-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathREADME.html
211 lines (209 loc) · 337 KB
/
README.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
<!doctype html><html><head><meta charset='utf-8'>
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/github-markdown-css/2.4.1/github-markdown.min.css">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/highlight.js/9.11.0/styles/default.min.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/katex@0.10.0-rc.1/dist/katex.min.css" integrity="sha384-D+9gmBxUQogRLqvARvNLmA9hS2x//eK1FhVb9PiU86gmcrBrJAQT8okdJ4LMp2uv" crossorigin="anonymous">
<link rel="stylesheet" href="https://gitcdn.xyz/repo/goessner/mdmath/master/css/texmath.css">
<link rel="stylesheet" href="https://gitcdn.xyz/repo/goessner/mdmath/master/css/vscode-texmath.css">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/fonts.css@latest/dist/fonts.css">
</head><body class="markdown-body font-kai">
<h1 data-line="0" class="code-line" id="%E9%9A%8F%E6%9C%BA%E5%88%86%E5%B8%83%E7%9A%84%E7%94%9F%E6%88%90%E4%B8%8E%E4%BC%B0%E8%AE%A1">随机分布的生成与估计</h1>
<p data-line="2" class="code-line">李一鸣</p>
<p data-line="4" class="code-line">1160300625</p>
<p data-line="6" class="code-line">2018 年 9 月 28 日</p>
<h2 data-line="8" class="code-line" id="%E9%9A%8F%E6%9C%BA%E6%95%B0%E5%92%8C%E9%9A%8F%E6%9C%BA%E5%BA%8F%E5%88%97%E7%9A%84%E4%BA%A7%E7%94%9F">随机数和随机序列的产生</h2>
<p data-line="10" class="code-line">生成随机序列 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi mathvariant="bold">X</mi><mo>=</mo><mo>(</mo><msub><mi>X</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>X</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>X</mi><mi>n</mi></msub><mo>)</mo></mrow><annotation encoding="application/x-tex">\mathrm{\mathbf{X}} = (X_1, X_2, ..., X_n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">X</span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span>,其中每个 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>X</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">X_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 服从 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>[</mo><mo>−</mo><mfrac><mi>a</mi><mn>2</mn></mfrac><mo separator="true">,</mo><mfrac><mi>a</mi><mn>2</mn></mfrac><mo>]</mo></mrow><annotation encoding="application/x-tex">[-\frac{a}{2}, \frac{a}{2}]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.095em;vertical-align:-0.345em;"></span><span class="mopen">[</span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.695392em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">a</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.695392em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">a</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">]</span></span></span></span> 的均匀分布。</p>
<p data-line="12" class="code-line">生成随机序列 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi mathvariant="bold">Y</mi><mo>=</mo><mo>(</mo><msub><mi>Y</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>Y</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>Y</mi><mi>n</mi></msub><mo>)</mo></mrow><annotation encoding="application/x-tex">\mathrm{\mathbf{Y}} = (Y_1, Y_2, ..., Y_n)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf" style="margin-right:0.02875em;">Y</span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.22222em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.22222em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.22222em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span>,其中每个 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>Y</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">Y_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.22222em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 服从 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>[</mo><mo>−</mo><mfrac><mi>a</mi><mn>2</mn></mfrac><mo separator="true">,</mo><mfrac><mi>a</mi><mn>2</mn></mfrac><mo>]</mo></mrow><annotation encoding="application/x-tex">[-\frac{a}{2}, \frac{a}{2}]</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.095em;vertical-align:-0.345em;"></span><span class="mopen">[</span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.695392em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">a</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.695392em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">a</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">]</span></span></span></span> 的均匀分布。</p>
<p data-line="14" class="code-line"><strong>蒙特卡罗投点法:</strong></p>
<p data-line="16" class="code-line">在边长为 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathit">a</span></span></span></span></eq> 的正方形内随机投点,设该点落入此正方形的内切圆中的概率为 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>P</mi><mrow><mi>c</mi><mi>i</mi><mi>r</mi><mi>c</mi><mi>l</mi><mi>e</mi></mrow></msub></mrow><annotation encoding="application/x-tex">P_{circle}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">c</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.02778em;">r</span><span class="mord mathit mtight">c</span><span class="mord mathit mtight" style="margin-right:0.01968em;">l</span><span class="mord mathit mtight">e</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>,则:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(1)</mtext></mtd><mtd><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>P</mi><mrow><mi>c</mi><mi>i</mi><mi>r</mi><mi>c</mi><mi>l</mi><mi>e</mi></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><msub><mi>S</mi><mrow><mi>c</mi><mi>i</mi><mi>r</mi><mi>c</mi><mi>l</mi><mi>e</mi></mrow></msub><msub><mi>S</mi><mrow><mi>s</mi><mi>q</mi><mi>u</mi><mi>a</mi><mi>r</mi><mi>e</mi></mrow></msub></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mi>π</mi><mo>(</mo><mfrac><mi>a</mi><mn>2</mn></mfrac><msup><mo>)</mo><mn>2</mn></msup></mrow><msup><mi>a</mi><mn>2</mn></msup></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mi>π</mi><mn>4</mn></mfrac></mrow></mstyle></mtd></mtr></mtable></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
\begin{aligned}
P_{circle} &= \frac{S_{circle}}{S_{square}} \\
&= \frac{\pi (\frac{a}{2})^2}{a^2} \\
&= \frac{\pi}{4}
\end{aligned}
\tag{1}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:7.261106em;vertical-align:-3.380553em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.880553em;"><span style="top:-6.069331em;"><span class="pstrut" style="height:3.549108em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">P</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">c</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.02778em;">r</span><span class="mord mathit mtight">c</span><span class="mord mathit mtight" style="margin-right:0.01968em;">l</span><span class="mord mathit mtight">e</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.2481150000000003em;"><span class="pstrut" style="height:3.549108em;"></span><span class="mord"></span></span><span style="top:-1.1545550000000002em;"><span class="pstrut" style="height:3.549108em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.380553em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.880553em;"><span style="top:-6.069331em;"><span class="pstrut" style="height:3.549108em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.15139200000000003em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">s</span><span class="mord mathit mtight" style="margin-right:0.03588em;">q</span><span class="mord mathit mtight">u</span><span class="mord mathit mtight">a</span><span class="mord mathit mtight" style="margin-right:0.02778em;">r</span><span class="mord mathit mtight">e</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">c</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.02778em;">r</span><span class="mord mathit mtight">c</span><span class="mord mathit mtight" style="margin-right:0.01968em;">l</span><span class="mord mathit mtight">e</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.972108em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.2481150000000003em;"><span class="pstrut" style="height:3.549108em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.549108em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.7350000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.695392em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">a</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-1.1545550000000002em;"><span class="pstrut" style="height:3.549108em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.10756em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">π</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.380553em;"><span></span></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height:7.261106em;vertical-align:-3.380553em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">1</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="27" class="code-line">假定总共生成了 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathit">n</span></span></span></span></eq> 个数据,其中有 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathit">m</span></span></span></span></eq> 个在圆内,则:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(2)</mtext></mtd><mtd><mrow><msub><mi>f</mi><mrow><mi>c</mi><mi>i</mi><mi>r</mi><mi>c</mi><mi>l</mi><mi>e</mi></mrow></msub><mo>=</mo><mfrac><mi>m</mi><mi>n</mi></mfrac></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
f_{circle} = \frac{m}{n}
\tag{2}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8888799999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.10764em;">f</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.10764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">c</span><span class="mord mathit mtight">i</span><span class="mord mathit mtight" style="margin-right:0.02778em;">r</span><span class="mord mathit mtight">c</span><span class="mord mathit mtight" style="margin-right:0.01968em;">l</span><span class="mord mathit mtight">e</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.7935600000000003em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.10756em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span><span class="tag"><span class="strut" style="height:1.7935600000000003em;vertical-align:-0.686em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">2</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="34" class="code-line">对于任一点 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo separator="true">,</mo><msub><mi>Y</mi><mi>i</mi></msub><mo>)</mo></mrow><annotation encoding="application/x-tex">(X_i, Y_i)</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.22222em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span>,如果满足:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(3)</mtext></mtd><mtd><mrow><msubsup><mi>X</mi><mi>i</mi><mn>2</mn></msubsup><mo>+</mo><msubsup><mi>Y</mi><mi>i</mi><mn>2</mn></msubsup><mo>≤</mo><mo>(</mo><mfrac><mi>a</mi><mn>2</mn></mfrac><msup><mo>)</mo><mn>2</mn></msup><mo>=</mo><mfrac><msup><mi>a</mi><mn>2</mn></msup><mn>4</mn></mfrac></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
X_i^2 + Y_i^2 \le (\frac{a}{2})^2 = \frac{a^2}{4}
\tag{3}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.1111079999999998em;vertical-align:-0.247em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-2.4530000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span></span><span class="base"><span class="strut" style="height:1.1111079999999998em;vertical-align:-0.247em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.22222em;">Y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-2.4530000000000003em;margin-left:-0.22222em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.7935600000000003em;vertical-align:-0.686em;"></span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.10756em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">2</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">a</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.177108em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.491108em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">a</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span><span class="tag"><span class="strut" style="height:2.177108em;vertical-align:-0.686em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">3</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="41" class="code-line">则其在圆内,计入 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>m</mi></mrow><annotation encoding="application/x-tex">m</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathit">m</span></span></span></span></eq> 中。</p>
<p data-line="43" class="code-line">以频率估计概率,我们有:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(4)</mtext></mtd><mtd><mrow><mi>π</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi>m</mi></mrow><mi>n</mi></mfrac></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
\pi = \frac{4m}{n}
\tag{4}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.00744em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">4</span><span class="mord mathit">m</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span><span class="tag"><span class="strut" style="height:2.00744em;vertical-align:-0.686em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">4</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="50" class="code-line"><strong>实验结果:</strong></p>
<p data-line="52" class="code-line">在实验中取 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>a</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">a = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathit">a</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span>(其实 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>a</mi></mrow><annotation encoding="application/x-tex">a</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathit">a</span></span></span></span></eq> 取多少都没有关系,精确度只与样本数相关),取 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>n</mi><mo>=</mo><mn>1</mn><mtext> </mtext><mn>000</mn><mo separator="true">,</mo><mn>10</mn><mtext> </mtext><mn>000</mn><mo separator="true">,</mo><mn>100</mn><mtext> </mtext><mn>000</mn><mo separator="true">,</mo><mn>1</mn><mtext> </mtext><mn>000</mn><mtext> </mtext><mn>000</mn></mrow><annotation encoding="application/x-tex">n = 1\ 000, 10\ 000, 100\ 000, 1\ 000\ 000</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathit">n</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8388800000000001em;vertical-align:-0.19444em;"></span><span class="mord">1</span><span class="mspace"> </span><span class="mord">0</span><span class="mord">0</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mord">0</span><span class="mspace"> </span><span class="mord">0</span><span class="mord">0</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mord">0</span><span class="mord">0</span><span class="mspace"> </span><span class="mord">0</span><span class="mord">0</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mspace"> </span><span class="mord">0</span><span class="mord">0</span><span class="mord">0</span><span class="mspace"> </span><span class="mord">0</span><span class="mord">0</span><span class="mord">0</span></span></span></span> 分别进行实验。</p>
<p data-line="54" class="code-line"><object width="100%" height="100px" data="./generate_results/monte-carlo-1000.txt"></object></p>
<p data-line="56" class="code-line"><object width="100%" height="100px" data="./generate_results/monte-carlo-10000.txt"></object></p>
<p data-line="58" class="code-line"><object width="100%" height="100px" data="./generate_results/monte-carlo-100000.txt"></object></p>
<p data-line="60" class="code-line"><object width="100%" height="100px" data="./generate_results/monte-carlo-1000000.txt"></object></p>
<h2 data-line="62" class="code-line" id="%E9%9A%8F%E6%9C%BA%E5%88%86%E5%B8%83%E7%9A%84%E8%AE%A1%E7%AE%97%E6%9C%BA%E6%A8%A1%E6%8B%9F">随机分布的计算机模拟</h2>
<h3 data-line="64" class="code-line" id="%E9%AB%98%E6%96%AF%E5%88%86%E5%B8%83%E7%9A%84%E6%A8%A1%E6%8B%9F">高斯分布的模拟</h3>
<p data-line="66" class="code-line">生成均值为 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>μ</mi><mo>=</mo><mn>10</mn></mrow><annotation encoding="application/x-tex">\mu = 10</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.625em;vertical-align:-0.19444em;"></span><span class="mord mathit">μ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span><span class="mord">0</span></span></span></span>、方差为 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>σ</mi><mo>=</mo><mn>5</mn></mrow><annotation encoding="application/x-tex">\sigma = 5</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathit" style="margin-right:0.03588em;">σ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">5</span></span></span></span> 的正态分布,并画出均值和方差随样本数增加而变化的图。</p>
<p data-line="68" class="code-line">设样本为 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi mathvariant="bold">X</mi></mrow><annotation encoding="application/x-tex">\mathrm{\mathbf{X}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">X</span></span></span></span></span></span>,总样本数为 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathit" style="margin-right:0.10903em;">N</span></span></span></span></eq>,记前 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathit">n</span></span></span></span></eq> 个样本数据的均值、方差分别为 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>E</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">E_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>D</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">D_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>,则得到均值、方差矩阵:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(5)</mtext></mtd><mtd><mrow><mi mathvariant="bold">E</mi><mo>=</mo><mo>(</mo><msub><mi>E</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>E</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>E</mi><mi>N</mi></msub><mo>)</mo><mspace linebreak="newline"></mspace><mi mathvariant="bold">D</mi><mo>=</mo><mo>(</mo><msub><mi>D</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>D</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>D</mi><mi>N</mi></msub><mo>)</mo></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
\mathrm{\mathbf{E}} = (E_1, E_2, ..., E_N) \\
\mathrm{\mathbf{D}} = (D_1, D_2, ..., D_N)
\tag{5}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">E</span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.10903em;">N</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span><span class="mspace newline"></span><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">D</span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.10903em;">N</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span><span class="tag"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">5</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="76" class="code-line">样本个数矩阵:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(6)</mtext></mtd><mtd><mrow><mi mathvariant="bold">N</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><mi>N</mi><mo>)</mo></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
\mathrm{\mathbf{N}} = (1, 2, ..., N)
\tag{6}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">N</span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathit" style="margin-right:0.10903em;">N</span><span class="mclose">)</span></span><span class="tag"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">6</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="83" class="code-line">我们只需要作出 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>(</mo><mi mathvariant="bold">N</mi><mo separator="true">,</mo><mi mathvariant="bold">E</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">(\mathrm{\mathbf{N}}, \mathrm{\mathbf{E}})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord mathbf">N</span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">E</span></span></span><span class="mclose">)</span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>(</mo><mi mathvariant="bold">N</mi><mo separator="true">,</mo><mi mathvariant="bold">D</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">(\mathrm{\mathbf{N}}, \mathrm{\mathbf{D}})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord mathbf">N</span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">D</span></span></span><span class="mclose">)</span></span></span></span> 的图像即可。</p>
<p data-line="85" class="code-line"><strong>注意事项:</strong></p>
<p data-line="87" class="code-line">本来我们可以直接根据 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi mathvariant="bold">X</mi></mrow><annotation encoding="application/x-tex">\mathrm{\mathbf{X}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">X</span></span></span></span></span></span> 中的前 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>n</mi></mrow><annotation encoding="application/x-tex">n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathit">n</span></span></span></span></eq> 项直接计算 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>E</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">E_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 和 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>D</mi><mi>n</mi></msub></mrow><annotation encoding="application/x-tex">D_n</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span>,但在实际问题中数据量往往过大,我们一般不会保存之前的数据,因此我们通常采用递推的计算方式。</p>
<ol>
<li data-line="89" class="code-line">
<p data-line="89" class="code-line">均值递推公式</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo fence="true">{</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac><mo>(</mo><msub><mi>X</mi><mn>1</mn></msub><mo>+</mo><msub><mi>X</mi><mn>2</mn></msub><mo>+</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo>+</mo><msub><mi>X</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>E</mi><mi>n</mi></msub><mo>=</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><mo>(</mo><msub><mi>X</mi><mn>1</mn></msub><mo>+</mo><msub><mi>X</mi><mn>2</mn></msub><mo>+</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo>+</mo><msub><mi>X</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>X</mi><mi>n</mi></msub><mo>)</mo></mrow></mstyle></mtd></mtr></mtable></mrow><annotation encoding="application/x-tex">
\begin{cases}
E_{n - 1} = \frac{1}{n - 1}(X_1 + X_2 + ... + X_{n-1}) \\ \\
E_{n} = \frac{1}{n}(X_1 + X_2 + ... + X_{n - 1} + X_{n}) \\
\end{cases}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.32em;vertical-align:-1.9099999999999997em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.35002em;"><span style="top:-2.19999em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎩</span></span></span><span style="top:-2.19999em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-3.1500100000000004em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎨</span></span></span><span style="top:-4.30001em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-4.60002em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎧</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.8500199999999998em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.41em;"><span style="top:-4.41em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.403331em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-2.97em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"></span></span><span style="top:-1.5300000000000002em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.9099999999999997em;"><span></span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
<p data-line="98" class="code-line">解得:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(ps.1)</mtext></mtd><mtd><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>E</mi><mi>n</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>X</mi><mi>n</mi></msub></mrow><mi>n</mi></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mi>n</mi><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><msub><mi>X</mi><mi>n</mi></msub></mrow><mi>n</mi></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>+</mo><mfrac><mrow><msub><mi>X</mi><mi>n</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><mi>n</mi></mfrac></mrow></mstyle></mtd></mtr></mtable></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
\begin{aligned}
E_n &= \frac{(n - 1)E_{n - 1} + X_n}{n} \\
&= \frac{nE_{n - 1} - E_{n - 1} + X_n}{n} \\
&= E_{n - 1} + \frac{X_n - E_{n - 1}}{n}
\tag{ps.1}
\end{aligned}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:7.10566em;vertical-align:-3.30283em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.80283em;"><span style="top:-5.802829999999999em;"><span class="pstrut" style="height:3.427em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.4565em;"><span class="pstrut" style="height:3.427em;"></span><span class="mord"></span></span><span style="top:-1.11017em;"><span class="pstrut" style="height:3.427em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.30283em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.80283em;"><span style="top:-5.802829999999999em;"><span class="pstrut" style="height:3.427em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord mathit">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">1</span><span class="mclose">)</span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.4565em;"><span class="pstrut" style="height:3.427em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-1.11017em;"><span class="pstrut" style="height:3.427em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.30283em;"><span></span></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height:7.10566em;vertical-align:-3.30283em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">p</span><span class="mord">s</span><span class="mord">.</span><span class="mord">1</span></span><span class="mord">)</span></span></span></span></span></span></p>
</li>
<li data-line="109" class="code-line">
<p data-line="109" class="code-line">方差递推公式</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo fence="true">{</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>D</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>=</mo><mfrac><mn>1</mn><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msubsup><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mo>)</mo><mn>2</mn></msup></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mrow><msub><mi>D</mi><mi>n</mi></msub><mo>=</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><msubsup><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></msubsup><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>−</mo><msub><mi>E</mi><mi>n</mi></msub><msup><mo>)</mo><mn>2</mn></msup></mrow></mstyle></mtd></mtr></mtable></mrow><annotation encoding="application/x-tex">
\begin{cases}
D_{n - 1} = \frac{1}{n - 1}\sum_{i = 1}^{n - 1}(X_i - E_{n - 1})^2 \\ \\
D_{n} = \frac{1}{n}\sum_{i = 1}^{n}(X_i - E_{n})^2 \\
\end{cases}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:4.32em;vertical-align:-1.9099999999999997em;"></span><span class="minner"><span class="mopen"><span class="delimsizing mult"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.35002em;"><span style="top:-2.19999em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎩</span></span></span><span style="top:-2.19999em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-3.1500100000000004em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎨</span></span></span><span style="top:-4.30001em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎪</span></span></span><span style="top:-4.60002em;"><span class="pstrut" style="height:3.15em;"></span><span class="delimsizinginner delim-size4"><span>⎧</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.8500199999999998em;"><span></span></span></span></span></span></span><span class="mord"><span class="mtable"><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:2.41em;"><span style="top:-4.41em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.655em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.403331em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.954008em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29971000000000003em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-2.97em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"></span></span><span style="top:-1.5300000000000002em;"><span class="pstrut" style="height:3.008em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.804292em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29971000000000003em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8141079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.9099999999999997em;"><span></span></span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span></span></p>
<p data-line="118" class="code-line">联立式 (ps.1),得:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(ps.2)</mtext></mtd><mtd><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>D</mi><mi>n</mi></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>−</mo><mfrac><mrow><msub><mi>X</mi><mi>n</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><mi>n</mi></mfrac><msup><mo>)</mo><mn>2</mn></msup></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mo>[</mo><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mo>)</mo><mn>2</mn></msup><mo>+</mo><mo>(</mo><mfrac><mrow><msub><mi>X</mi><mi>n</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><mi>n</mi></mfrac><msup><mo>)</mo><mn>2</mn></msup><mo>−</mo><mn>2</mn><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>(</mo><mfrac><mrow><msub><mi>X</mi><mi>n</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><mi>n</mi></mfrac><mo>)</mo><mo>]</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>(</mo><mfrac><mrow><msub><mi>X</mi><mi>n</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><mi>n</mi></mfrac><msup><mo>)</mo><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>n</mi></munderover><mo>[</mo><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mo>)</mo><mn>2</mn></msup><mo>−</mo><mn>2</mn><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>(</mo><mfrac><mrow><msub><mi>X</mi><mi>n</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><mi>n</mi></mfrac><mo>)</mo><mo>]</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mo>(</mo><mfrac><mrow><msub><mi>X</mi><mi>n</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><mi>n</mi></mfrac><msup><mo>)</mo><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><mo>[</mo><mo>(</mo><msub><mi>X</mi><mi>n</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mo>)</mo><mn>2</mn></msup><mo>−</mo><mn>2</mn><mo>(</mo><msub><mi>X</mi><mi>n</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>(</mo><mfrac><mrow><msub><mi>X</mi><mi>n</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><mi>n</mi></mfrac><mo>)</mo><mo>]</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mspace width="1em"/><mspace width="1em"/><mspace width="1em"/><mspace width="1em"/><mspace width="1em"/><mspace width="1em"/><mspace width="1em"/><mspace width="1em"/><mo>+</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></munderover><mo>[</mo><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mo>)</mo><mn>2</mn></msup><mo>−</mo><mn>2</mn><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>(</mo><mfrac><mrow><msub><mi>X</mi><mi>n</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><mi>n</mi></mfrac><mo>)</mo><mo>]</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><msup><mi>n</mi><mn>2</mn></msup></mfrac><mo>(</mo><msub><mi>X</mi><mi>n</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mo>)</mo><mn>2</mn></msup><mo>+</mo><mfrac><mn>1</mn><mi>n</mi></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></munderover><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mo>)</mo><mn>2</mn></msup><mo>−</mo><mn>2</mn><mo>(</mo><mfrac><mrow><msub><mi>X</mi><mi>n</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow><mi>n</mi></mfrac><mo>)</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></munderover><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><msup><mi>n</mi><mn>2</mn></msup></mfrac><mo>(</mo><msub><mi>X</mi><mi>n</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mo>)</mo><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mi>n</mi></mfrac><mfrac><mn>1</mn><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></mfrac><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></munderover><mo>(</mo><msub><mi>X</mi><mi>i</mi></msub><mo>−</mo><msub><mi>E</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mo>)</mo><mn>2</mn></msup><mo>)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><msup><mi>n</mi><mn>2</mn></msup></mfrac><mo>(</mo><msub><mi>X</mi><mi>n</mi></msub><mo>−</mo><msub><mi>D</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub><msup><mo>)</mo><mn>2</mn></msup><mo>+</mo><mfrac><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow><mi>n</mi></mfrac><msub><mi>D</mi><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></mrow></mstyle></mtd></mtr></mtable></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
\begin{aligned}
D_{n} &= \frac{1}{n}\sum_{i = 1}^n(X_i - E_{n - 1} - \frac{X_n - E_{n - 1}}{n})^2 \\
&= \frac{1}{n}\sum_{i = 1}^n[(X_i - E_{n - 1})^2 + (\frac{X_n - E_{n - 1}}{n})^2 - 2(X_i - E_{n - 1})(\frac{X_n - E_{n - 1}}{n})] \\
&= (\frac{X_n - E_{n - 1}}{n})^2 + \frac{1}{n}\sum_{i = 1}^n[(X_i - E_{n - 1})^2 - 2(X_i - E_{n - 1})(\frac{X_n - E_{n - 1}}{n})] \\
&= (\frac{X_n - E_{n - 1}}{n})^2 + \frac{1}{n}[(X_n - E_{n - 1})^2 - 2(X_n - E_{n - 1})(\frac{X_n - E_{n - 1}}{n})] \\
& \quad \quad \quad \quad \quad \quad \quad \quad + \frac{1}{n}\sum_{i = 1}^{n - 1}[(X_i - E_{n - 1})^2 - 2(X_i - E_{n - 1})(\frac{X_n - E_{n - 1}}{n})] \\
&= \frac{n - 1}{n^2}(X_n - E_{n - 1})^2 + \frac{1}{n}\sum_{i = 1}^{n - 1}(X_i - E_{n - 1})^2 - 2(\frac{X_n - E_{n - 1}}{n})\sum_{i = 1}^{n - 1}(X_i - E_{n - 1}) \\
&= \frac{n - 1}{n^2}(X_n - E_{n - 1})^2 + \frac{n - 1}{n}\frac{1}{n - 1}\sum_{i = 1}^{n - 1}(X_i - E_{n - 1})^2) \\
&= \frac{n - 1}{n^2}(X_n - D_{n - 1})^2 + \frac{n - 1}{n}D_{n - 1}
\tag{ps.2}
\end{aligned}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:24.477314em;vertical-align:-11.988657em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:12.488657em;"><span style="top:-14.638373000000001em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-11.409307em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"></span></span><span style="top:-8.180240999999999em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"></span></span><span style="top:-5.242242em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"></span></span><span style="top:-2.4551289999999986em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"></span></span><span style="top:0.9236530000000005em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"></span></span><span style="top:4.302435000000001em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"></span></span><span style="top:7.201543999999999em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:11.988657em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:12.488657em;"><span style="top:-14.638373000000001em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6513970000000002em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3000050000000005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-11.409307em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6513970000000002em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3000050000000005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mopen">[</span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">)</span><span class="mclose">]</span></span></span><span style="top:-8.180240999999999em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.6513970000000002em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3000050000000005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mopen">[</span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">)</span><span class="mclose">]</span></span></span><span style="top:-5.242242em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">[</span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">)</span><span class="mclose">]</span></span></span><span style="top:-2.4551289999999986em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:1em;"></span><span class="mspace" style="margin-right:1em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8011130000000004em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.300005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mopen">[</span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">)</span><span class="mclose">]</span></span></span><span style="top:0.9236530000000005em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8011130000000004em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.300005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">2</span><span class="mopen">(</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.36033em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mclose">)</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8011130000000004em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.300005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:4.302435000000001em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">1</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.7693300000000001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8011130000000004em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.300005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:7.201543999999999em;"><span class="pstrut" style="height:3.8011130000000004em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">n</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.740108em;"><span style="top:-2.9890000000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8641079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">+</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">n</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mord"><span class="mord mathit" style="margin-right:0.02778em;">D</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.301108em;"><span style="top:-2.5500000000000003em;margin-left:-0.02778em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mbin mtight">−</span><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.208331em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:11.988657em;"><span></span></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height:24.477314em;vertical-align:-11.988657em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">p</span><span class="mord">s</span><span class="mord">.</span><span class="mord">2</span></span><span class="mord">)</span></span></span></span></span></span></p>
</li>
</ol>
<p data-line="134" class="code-line"><strong>实验结果:</strong></p>
<p data-line="136" class="code-line">在实验中取 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>a</mi><mo>=</mo><mn>1</mn></mrow><annotation encoding="application/x-tex">a = 1</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.43056em;vertical-align:0em;"></span><span class="mord mathit">a</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span></span></span>,取 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>N</mi><mo>=</mo><mn>1</mn><mtext> </mtext><mn>000</mn><mo separator="true">,</mo><mn>10</mn><mtext> </mtext><mn>000</mn></mrow><annotation encoding="application/x-tex">N = 1\ 000, 10\ 000</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathit" style="margin-right:0.10903em;">N</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8388800000000001em;vertical-align:-0.19444em;"></span><span class="mord">1</span><span class="mspace"> </span><span class="mord">0</span><span class="mord">0</span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">1</span><span class="mord">0</span><span class="mspace"> </span><span class="mord">0</span><span class="mord">0</span><span class="mord">0</span></span></span></span> 分别进行实验。</p>
<p data-line="138" class="code-line"><img src="./generate_results/guassian-1000.png" alt="guassian-1000"></p>
<p data-line="140" class="code-line"><img src="./generate_results/guassian-10000.png" alt="guassian-10000"></p>
<h3 data-line="142" class="code-line" id="%E6%95%8C%E5%86%9B%E5%9D%A6%E5%85%8B%E5%88%B0%E8%BE%BE%E6%83%85%E5%86%B5%E7%9A%84%E6%A8%A1%E6%8B%9F">敌军坦克到达情况的模拟</h3>
<p data-line="144" class="code-line">敌军坦克分队到达我方阵地规律服从泊松分布,平均每分钟到达 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathit">λ</span></span></span></span> 辆。</p>
<p data-line="146" class="code-line">泊松分布的期望值是 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>λ</mi></mrow><annotation encoding="application/x-tex">\lambda</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathit">λ</span></span></span></span>,也就是说在一分钟之内,到达的坦克数量 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>T</mi></mrow><annotation encoding="application/x-tex">T</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathit" style="margin-right:0.13889em;">T</span></span></span></span></eq> 的分布列为:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(7)</mtext></mtd><mtd><mrow><mi>P</mi><mo>(</mo><mi>T</mi><mo>=</mo><mi>k</mi><mo>)</mo><mo>=</mo><mfrac><mrow><msup><mi>λ</mi><mi>k</mi></msup><msup><mi>e</mi><mrow><mo>−</mo><mi>λ</mi></mrow></msup></mrow><mrow><mi>k</mi><mo>!</mo></mrow></mfrac></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
P(T = k) = \frac{\lambda ^ k e^{-\lambda}}{k!}
\tag{7}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathit" style="margin-right:0.13889em;">P</span><span class="mopen">(</span><span class="mord mathit" style="margin-right:0.13889em;">T</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathit" style="margin-right:0.03148em;">k</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:2.212108em;vertical-align:-0.686em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.526108em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.03148em;">k</span><span class="mclose">!</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">λ</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.849108em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.03148em;">k</span></span></span></span></span></span></span></span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8491079999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">λ</span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span><span class="tag"><span class="strut" style="height:2.212108em;vertical-align:-0.686em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">7</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="153" class="code-line">我们可以生成 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathit" style="margin-right:0.10903em;">N</span></span></span></span></eq> 组数据 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi mathvariant="bold">T</mi><mn mathvariant="bold">1</mn></msub><mo separator="true">,</mo><msub><mi mathvariant="bold">T</mi><mn mathvariant="bold">2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi mathvariant="bold">T</mi><mi mathvariant="bold">N</mi></msub></mrow><annotation encoding="application/x-tex">\mathrm{\mathbf{T_1}}, \mathrm{\mathbf{T_2}}, ..., \mathrm{\mathbf{T_N}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8805499999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33027699999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">N</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span>,分别用它们的均值 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>E</mi><mo>(</mo><msub><mi mathvariant="bold">T</mi><mn mathvariant="bold">1</mn></msub><mo>)</mo><mo separator="true">,</mo><mi>E</mi><mo>(</mo><msub><mi mathvariant="bold">T</mi><mn mathvariant="bold">2</mn></msub><mo>)</mo><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><mi>E</mi><mo>(</mo><msub><mi mathvariant="bold">T</mi><mi mathvariant="bold">N</mi></msub><mo>)</mo></mrow><annotation encoding="application/x-tex">E(\mathrm{\mathbf{T_1}}), E(\mathrm{\mathbf{T_2}}),..., E(\mathrm{\mathbf{T_N}})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">T</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33027699999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">N</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span> 表示第 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><mi>N</mi></mrow><annotation encoding="application/x-tex">1, 2, ..., N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathit" style="margin-right:0.10903em;">N</span></span></span></span> 分钟内到达的坦克数量存入 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi mathvariant="bold">A</mi><mo>=</mo><mo>(</mo><msub><mi>A</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>A</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>A</mi><mi>N</mi></msub><mo>)</mo><mi mathvariant="normal">中</mi></mrow><annotation encoding="application/x-tex">\mathrm{\mathbf{A}} = (A_1, A_2, ..., A_N) 中</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">A</span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.10903em;">N</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord cjk_fallback">中</span></span></span></span>,则在 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathit" style="margin-right:0.10903em;">N</span></span></span></span></eq> 分钟内坦克到达总数量 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>A</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi><mi>a</mi><mi>l</mi></mrow></msub></mrow><annotation encoding="application/x-tex">A_{total}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mord mathit mtight">o</span><span class="mord mathit mtight">t</span><span class="mord mathit mtight">a</span><span class="mord mathit mtight" style="margin-right:0.01968em;">l</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 满足:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(8)</mtext></mtd><mtd><mrow><msub><mi>A</mi><mrow><mi>t</mi><mi>o</mi><mi>t</mi><mi>a</mi><mi>l</mi></mrow></msub><mo>=</mo><munderover><mo>∑</mo><mrow><mi>n</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>A</mi><mi>n</mi></msub></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
A_{total} = \sum_{n = 1}^N A_n
\tag{8}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">t</span><span class="mord mathit mtight">o</span><span class="mord mathit mtight">t</span><span class="mord mathit mtight">a</span><span class="mord mathit mtight" style="margin-right:0.01968em;">l</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:3.0954490000000003em;vertical-align:-1.267113em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8283360000000002em;"><span style="top:-1.882887em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">n</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3000050000000005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.10903em;">N</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.267113em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit">A</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.151392em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">n</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height:3.0954490000000003em;vertical-align:-1.267113em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">8</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="160" class="code-line"><strong>实验结果:</strong></p>
<p data-line="162" class="code-line">取 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>λ</mi><mo>=</mo><mn>4</mn><mo separator="true">,</mo><mi>N</mi><mo>=</mo><mn>3</mn></mrow><annotation encoding="application/x-tex">\lambda = 4, N = 3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathit">λ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathit" style="margin-right:0.10903em;">N</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">3</span></span></span></span>,对样本数进行改变,得到如下实验结果:</p>
<p data-line="164" class="code-line"><object width="100%" height="120px" data="./generate_results/tank-num-of-arrival-1000.txt"></object></p>
<p data-line="166" class="code-line"><object width="100%" height="120px" data="./generate_results/tank-num-of-arrival-10000.txt"></object></p>
<p data-line="168" class="code-line"><object width="100%" height="120px" data="./generate_results/tank-num-of-arrival-100000.txt"></object></p>
<p data-line="170" class="code-line"><object width="100%" height="120px" data="./generate_results/tank-num-of-arrival-1000000.txt"></object></p>
<p data-line="172" class="code-line">每辆敌军坦克到达的时刻服从期望为 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mfrac><mn>1</mn><mi>λ</mi></mfrac></mrow><annotation encoding="application/x-tex">\frac{1}{\lambda}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1.190108em;vertical-align:-0.345em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">λ</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span> 的指数分布,也就是说坦克到达的时间 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>S</mi></mrow><annotation encoding="application/x-tex">S</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathit" style="margin-right:0.05764em;">S</span></span></span></span></eq> 的分布函数为:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(9)</mtext></mtd><mtd><mrow><msub><mi>F</mi><mi>S</mi></msub><mo>(</mo><mi>x</mi><mo>)</mo><mo>=</mo><msup><mi>e</mi><mrow><mo>−</mo><mi>λ</mi><mi>x</mi></mrow></msup></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
F_S(x) = e^{-\lambda x}
\tag{9}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.13889em;">F</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.13889em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.05764em;">S</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord mathit">x</span><span class="mclose">)</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8991079999999999em;vertical-align:0em;"></span><span class="mord"><span class="mord mathit">e</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8991079999999999em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathit mtight">λ</span><span class="mord mathit mtight">x</span></span></span></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height:1.149108em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">9</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="179" class="code-line">我们可以生成 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathit" style="margin-right:0.10903em;">M</span></span></span></span></eq> 组数据 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi mathvariant="bold">S</mi><mn mathvariant="bold">1</mn></msub><mo separator="true">,</mo><msub><mi mathvariant="bold">S</mi><mn mathvariant="bold">2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi mathvariant="bold">S</mi><mi mathvariant="bold">M</mi></msub></mrow><annotation encoding="application/x-tex">\mathrm{\mathbf{S_1}}, \mathrm{\mathbf{S_2}}, ..., \mathrm{\mathbf{S_M}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8805499999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33027699999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">M</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span>,分别用它们的均值 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>E</mi><mo>(</mo><msub><mi mathvariant="bold">S</mi><mn mathvariant="bold">1</mn></msub><mo>)</mo><mo separator="true">,</mo><mi>E</mi><mo>(</mo><msub><mi mathvariant="bold">S</mi><mn mathvariant="bold">2</mn></msub><mo>)</mo><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><mi>E</mi><mo>(</mo><msub><mi mathvariant="bold">S</mi><mi mathvariant="bold">M</mi></msub><mo>)</mo></mrow><annotation encoding="application/x-tex">E(\mathrm{\mathbf{S_1}}), E(\mathrm{\mathbf{S_2}}),..., E(\mathrm{\mathbf{S_M}})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathit" style="margin-right:0.05764em;">E</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33027699999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">M</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span> 表示第 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mn>1</mn><mo separator="true">,</mo><mn>2</mn><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><mi>M</mi></mrow><annotation encoding="application/x-tex">1, 2, ..., M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">2</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathit" style="margin-right:0.10903em;">M</span></span></span></span> 辆坦克到达所需的时间,将其存入 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi mathvariant="bold">B</mi><mo>=</mo><mo>(</mo><msub><mi>B</mi><mn>1</mn></msub><mo separator="true">,</mo><msub><mi>B</mi><mn>2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi>B</mi><mi>M</mi></msub><mo>)</mo><mi mathvariant="normal">中</mi></mrow><annotation encoding="application/x-tex">\mathrm{\mathbf{B}} = (B_1, B_2, ..., B_M) 中</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">B</span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05017em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05017em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.05017em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.10903em;">M</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mord cjk_fallback">中</span></span></span></span>,则在 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>N</mi></mrow><annotation encoding="application/x-tex">N</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathit" style="margin-right:0.10903em;">N</span></span></span></span></eq> 分钟内每辆敌军坦克到达时间为:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(10)</mtext></mtd><mtd><mrow><msup><mi mathvariant="bold">B</mi><mo mathvariant="bold">′</mo></msup><mo>=</mo><mo>(</mo><msubsup><mi>B</mi><mi>i</mi><mo mathvariant="normal">′</mo></msubsup><mo>=</mo><munderover><mo>∑</mo><mn>1</mn><mi>j</mi></munderover><msub><mi>B</mi><mi>j</mi></msub><mi mathvariant="normal">∣</mi><mspace width="1em"/><mi>j</mi><mo>∈</mo><mo>[</mo><mn>1</mn><mo separator="true">,</mo><mi>M</mi><mo>]</mo><mspace width="1em"/><mi>w</mi><mi>h</mi><mi>e</mi><mi>r</mi><mi>e</mi><mspace width="1em"/><msubsup><mi>B</mi><mi>i</mi><mo mathvariant="normal">′</mo></msubsup><mo><</mo><mi>N</mi><mo>)</mo></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
\mathrm{\mathbf{B'}} = (B'_i = \sum_1^j B_j | \quad j \in [1, M] \quad where \quad B'_i < N)
\tag{10}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.801892em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">B</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.801892em;"><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathbf mtight">′</span></span></span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.051892em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8018919999999999em;"><span style="top:-2.4530000000000003em;margin-left:-0.05017em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:3.12589em;vertical-align:-1.267113em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8587770000000003em;"><span style="top:-1.882887em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.347113em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.267113em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.05017em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mspace" style="margin-right:1em;"></span><span class="mord mathit" style="margin-right:0.05724em;">j</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">∈</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.051892em;vertical-align:-0.25em;"></span><span class="mopen">[</span><span class="mord">1</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathit" style="margin-right:0.10903em;">M</span><span class="mclose">]</span><span class="mspace" style="margin-right:1em;"></span><span class="mord mathit" style="margin-right:0.02691em;">w</span><span class="mord mathit">h</span><span class="mord mathit">e</span><span class="mord mathit" style="margin-right:0.02778em;">r</span><span class="mord mathit">e</span><span class="mspace" style="margin-right:1em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05017em;">B</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8018919999999999em;"><span style="top:-2.4530000000000003em;margin-left:-0.05017em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel"><</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathit" style="margin-right:0.10903em;">N</span><span class="mclose">)</span></span><span class="tag"><span class="strut" style="height:3.12589em;vertical-align:-1.267113em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">1</span><span class="mord">0</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="186" class="code-line"><strong>实验结果:</strong></p>
<p data-line="188" class="code-line">取 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>λ</mi><mo>=</mo><mn>4</mn><mo separator="true">,</mo><mi>N</mi><mo>=</mo><mn>3</mn></mrow><annotation encoding="application/x-tex">\lambda = 4, N = 3</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathit">λ</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord">4</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord mathit" style="margin-right:0.10903em;">N</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">3</span></span></span></span>,对样本组数 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>M</mi></mrow><annotation encoding="application/x-tex">M</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathit" style="margin-right:0.10903em;">M</span></span></span></span></eq> 进行改变,得到如下实验结果:</p>
<p data-line="190" class="code-line"><object width="100%" height="200px" data="./generate_results/tank-time-of-arrival-1000.txt"></object></p>
<p data-line="192" class="code-line"><object width="100%" height="200px" data="./generate_results/tank-time-of-arrival-10000.txt"></object></p>
<p data-line="194" class="code-line"><object width="100%" height="200px" data="./generate_results/tank-time-of-arrival-100000.txt"></object></p>
<p data-line="196" class="code-line"><object width="100%" height="200px" data="./generate_results/tank-time-of-arrival-1000000.txt"></object></p>
<h2 data-line="199" class="code-line" id="%E5%9F%BA%E4%BA%8E%E9%AB%98%E6%96%AF%E5%88%86%E5%B8%83%E6%B7%B7%E5%90%88%E6%A8%A1%E5%9E%8B%E7%9A%84%E6%A8%A1%E5%BC%8F%E5%88%86%E7%B1%BB%E6%96%B9%E6%B3%95">基于高斯分布混合模型的模式分类方法</h2>
<p data-line="201" class="code-line">考虑水果聚类问题,水果的属性 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi mathvariant="bold">X</mi></mrow><annotation encoding="application/x-tex">\mathrm{\mathbf{X}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">X</span></span></span></span></span></span> 满足高斯分布,其均值向量、协方差矩阵分别为 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>μ</mi><mo separator="true">,</mo><mi mathvariant="bold">Σ</mi></mrow><annotation encoding="application/x-tex">\mathrm{\mathbf{\mu}}, \mathrm{\mathbf{\Sigma}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8805499999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord"><span class="mord mathit">μ</span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">Σ</span></span></span></span></span></span>,将其概率密度记为 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>p</mi><mo>(</mo><mi mathvariant="bold">X</mi><mi mathvariant="normal">∣</mi><mi>μ</mi><mo separator="true">,</mo><mi mathvariant="bold">Σ</mi><mo>)</mo></mrow><annotation encoding="application/x-tex">p(\mathrm{\mathbf{X}}|\mathrm{\mathbf{\mu}}, \mathrm{\mathbf{\Sigma}})</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathit">p</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord mathbf">X</span></span></span><span class="mord">∣</span><span class="mord"><span class="mord"><span class="mord mathit">μ</span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">Σ</span></span></span><span class="mclose">)</span></span></span></span>。</p>
<p data-line="203" class="code-line">定义高斯混合分布:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(11)</mtext></mtd><mtd><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><msub><mi>p</mi><mi>M</mi></msub><mo>(</mo><mi mathvariant="bold">X</mi><mo>)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></munderover><msub><mi>α</mi><mi>i</mi></msub><mi>p</mi><mo>(</mo><mi mathvariant="bold">X</mi><mi mathvariant="normal">∣</mi><msub><mi>μ</mi><mi mathvariant="bold">i</mi></msub><mo separator="true">,</mo><msub><mi mathvariant="bold">Σ</mi><mi mathvariant="bold">i</mi></msub><mo>)</mo></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mi>p</mi><mo>(</mo><mi mathvariant="bold">X</mi><mi mathvariant="normal">∣</mi><msub><mi>μ</mi><mi mathvariant="bold">i</mi></msub><mo separator="true">,</mo><msub><mi mathvariant="bold">Σ</mi><mi mathvariant="bold">i</mi></msub><mo>)</mo></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><mi>e</mi><mi>x</mi><mi>p</mi><mo>{</mo><mo>−</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>(</mo><mi mathvariant="bold">X</mi><mo>−</mo><msub><mi>μ</mi><mi mathvariant="bold">i</mi></msub><msup><mo>)</mo><mi>T</mi></msup><msubsup><mi mathvariant="bold">Σ</mi><mi mathvariant="bold">i</mi><mrow><mo>−</mo><mn mathvariant="bold">1</mn></mrow></msubsup><mo>(</mo><mi mathvariant="bold">X</mi><mo>−</mo><msub><mi>μ</mi><mi mathvariant="bold">i</mi></msub><mo>)</mo><mo>}</mo></mrow><mrow><mo>(</mo><mn>2</mn><mi>π</mi><msup><mo>)</mo><mrow><mi>D</mi><mi mathvariant="normal">/</mi><mn>2</mn></mrow></msup><mi mathvariant="normal">∣</mi><msub><mi mathvariant="normal">Σ</mi><mi>i</mi></msub><msup><mi mathvariant="normal">∣</mi><mfrac><mn>1</mn><mn>2</mn></mfrac></msup></mrow></mfrac></mrow></mstyle></mtd></mtr></mtable></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
\begin{aligned}
p_M(\mathrm{\mathbf{X}}) &= \sum_{i = 1}^k \alpha_i p(\mathrm{\mathbf{X}}|\mathrm{\mathbf{\mu _i}}, \mathrm{\mathbf{\Sigma _i}}) \\
p(\mathrm{\mathbf{X}}|\mathrm{\mathbf{\mu _i}}, \mathrm{\mathbf{\Sigma _i}}) &= \frac{exp\{-\frac{1}{2}(\mathrm{\mathbf{X}} - \mathrm{\mathbf{\mu_i}})^T\mathrm{\mathbf{\Sigma_i^{-1}}}(\mathrm{\mathbf{X}} - \mathrm{\mathbf{\mu_i}})\}}{(2\pi) ^ {D/2}|\Sigma_i|^{\frac{1}{2}}}
\end{aligned}
\tag{11}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:6.382591000000001em;vertical-align:-2.9412955000000003em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.4412955000000003em;"><span style="top:-5.4412955em;"><span class="pstrut" style="height:3.836113em;"></span><span class="mord"><span class="mord"><span class="mord mathit">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.10903em;">M</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord mathbf">X</span></span></span><span class="mclose">)</span></span></span><span style="top:-2.2743874999999996em;"><span class="pstrut" style="height:3.836113em;"></span><span class="mord"><span class="mord mathit">p</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord mathbf">X</span></span></span><span class="mord">∣</span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">Σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.9412955000000003em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.4412955000000003em;"><span style="top:-5.4412955em;"><span class="pstrut" style="height:3.836113em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8361130000000003em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3000050000000005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathit">p</span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord mathbf">X</span></span></span><span class="mord">∣</span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">Σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-2.2743874999999996em;"><span class="pstrut" style="height:3.836113em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.589239em;"><span style="top:-2.17043em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mopen">(</span><span class="mord">2</span><span class="mord mathit" style="margin-right:0.03588em;">π</span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.814em;"><span style="top:-2.989em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.02778em;">D</span><span class="mord mtight">/</span><span class="mord mtight">2</span></span></span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord">Σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord">∣</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.93957em;"><span style="top:-3.3485500000000004em;margin-right:0.05em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight"><span class="mopen nulldelimiter sizing reset-size3 size6"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8443142857142858em;"><span style="top:-2.656em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.2255000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line mtight" style="border-bottom-width:0.049em;"></span></span><span style="top:-3.384em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size3 size1 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.344em;"><span></span></span></span></span></span><span class="mclose nulldelimiter sizing reset-size3 size6"></span></span></span></span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.7350000000000003em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit">e</span><span class="mord mathit">x</span><span class="mord mathit">p</span><span class="mopen">{</span><span class="mord">−</span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.845108em;"><span style="top:-2.6550000000000002em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">2</span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.394em;"><span class="pstrut" style="height:3em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.345em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord mathbf">X</span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">Σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.854239em;"><span style="top:-2.3986920000000005em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">i</span></span></span><span style="top:-3.1031310000000003em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">−</span><span class="mord mathbf mtight">1</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.3013079999999999em;"><span></span></span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord mathbf">X</span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mclose">)</span><span class="mclose">}</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.07957em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.9412955000000003em;"><span></span></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height:6.382591000000001em;vertical-align:-2.9412955000000003em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">1</span><span class="mord">1</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="213" class="code-line">该分布由 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathit" style="margin-right:0.03148em;">k</span></span></span></span></eq> 个混合分布组成,每个混合成分对应一个高斯分布,其中 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>μ</mi><mi>i</mi></msub><mo separator="true">,</mo><msub><mi mathvariant="normal">Σ</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">\mu _i, \Sigma _i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.8777699999999999em;vertical-align:-0.19444em;"></span><span class="mord"><span class="mord mathit">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord">Σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 是第 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em;"></span><span class="mord mathit">i</span></span></span></span></eq> 个高斯混合成分的参数,<span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>α</mi><mi mathvariant="bold">i</mi></msub></mrow><annotation encoding="application/x-tex">\mathrm{\mathbf{\alpha _i}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.58056em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span> 为选择第 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em;"></span><span class="mord mathit">i</span></span></span></span></eq> 个混合成分的概率,满足:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(12)</mtext></mtd><mtd><mrow><msub><mi>α</mi><mi>i</mi></msub><mo>></mo><mn>0</mn><mo separator="true">,</mo><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></munderover><msub><mi>α</mi><mi>i</mi></msub><mo>=</mo><mn>1</mn></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
\alpha _i > 0, \sum_{i = 1}^k \alpha_i = 1
\tag{12}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.6891em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:3.1137820000000005em;vertical-align:-1.277669em;"></span><span class="mord">0</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mop op-limits"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8361130000000003em;"><span style="top:-1.872331em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight">i</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.050005em;"><span class="pstrut" style="height:3.05em;"></span><span><span class="mop op-symbol large-op">∑</span></span></span><span style="top:-4.3000050000000005em;margin-left:0em;"><span class="pstrut" style="height:3.05em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.277669em;"><span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">1</span></span><span class="tag"><span class="strut" style="height:3.1137820000000005em;vertical-align:-1.277669em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">1</span><span class="mord">2</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="220" class="code-line">记样本 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>X</mi><mi>j</mi></msub></mrow><annotation encoding="application/x-tex">X_j</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.969438em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.07847em;">X</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.07847em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span> 属于第 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>i</mi></mrow><annotation encoding="application/x-tex">i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.65952em;vertical-align:0em;"></span><span class="mord mathit">i</span></span></span></span></eq> 个高斯成分的后验概率为 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>y</mi><mrow><mi>j</mi><mi>i</mi></mrow></msub></mrow><annotation encoding="application/x-tex">y_{ji}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.716668em;vertical-align:-0.286108em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span><span class="mord mathit mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span>,有:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(13)</mtext></mtd><mtd><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>y</mi><mrow><mi>j</mi><mi>i</mi></mrow></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><msub><mi>α</mi><mi>i</mi></msub><mi>p</mi><mo>(</mo><msub><mi>x</mi><mi>j</mi></msub><mi mathvariant="normal">∣</mi><msub><mi>μ</mi><mi>i</mi></msub><mo separator="true">,</mo><msub><mi mathvariant="normal">Σ</mi><mi>i</mi></msub><mo>)</mo></mrow><mrow><msub><mi>p</mi><mi>M</mi></msub><mo>(</mo><msub><mi>x</mi><mi>j</mi></msub><mo>)</mo></mrow></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><msub><mi>α</mi><mi>i</mi></msub><mi>p</mi><mo>(</mo><msub><mi>x</mi><mi>j</mi></msub><mi mathvariant="normal">∣</mi><msub><mi>μ</mi><mi>i</mi></msub><mo separator="true">,</mo><msub><mi mathvariant="normal">Σ</mi><mi>i</mi></msub><mo>)</mo></mrow><mrow><munderover><mo>∑</mo><mrow><mi>l</mi><mo>=</mo><mn>1</mn></mrow><mi>k</mi></munderover><msub><mi>α</mi><mi>l</mi></msub><mi>p</mi><mo>(</mo><msub><mi>x</mi><mi>j</mi></msub><mi mathvariant="normal">∣</mi><msub><mi>μ</mi><mi>l</mi></msub><mo separator="true">,</mo><msub><mi mathvariant="normal">Σ</mi><mi>l</mi></msub><mo>)</mo></mrow></mfrac></mrow></mstyle></mtd></mtr></mtable></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
\begin{aligned}
y_{ji} &= \frac{\alpha _i p(x_j|\mu _i, \Sigma _i)}{p_M(x_j)} \\
&= \frac{\alpha _i p(x_j|\mu _i, \Sigma _i)}{\sum_{l = 1}^k \alpha _l p(x_j|\mu _l, \Sigma_l)}
\tag{13}
\end{aligned}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:5.604826em;vertical-align:-2.5524130000000005em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.0524129999999996em;"><span style="top:-5.0524130000000005em;"><span class="pstrut" style="height:3.427em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span><span class="mord mathit mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span><span style="top:-2.3533049999999998em;"><span class="pstrut" style="height:3.427em;"></span><span class="mord"></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.5524130000000005em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.0524129999999996em;"><span style="top:-5.0524130000000005em;"><span class="pstrut" style="height:3.427em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit">p</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.32833099999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.10903em;">M</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathit">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathit">p</span><span class="mopen">(</span><span class="mord"><span class="mord mathit">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord mathit">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord">Σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.972108em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-2.3533049999999998em;"><span class="pstrut" style="height:3.427em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.427em;"><span style="top:-2.120992em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.9890079999999999em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.01968em;">l</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.03148em;">k</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.29971000000000003em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.01968em;">l</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathit">p</span><span class="mopen">(</span><span class="mord"><span class="mord mathit">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord mathit">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.01968em;">l</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord">Σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33610799999999996em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.01968em;">l</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord mathit">p</span><span class="mopen">(</span><span class="mord"><span class="mord mathit">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord"><span class="mord mathit">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord">Σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mclose">)</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.178718em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:2.5524130000000005em;"><span></span></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height:5.604826em;vertical-align:-2.5524130000000005em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">1</span><span class="mord">3</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="230" class="code-line">为了得到混合分布的各个组成部分的分布参数,我们需要利用 EM 算法 (Expectation–maximization algorithm) 不断迭代来获取 <eq><span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>k</mi></mrow><annotation encoding="application/x-tex">k</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.69444em;vertical-align:0em;"></span><span class="mord mathit" style="margin-right:0.03148em;">k</span></span></span></span></eq> 个类的均值和方差参数。</p>
<p data-line="232" class="code-line"><strong>E 步:</strong></p>
<p data-line="234" class="code-line">根据当前参数计算样本后验概率 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi mathvariant="bold">Y</mi><mo>=</mo><mo>(</mo><msub><mi>y</mi><mrow><mi>j</mi><mi>i</mi></mrow></msub><msub><mo>)</mo><mrow><mi>j</mi><mi>i</mi></mrow></msub></mrow><annotation encoding="application/x-tex">\mathrm{\mathbf{Y}} = (y_{ji})_{ji}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf" style="margin-right:0.02875em;">Y</span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1.036108em;vertical-align:-0.286108em;"></span><span class="mopen">(</span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span><span class="mord mathit mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span><span class="mord mathit mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span></p>
<p data-line="236" class="code-line"><strong>M 步:</strong></p>
<p data-line="238" class="code-line">根据后验概率更新模型参数 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mo>{</mo><msub><mi>α</mi><mi>i</mi></msub><mo separator="true">,</mo><msub><mi>μ</mi><mi>i</mi></msub><mo separator="true">,</mo><msub><mi mathvariant="normal">Σ</mi><mi>i</mi></msub><mi mathvariant="normal">∣</mi><mn>1</mn><mo>≤</mo><mi>i</mi><mo>≤</mo><mi>k</mi><mo>}</mo></mrow><annotation encoding="application/x-tex">\{\alpha _i, \mu _i, \Sigma _i | 1 \le i \le k\}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">{</span><span class="mord"><span class="mord mathit" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord">Σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mord">∣</span><span class="mord">1</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.79549em;vertical-align:-0.13597em;"></span><span class="mord mathit">i</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">≤</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord mathit" style="margin-right:0.03148em;">k</span><span class="mclose">}</span></span></span></span>,新的参数与后验概率应该满足下面的关系:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(14)</mtext></mtd><mtd><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msubsup><mi>α</mi><mi>i</mi><mo mathvariant="normal">′</mo></msubsup></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>y</mi><mrow><mi>j</mi><mi>i</mi></mrow></msub></mrow><mi>N</mi></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msubsup><mi>μ</mi><mi mathvariant="bold">i</mi><mo mathvariant="bold">′</mo></msubsup></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>y</mi><mrow><mi>j</mi><mi>i</mi></mrow></msub><msub><mi>x</mi><mi>j</mi></msub></mrow><mrow><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>y</mi><mrow><mi>j</mi><mi>i</mi></mrow></msub></mrow></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msubsup><mi mathvariant="bold">Σ</mi><mi mathvariant="bold">i</mi><mo mathvariant="bold">′</mo></msubsup></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><mfrac><mrow><msubsup><mi mathvariant="normal">Σ</mi><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></msubsup><msub><mi>y</mi><mrow><mi>j</mi><mi>i</mi></mrow></msub><mo>(</mo><msub><mi>x</mi><mi>j</mi></msub><mo>−</mo><msubsup><mi>μ</mi><mi>i</mi><mo mathvariant="normal">′</mo></msubsup><mo>)</mo><mo>(</mo><msub><mi>x</mi><mi>j</mi></msub><mo>−</mo><msubsup><mi>μ</mi><mi>i</mi><mo mathvariant="normal">′</mo></msubsup><msup><mo>)</mo><mi>T</mi></msup></mrow><mrow><munderover><mo>∑</mo><mrow><mi>j</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>y</mi><mrow><mi>j</mi><mi>i</mi></mrow></msub></mrow></mfrac></mrow></mstyle></mtd></mtr></mtable></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
\begin{aligned}
\alpha_i' &= \frac{\sum _{j = 1}^N y_{ji}}{N} \\ \\
\mathrm{\mathbf{\mu_i'}} &= \frac{\sum _{j = 1}^N y_{ji}x_j}{\sum _{j = 1}^N y_{ji}} \\ \\
\mathrm{\mathbf{\Sigma_i'}} &= \frac{\Sigma_{j = 1}^{N}y_{ji}(x_j - \mu_i')(x_j - \mu_i')^T}{\sum _{j = 1}^{N}y_{ji}}
\tag{14}
\end{aligned}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:12.440299000000001em;vertical-align:-5.970149500000001em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:6.470149500000001em;"><span style="top:-8.470149500000002em;"><span class="pstrut" style="height:3.807049em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8018919999999999em;"><span style="top:-2.4530000000000003em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span></span></span><span style="top:-6.6441495em;"><span class="pstrut" style="height:3.807049em;"></span><span class="mord"></span></span><span style="top:-4.1771005em;"><span class="pstrut" style="height:3.807049em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8018919999999999em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">i</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathbf mtight">′</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span></span><span style="top:-1.7300515em;"><span class="pstrut" style="height:3.807049em;"></span><span class="mord"></span></span><span style="top:0.5560515000000004em;"><span class="pstrut" style="height:3.807049em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">Σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8018919999999999em;"><span style="top:-2.4530000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">i</span></span></span><span style="top:-3.113em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathbf mtight">′</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.247em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:5.970149500000001em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:6.470149500000001em;"><span style="top:-8.470149500000002em;"><span class="pstrut" style="height:3.807049em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8070490000000001em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.10903em;">N</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.825818em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.981231em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.10903em;">N</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.43581800000000004em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span><span class="mord mathit mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-4.1771005em;"><span class="pstrut" style="height:3.807049em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.8070490000000001em;"><span style="top:-2.128769em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.981231em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.10903em;">N</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.43581800000000004em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span><span class="mord mathit mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.825818em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.981231em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.10903em;">N</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.43581800000000004em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span><span class="mord mathit mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathit">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3070490000000001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:0.5560514999999995em;"><span class="pstrut" style="height:3.807049em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.626103em;"><span style="top:-2.128769em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mop"><span class="mop op-symbol small-op" style="position:relative;top:-0.0000050000000000050004em;">∑</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.981231em;"><span style="top:-2.40029em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.2029em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.10903em;">N</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.43581800000000004em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span><span class="mord mathit mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.7847720000000002em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord"><span class="mord">Σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-2.441336em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span><span class="mrel mtight">=</span><span class="mord mtight">1</span></span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.10903em;">N</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.394772em;"><span></span></span></span></span></span></span><span class="mord"><span class="mord mathit" style="margin-right:0.03588em;">y</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:-0.03588em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span><span class="mord mathit mtight">i</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mopen">(</span><span class="mord"><span class="mord mathit">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-2.441336em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.258664em;"><span></span></span></span></span></span></span><span class="mclose">)</span><span class="mopen">(</span><span class="mord"><span class="mord mathit">x</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.311664em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.05724em;">j</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.286108em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mbin">−</span><span class="mspace" style="margin-right:0.2222222222222222em;"></span><span class="mord"><span class="mord mathit">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.751892em;"><span style="top:-2.441336em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mtight">′</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.258664em;"><span></span></span></span></span></span></span><span class="mclose"><span class="mclose">)</span><span class="msupsub"><span class="vlist-t"><span class="vlist-r"><span class="vlist" style="height:0.8413309999999999em;"><span style="top:-3.063em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight" style="margin-right:0.13889em;">T</span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:1.3070490000000001em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:5.9701495em;"><span></span></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height:12.440299000000001em;vertical-align:-5.970149500000001em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">1</span><span class="mord">4</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="249" class="code-line">不断重复 E、M 两步直到收敛。</p>
<p data-line="251" class="code-line"><strong>实验结果:</strong></p>
<p data-line="253" class="code-line">现有水果数据 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi mathvariant="bold">S</mi></mrow><annotation encoding="application/x-tex">\mathrm{\mathbf{S}}</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">S</span></span></span></span></span></span>:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(15)</mtext></mtd><mtd><mrow><mi mathvariant="bold">S</mi><mo>=</mo><mo>(</mo><msub><mi mathvariant="bold">S</mi><mn mathvariant="bold">1</mn></msub><mo separator="true">,</mo><msub><mi mathvariant="bold">S</mi><mn mathvariant="bold">2</mn></msub><mo separator="true">,</mo><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mi mathvariant="normal">.</mi><mo separator="true">,</mo><msub><mi mathvariant="bold">S</mi><mi mathvariant="bold">N</mi></msub><mo>)</mo></mrow></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
\mathrm{\mathbf{S}} = (\mathrm{\mathbf{S_1}}, \mathrm{\mathbf{S_2}}, ..., \mathrm{\mathbf{S_{N}}})
\tag{15}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68611em;vertical-align:0em;"></span><span class="mord"><span class="mord"><span class="mord mathbf">S</span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mopen">(</span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord">.</span><span class="mord">.</span><span class="mord">.</span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.33027699999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathbf mtight">N</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mclose">)</span></span><span class="tag"><span class="strut" style="height:1em;vertical-align:-0.25em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">1</span><span class="mord">5</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="260" class="code-line">其中 N = 30,<span class="katex"><span class="katex-mathml"><math><semantics><mrow><msub><mi>S</mi><mi>i</mi></msub></mrow><annotation encoding="application/x-tex">S_i</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.83333em;vertical-align:-0.15em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.05764em;">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.31166399999999994em;"><span style="top:-2.5500000000000003em;margin-left:-0.05764em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathit mtight">i</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span> 为二维列向量,包含密度、含糖率两个属性,我们随机初始化一组参数:</p>
<p><span class="katex-display"><span class="katex"><span class="katex-mathml"><math><semantics><mtable side="right"><mlabeledtr><mtd><mtext>(16)</mtext></mtd><mtd><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>α</mi><mn>1</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi>α</mi><mn>2</mn></msub><mo>=</mo><msub><mi>α</mi><mn>3</mn></msub><mo>=</mo><mfrac><mn>1</mn><mn>3</mn></mfrac></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi>μ</mi><mn mathvariant="bold">1</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi mathvariant="bold">S</mi><mn mathvariant="bold">6</mn></msub><mo separator="true">,</mo><msub><mi>μ</mi><mn mathvariant="bold">2</mn></msub><mo>=</mo><msub><mi mathvariant="bold">S</mi><mn mathvariant="bold">22</mn></msub><mo separator="true">,</mo><msub><mi>μ</mi><mn mathvariant="bold">3</mn></msub><mo>=</mo><msub><mi mathvariant="bold">S</mi><mn mathvariant="bold">27</mn></msub></mrow></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="true"><msub><mi mathvariant="bold">Σ</mi><mn mathvariant="bold">1</mn></msub></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="true"><mrow><mrow></mrow><mo>=</mo><msub><mi mathvariant="bold">Σ</mi><mn mathvariant="bold">2</mn></msub><mo>=</mo><msub><mi mathvariant="bold">Σ</mi><mn mathvariant="bold">3</mn></msub><mo>=</mo><mrow><mo fence="true">(</mo><mtable><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0.1</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0.0</mn></mstyle></mtd></mtr><mtr><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0.0</mn></mstyle></mtd><mtd><mstyle scriptlevel="0" displaystyle="false"><mn>0.1</mn></mstyle></mtd></mtr></mtable><mo fence="true">)</mo></mrow></mrow></mstyle></mtd></mtr></mtable></mtd></mlabeledtr></mtable><annotation encoding="application/x-tex">
\begin{aligned}
\alpha_1 &= \alpha_2 = \alpha_3 = \frac{1}{3} \\
\mathrm{\mathbf{\mu_1}} &= \mathrm{\mathbf{S_6}}, \mathrm{\mathbf{\mu_2}} = \mathrm{\mathbf{S_{22}}}, \mathrm{\mathbf{\mu_3}} = \mathrm{\mathbf{S_{27}}} \\
\mathrm{\mathbf{\Sigma_1}} &= \mathrm{\mathbf{\Sigma_2}} = \mathrm{\mathbf{\Sigma_3}} = \begin{pmatrix}
0.1 & 0.0 \\
0.0 & 0.1 \\
\end{pmatrix}
\tag{16}
\end{aligned}
</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:6.507470000000001em;vertical-align:-3.0037350000000007em;"></span><span class="mord"><span class="mtable"><span class="col-align-r"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.5037350000000007em;"><span style="top:-5.632295em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"><span class="mord mathit" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span style="top:-3.8062950000000004em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span style="top:-1.6962949999999997em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">Σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.0037350000000007em;"><span></span></span></span></span></span><span class="col-align-l"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:3.5037350000000007em;"><span style="top:-5.632295em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord mathit" style="margin-right:0.0037em;">α</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:-0.0037em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mopen nulldelimiter"></span><span class="mfrac"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.32144em;"><span style="top:-2.314em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">3</span></span></span><span style="top:-3.23em;"><span class="pstrut" style="height:3em;"></span><span class="frac-line" style="border-bottom-width:0.04em;"></span></span><span style="top:-3.677em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.686em;"><span></span></span></span></span></span><span class="mclose nulldelimiter"></span></span></span></span><span style="top:-3.8062950000000004em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">6</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathbf mtight">2</span><span class="mord mathbf mtight">2</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mpunct">,</span><span class="mspace" style="margin-right:0.16666666666666666em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathit">μ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">S</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mtight"><span class="mord mathbf mtight">2</span><span class="mord mathbf mtight">7</span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span></span></span><span style="top:-1.6962949999999997em;"><span class="pstrut" style="height:3.45em;"></span><span class="mord"><span class="mord"></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">Σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">2</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mord"><span class="mord"><span class="mord"><span class="mord mathbf">Σ</span><span class="msupsub"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:0.30110799999999993em;"><span style="top:-2.5500000000000003em;margin-left:0em;margin-right:0.05em;"><span class="pstrut" style="height:2.7em;"></span><span class="sizing reset-size6 size3 mtight"><span class="mord mathbf mtight">3</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.15em;"><span></span></span></span></span></span></span></span></span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="minner"><span class="mopen delimcenter" style="top:0em;"><span class="delimsizing size3">(</span></span><span class="mord"><span class="mtable"><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span><span class="mord">.</span><span class="mord">1</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span><span class="mord">.</span><span class="mord">0</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span><span class="arraycolsep" style="width:0.5em;"></span><span class="arraycolsep" style="width:0.5em;"></span><span class="col-align-c"><span class="vlist-t vlist-t2"><span class="vlist-r"><span class="vlist" style="height:1.45em;"><span style="top:-3.61em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span><span class="mord">.</span><span class="mord">0</span></span></span><span style="top:-2.4099999999999997em;"><span class="pstrut" style="height:3em;"></span><span class="mord"><span class="mord">0</span><span class="mord">.</span><span class="mord">1</span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:0.9500000000000004em;"><span></span></span></span></span></span></span></span><span class="mclose delimcenter" style="top:0em;"><span class="delimsizing size3">)</span></span></span></span></span></span><span class="vlist-s"></span></span><span class="vlist-r"><span class="vlist" style="height:3.0037350000000007em;"><span></span></span></span></span></span></span></span></span><span class="tag"><span class="strut" style="height:6.507470000000001em;vertical-align:-3.0037350000000007em;"></span><span class="mord text"><span class="mord">(</span><span class="mord"><span class="mord">1</span><span class="mord">6</span></span><span class="mord">)</span></span></span></span></span></span></p>
<p data-line="274" class="code-line">令迭代次数 <span class="katex"><span class="katex-mathml"><math><semantics><mrow><mi>I</mi><mo>=</mo><mn>50</mn></mrow><annotation encoding="application/x-tex">I = 50</annotation></semantics></math></span><span class="katex-html" aria-hidden="true"><span class="base"><span class="strut" style="height:0.68333em;vertical-align:0em;"></span><span class="mord mathit" style="margin-right:0.07847em;">I</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span><span class="mrel">=</span><span class="mspace" style="margin-right:0.2777777777777778em;"></span></span><span class="base"><span class="strut" style="height:0.64444em;vertical-align:0em;"></span><span class="mord">5</span><span class="mord">0</span></span></span></span>,将得到的结果以散点图绘制如下:</p>
<p data-line="276" class="code-line"><img src="./generate_results/em-50.png" alt="em-50.png"></p>
<p data-line="278" class="code-line">详细计算过程参见 <a href="./generate_results/em-50.txt">em-50.txt</a>。</p>
<h2 data-line="280" class="code-line" id="%E5%8F%82%E8%80%83%E6%96%87%E7%8C%AE">参考文献</h2>
<ol>
<li data-line="282" class="code-line"><strong>[<a href="https://en.wikipedia.org/wiki/Monte_Carlo_method">Monte Carlo method | Wikipedia</a>]</strong></li>
<li data-line="283" class="code-line"><strong>[<a href="https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization_algorithm">Expectation–maximization algorithm | Wikipedia</a>]</strong></li>
</ol>
</body></html>