forked from weikanggong/BigFLICA
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
293 lines (193 loc) · 7.61 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
Created on Mon Dec 3 11:35:34 2018
@author: wgong
"""
import numpy as np
from scipy import linalg
from pylab import tile
import os
import copy
def nets_zscore(x):
# x : a nsubject * nfeature numpy matrix
x_zscore=(x-x.mean(axis=0))
stds=x.std(axis=0)
index=stds==0
if sum(index)>0:
stds[index]=0.1
print('Warning: '+str(sum(index))+' of the features are all zero or constants')
print('Normalizing them to all zeros ...')
x_zscore=x_zscore/stds
return x_zscore
def BWAS_correlation(fMRI_2D_1,fMRI_2D_2):
# fMRI_2D_1 and fMRI_2D_2 are both time * voxel (t * p1 and t * p2) matrices
# This function return the fisher z transformed correlation matrix (p1 * p2)
fMRI_2D_1 = (fMRI_2D_1 - fMRI_2D_1.mean(axis=0)) / fMRI_2D_1.std(axis=0)
fMRI_2D_2 = (fMRI_2D_2 - fMRI_2D_2.mean(axis=0)) / fMRI_2D_2.std(axis=0)
r=np.dot(np.transpose(fMRI_2D_1),fMRI_2D_2) / fMRI_2D_1.shape[0]
return r
def SingleModality_MIGP(x, k = 10 ,subj_batch = 200, n_epoch = 1):
#x is a nsubject * nfeature matrix
#Online PCA across the rows of x, to extract k PCs
#output is a nfeature * k matrix
for j in range(0,n_epoch):
print('Epoch: ' + str(j+1)+'...')
d1=x.shape[0]
if j>=1:
x = x[np.random.permutation(d1),:]
subj_batch = subj_batch + k
ind_end=int(d1/np.float64(subj_batch)-1e-4)+1
if j==0:
st=int(0*subj_batch)
en=min(d1,int((0+1)*subj_batch))
W=x[st:en,:]
for i in range(1,ind_end):
#print(i)
st=int(i*subj_batch)
en=min(d1,int((i+1)*subj_batch))
W=np.vstack((W,x[st:en,:]))
d,u=linalg.eigh(np.dot(W,W.T),eigvals=(W.shape[0]-2*k,W.shape[0]-1))
d=np.real(d)
u=np.real(u)
indx1=np.argsort(-d)
d=d[indx1]
u=u[:,indx1]
W=np.dot(u.T,W)
us = W[0:k,:].T
#u = us / np.sqrt(np.sum(us**2,axis = 0))
return us
def MultiModality_MIGP(x, k = 10 ,subj_batch = 200, n_epoch = 1, zscore = False):
#x is a list of length k , each is [nsubject * nfeature]
#doing online pca on feature dimensions
#equivalent to do a pca on feature concat data nsubject * (nfeature * k)
#output a nsubject * k matrix
nmod = len(x)
for i in range(0,nmod):
print('Multi-Modality MIGP for Modality '+ str(i+1)+'...')
if i==0:
if zscore==True:
uu = SingleModality_MIGP(nets_zscore(x[i]).T, k ,subj_batch , n_epoch )
else:
uu = SingleModality_MIGP(x[i].T, k ,subj_batch , n_epoch )
else:
if zscore==True:
uu = SingleModality_MIGP(np.hstack((uu,nets_zscore(x[i]))).T, k ,subj_batch , n_epoch )
else:
uu = SingleModality_MIGP(np.hstack((uu,x[i])).T, k ,subj_batch , n_epoch )
u = uu[:,0:k]
return u
def MultiModality_MIGP_faster(x, k = 10 ,subj_batch = 200, n_epoch = 1, zscore = True):
#x is a list of length k , each is [nsubject * nfeature]
#doing online pca on feature dimensions
#equivalent to do a pca on feature concat data nsubject * (nfeature * k)
#output a nsubject * k matrix
nmod=len(x)
nsub=x[0].shape[0]
cov_mat=np.zeros((nsub,nsub))
for i in range(0,nmod):
dat=nets_zscore(x[i])
cov_mat=cov_mat+np.dot(dat,dat.T)/dat.shape[1]
if nsub<1200:
dd,uu=linalg.eigh(cov_mat,eigvals=(nsub-k,nsub-1))
dd=np.real(dd)
uu=np.real(uu)
indx1=np.argsort(-dd)
dd=dd[indx1]
uu=uu[:,indx1]
uu = np.dot(uu,np.diag(dd))
else:
uu = SingleModality_MIGP(cov_mat, k ,subj_batch , n_epoch )
u = uu[:,0:k]
return u
def nets_svds(x,nComp):
# x : a nsubject * nfeature numpy matrix
# nComp : the number of dimension (int), should be < min(x.shape[0], x.shape[1])
if x.shape[0] < x.shape[1]:
cov_mat=np.dot(x,x.T)
if nComp < x.shape[0]:
d,u=linalg.eigh(cov_mat,eigvals=(x.shape[0]-nComp,x.shape[0]-1))
d=np.real(d)
u=np.real(u)
indx1=np.argsort(-d)
d=d[indx1]
u=u[:,indx1]
s = np.sqrt(np.abs(d))
v = np.dot(x.T , np.dot(u , np.diag(1/s) ))
else:
cov_mat=np.dot(x.T,x)
if nComp < x.shape[1]:
d,v=linalg.eigh(cov_mat,eigvals=(x.shape[1]-nComp,x.shape[1]-1))
d=np.real(d)
v=np.real(v)
indx1=np.argsort(-d)
d=d[indx1]
v=v[:,indx1]
s = np.sqrt(np.abs(d));
u = np.dot(x , np.dot(v , np.diag(1/s) ))
return u,s,v
def nets_dmean(x):
# x : a nsubject * nfeature numpy matrix
x_dmean=x-x.mean(axis=0)
return x_dmean
def nets_melodic_normalization(x):
# do fsl melodic-style data normalization across subjects
# test: x=np.random.randn(100,1000)+1
grot=nets_dmean(x)
uu,ss,vv=nets_svds(grot,30)
ss=np.diag(ss)
vv[np.abs(vv)<2.3*np.std(vv)]=0
stddevs=np.std(grot-np.dot(np.dot(uu,ss),vv.T),axis=0)
stddevs[stddevs<0.001]=0.001
grot=grot/stddevs # var-norm
x_normalized=nets_dmean(grot)
return x_normalized
def sKPCR_regression(X,Y,cov):
contrast=np.transpose(np.hstack( ( np.eye(X.shape[1],X.shape[1]) , np.zeros((X.shape[1],cov.shape[1])) )) )
contrast=np.array(contrast,dtype='float32')
design=np.hstack((X,cov))
#degree of freedom
df=design.shape[0]-design.shape[1]
#
ss=np.linalg.pinv(np.dot(np.transpose(design),design))
beta=np.dot(np.dot(ss,np.transpose(design)),Y)
Res=Y-np.dot(design,beta)
sigma=np.reshape(np.sqrt(np.divide(np.sum(np.square(Res),axis=0),df)),(1,beta.shape[1]))
tmp1=np.dot(beta.T,contrast)
tmp2=np.array(np.diag(np.dot(np.dot(contrast.T,ss),contrast)),ndmin=2)
Tstat=np.divide(tmp1,np.dot(sigma.T,np.sqrt(tmp2) ))
return Tstat
def BWAS_deconf(X,Y):
X=np.hstack((X,np.ones((X.shape[0],1))))
ss=np.linalg.pinv(np.dot(np.transpose(X),X))
beta=np.dot(np.dot(ss,np.transpose(X)),Y)
Res=Y-np.dot(X,beta)
return Res
def flica_reorder(output_dir,nmod):
data_dir=os.path.join(output_dir,'')
X=[]
for i in range(0,nmod):
X.append(np.load(data_dir+'/flica_X'+str(i+1)+'.npy'))
M=np.load(data_dir+'/flica_result.npz')
K=len(X)
R=M['H'].shape[1]
for k in range(0,K):
#M.X{k} * diag(M.W{k}.*sqrt( M.H.^2 * makesize(M.lambda{k},[R 1]) * M.DD(k))')]; %#ok<AGROW>
if np.matrix(M['lambda1'][k]).shape[0]==R:
tmp=np.dot(np.square(M['H']),M['lambda1'][k])
else:
tmp=np.dot(np.square(M['H']),tile(M['lambda1'][k],[R,1]))
tmp2=np.sqrt(np.dot(tmp,M['DD'][k]))
tmp3=np.diag(np.multiply(M['W'][k],tmp2))
tmp4=np.dot(X[k],np.diag(tmp3))
if k==0:
Xcat=copy.deepcopy(tmp4)
else:
Xcat=np.concatenate((Xcat,tmp4))
weight = np.sum(np.square(Xcat),0)
order=np.argsort(weight)
order=order[::-1]
weight=weight[order]
np.save(data_dir+'new_order.npy',order)
np.save(data_dir+'new_weight.npy',weight)
return order