-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfid.py
141 lines (112 loc) · 4.33 KB
/
fid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from tqdm import tqdm
import torch
import numpy as np
from scipy import linalg
# FID
import sys
sys.path.append('../stylegan2-ada-pytorch')
from metrics import metric_utils
device = 'cuda:0'
_feature_detector_cache = None
def get_feature_detector():
global _feature_detector_cache
if _feature_detector_cache is None:
_feature_detector_cache = metric_utils.get_feature_detector(
'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/'
'metrics/inception-2015-12-05.pt', device)
return _feature_detector_cache
def postprocess(x):
"""."""
return ((x * .5 + .5) * 255).to(torch.uint8)
def run_fid(x1, x2):
# Extract features
x1 = run_batch_extract(x1, device)
x2 = run_batch_extract(x2, device)
npx1 = x1.detach().cpu().numpy()
npx2 = x2.detach().cpu().numpy()
mu1 = np.mean(npx1, axis=0)
sigma1 = np.cov(npx1, rowvar=False)
mu2 = np.mean(npx2, axis=0)
sigma2 = np.cov(npx2, rowvar=False)
frechet = calculate_frechet_distance(mu1, sigma1, mu2, sigma2)
return frechet
def run_feature_extractor(x):
assert x.dtype == torch.uint8
assert x.min() >= 0
assert x.max() <= 255
assert len(x.shape) == 4
assert x.shape[1] == 3
feature_extractor = get_feature_detector()
return feature_extractor(x, return_features=True)
def run_batch_extract(x, device, bs=500):
z = []
with torch.no_grad():
for start in tqdm(range(0, len(x), bs), desc='run_batch_extract'):
stop = start + bs
x_ = x[start:stop].to(device)
z_ = run_feature_extractor(postprocess(x_)).cpu()
z.append(z_)
z = torch.cat(z)
return z
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6, return_details=False):
"""Numpy implementation of the Frechet Distance.
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1)
and X_2 ~ N(mu_2, C_2) is
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)).
Stable version by Dougal J. Sutherland.
Params:
-- mu1 : Numpy array containing the activations of a layer of the
inception net (like returned by the function 'get_predictions')
for generated samples.
-- mu2 : The sample mean over activations, precalculated on an
representative data set.
-- sigma1: The covariance matrix over activations for generated samples.
-- sigma2: The covariance matrix over activations, precalculated on an
representative data set.
Returns:
-- : The Frechet Distance.
"""
mu1 = np.atleast_1d(mu1)
mu2 = np.atleast_1d(mu2)
sigma1 = np.atleast_2d(sigma1)
sigma2 = np.atleast_2d(sigma2)
assert mu1.shape == mu2.shape, \
'Training and test mean vectors have different lengths'
assert sigma1.shape == sigma2.shape, \
'Training and test covariances have different dimensions'
diff = mu1 - mu2
# Product might be almost singular
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False)
if not np.isfinite(covmean).all():
msg = ('fid calculation produces singular product; '
'adding %s to diagonal of cov estimates') % eps
print(msg)
offset = np.eye(sigma1.shape[0]) * eps
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset))
# Numerical error might give slight imaginary component
if np.iscomplexobj(covmean):
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3):
m = np.max(np.abs(covmean.imag))
raise ValueError('Imaginary component {}'.format(m))
covmean = covmean.real
tr_covmean = np.trace(covmean)
if not return_details:
return (diff.dot(diff) + np.trace(sigma1) +
np.trace(sigma2) - 2 * tr_covmean)
else:
t1 = diff.dot(diff)
t2 = np.trace(sigma1) + np.trace(sigma2) - 2 * tr_covmean
return (t1 + t2), t1, t2
if __name__ == '__main__':
# Load Data
target_x, target_y = torch.load('celeba_target_100ids.pt')
# Load Samples
fake = torch.load('results/images_pt/original_im.pt')
# FID
fid = run_fid(target_x, fake)
print(f"Original:{fid}")
# Load Independent Samples
fake = torch.load('results/images_pt/independent_im.pt')
# FID
fid = run_fid(target_x, fake)
print(f"Independent:{fid}")