Map PoolHapX parameter sets to MCC/JSD ratios. This repository serves as the code base for the inner model of the Deep Learning for Haplotype Reconstruction workflow. The code here serves to:
- Set the hyperparameter search space of a ML model.
- Perform hyperparameter optimization through optuna.
- Train and score the ML model with optimal hyperparameters.
- Serialize the trained model.
- Python 3.7.6
- Pandas 0.24.2
- Optuna 0.19.0
- Scikit-Learn 0.22
- XGBoost 0.90
- PyTorch 1.3.1
- CudaToolKit 10.1.243 (optional, if using GPU for xgboost)
├── LICENSE
├── README.md <- The top-level README for developers using this project.
├── data
│ ├── external <- Data from third party sources.
│ ├── interim <- Intermediate data that has been transformed.
│ ├── processed <- The final, canonical data sets for modeling.
│ └── raw <- The original, immutable data dump.
│
├── models <- Trained and serialized models as well as the hyperparameter search space
│ │ settings file.
│ ├── hyperparameter_search.json
│
├── src <- Source code for use in this project.
│ ├── __init__.py <- Makes src a Python module
│ │
│ ├── data <- Scripts to download or generate data
│ │ └── make_dataset.py
│ │
│ ├── features <- Scripts to turn raw data into features for modeling
│ │ └── build_features.py
│ │
│ ├── models <- Scripts to tune, train, and score models and then serialize trained models.
│ │ ├── base_tuner.py
│ │ ├── model_tuners.py
│ │ └── score_models.py
│
└── tox.ini <- tox file with settings for running tox; see tox.testrun.org
python src/data/make_dataset.py <phx_dir_path> <output_file_paths>
phx_dir_path
: the directory path for the base PoolHapX folder.output_file_paths
: the file name for the compiled list of output directories placed underdata/raw/
.
python src/features/build_features.py <output_file_paths>
output_file_paths
: the aformentioned file name underdata/raw/
.
Prior to running the following, ensure that the hyperparameters and their search spaces are properly
specified in models/hyperparameter_search.json
.
python src/models/score_models.py <num_trials> <train_test_split_proportion> <num_folds> <model_num> <optional_seed>
num_trials
: number of optuna trials.train_test_split_proportion
: proportion of data set aside for testing.num_folds
: number of folds for k-fold cross validation.model_num
: the model to tune and train (1-5).- 1: LASSO
- 2: Ridge regression
- 3: Elastic net
- 4: Random forest
- 5: XGBRegressor
optional_seed
: optional seed value.
- XGBoost - gradient boosted decision tree.
- Scikit-Learn - machine learning models.
- Pandas - data manipulation.
- Optuna - hyperparameter optimization.
This project is licensed under the MIT License - see the LICENSE file for details.
Project partially based on the cookiecutter data science project template.