone()
grid.setCellValue(cell,2)
children.append(Node(move=None,grid=grid,depth=self._depth-1))
grid.setCellValue(cell,4)
children.append(Node(move=None,grid=grid,depth=self._depth-1))
return children