-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathtest_zeroshot.py
322 lines (263 loc) · 11.9 KB
/
test_zeroshot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import os
import argparse
import numpy as np
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.nn.parallel import DistributedDataParallel
import torch.distributed as dist
import torch.backends.cudnn as cudnn
import torchvision
import time
from utils.utils import init_distributed_mode, AverageMeter, reduce_tensor, accuracy
import clip
import yaml
from dotmap import DotMap
from datasets import Video_dataset
from datasets.transforms import GroupScale, GroupCenterCrop, Stack, ToTorchFormatTensor, GroupNormalize, GroupOverSample, GroupFullResSample
from modules.video_clip import video_header, VideoCLIP
from modules.text_prompt import text_prompt
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, help='global config file')
parser.add_argument('--weights', type=str, default=None)
parser.add_argument('--dist_url', default='env://',
help='url used to set up distributed training')
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument("--local_rank", type=int,
help='local rank for DistributedDataParallel')
parser.add_argument(
"--precision",
choices=["amp", "fp16", "fp32"],
default="amp",
help="Floating point precition."
)
parser.add_argument('--test_crops', type=int, default=1)
parser.add_argument('--test_clips', type=int, default=1)
parser.add_argument('--dense', default=False, action="store_true",
help='use multiple clips for test')
args = parser.parse_args()
return args
def update_dict(dict):
new_dict = {}
for k, v in dict.items():
new_dict[k.replace('module.', '')] = v
return new_dict
def main(args):
init_distributed_mode(args)
with open(args.config, 'r') as f:
config = yaml.load(f, Loader=yaml.FullLoader)
config = DotMap(config)
device = "cpu"
if torch.cuda.is_available():
device = "cuda"
cudnn.benchmark = True
# get fp16 model and weight
model, clip_state_dict = clip.load(
config.network.arch,
device='cpu',jit=False,
internal_modeling=config.network.tm,
T=config.data.num_segments,
dropout=config.network.drop_out,
emb_dropout=config.network.emb_dropout,
pretrain=config.network.init,
joint_st= config.network.joint_st) # Must set jit=False for training ViT-B/32
video_head = video_header(
config.network.sim_header,
clip_state_dict)
if args.precision == "amp" or args.precision == "fp32":
model = model.float()
input_mean = [0.48145466, 0.4578275, 0.40821073]
input_std = [0.26862954, 0.26130258, 0.27577711]
# rescale size
if 'something' in config.data.dataset:
scale_size = (240, 320)
else:
scale_size = 256 if config.data.input_size == 224 else config.data.input_size
# crop size
input_size = config.data.input_size
# control the spatial crop
if args.test_crops == 1: # one crop
cropping = torchvision.transforms.Compose([
GroupScale(scale_size),
GroupCenterCrop(input_size),
])
elif args.test_crops == 3: # do not flip, so only 3 crops (left right center)
cropping = torchvision.transforms.Compose([
GroupFullResSample(
crop_size=input_size,
scale_size=scale_size,
flip=False)
])
elif args.test_crops == 5: # do not flip, so only 5 crops
cropping = torchvision.transforms.Compose([
GroupOverSample(
crop_size=input_size,
scale_size=scale_size,
flip=False)
])
elif args.test_crops == 10:
cropping = torchvision.transforms.Compose([
GroupOverSample(
crop_size=input_size,
scale_size=scale_size,
)
])
else:
raise ValueError("Only 1, 3, 5, 10 crops are supported while we got {}".format(args.test_crops))
val_data = Video_dataset(
config.data.val_root, config.data.val_list, config.data.label_list,
random_shift=False, num_segments=config.data.num_segments,
modality=config.data.modality,
image_tmpl=config.data.image_tmpl,
test_mode=True,
transform=torchvision.transforms.Compose([
cropping,
Stack(roll=False),
ToTorchFormatTensor(div=True),
GroupNormalize(input_mean,input_std),
]),
dense_sample=args.dense,
test_clips=args.test_clips)
val_sampler = torch.utils.data.distributed.DistributedSampler(val_data)
val_loader = DataLoader(val_data,
batch_size=config.data.batch_size,num_workers=config.data.workers,
sampler=val_sampler, pin_memory=True, drop_last=False)
model_full = VideoCLIP(model, video_head, config.data.num_segments)
if os.path.isfile(args.weights):
checkpoint = torch.load(args.weights, map_location='cpu')
if dist.get_rank() == 0:
print('load model: epoch {}'.format(checkpoint['epoch']))
model_full.load_state_dict(update_dict(checkpoint['model_state_dict']))
del checkpoint
if args.distributed:
model_full = DistributedDataParallel(model_full.cuda(), device_ids=[args.gpu], find_unused_parameters=True)
classes, num_text_aug, text_dict = text_prompt(val_data)
n_class = text_dict[0].size(0)
#### generate classes feature ######
class_feats_file = 'text_feats_{}_{}.pt'.format(config['data']['dataset'], config['network']['arch']).replace('/','')
if os.path.isfile(class_feats_file):
print('=> load classes features from {}'.format(class_feats_file))
classes_features = torch.load(class_feats_file)
else:
model.eval()
with torch.no_grad():
classes_features = model.encode_text(classes) # 400 512
# if dist.get_rank() == 0:
# torch.save(classes_features.cpu(), class_feats_file)
prec1 = validate(
val_loader, device,
model_full, config, classes_features, args.test_crops, args.test_clips)
return
def validate(val_loader, device, model, config, text_features, test_crops, test_clips):
top1 = AverageMeter()
top5 = AverageMeter()
model.eval()
proc_start_time = time.time()
sim_logits = [] #
labels = [] #
i_features = []
with torch.no_grad():
n_class = text_features.size(0)
for i, (image, class_id) in enumerate(val_loader):
batch_size = class_id.numel()
num_crop = test_crops
num_crop *= test_clips # 4 clips for testing when using dense sample
class_id = class_id.to(device)
text_features = text_features.to(device)
n_seg = config.data.num_segments
image = image.view((-1, n_seg, 3) + image.size()[-2:])
b, t, c, h, w = image.size()
image_input = image.to(device).view(-1, c, h, w)
image_features = model.module.encode_image(image_input)
cnt_time = time.time() - proc_start_time
image_features = image_features.reshape(batch_size, num_crop, -1).mean(1) # bs dim
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
similarity = (100.0 * image_features @ text_features.T)
similarity = similarity.view(batch_size, -1, n_class).softmax(dim=-1)
similarity = similarity.mean(dim=1, keepdim=False) # bs 200
########## gathering
i_features.append(concat_all_gather(image_features))
sim_logits.append(concat_all_gather(similarity))
labels.append(concat_all_gather(class_id))
##########
prec = accuracy(similarity, class_id, topk=(1, 5))
prec1 = reduce_tensor(prec[0])
prec5 = reduce_tensor(prec[1])
top1.update(prec1.item(), class_id.size(0))
top5.update(prec5.item(), class_id.size(0))
if i % config.logging.print_freq == 0 and dist.get_rank() == 0:
runtime = float(cnt_time) / (i+1) / (batch_size * dist.get_world_size())
print(
('Test: [{0}/{1}], average {runtime:.4f} sec/video \t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})'.format(
i, len(val_loader), runtime=runtime, top1=top1, top5=top5)))
if dist.get_rank() == 0:
## half-classes evaluation
sim, la = sim_logits[0], labels[0]
vid_feat = i_features[0]
for i in range(1, len(sim_logits)):
sim = torch.cat((sim, sim_logits[i]), 0)
la = torch.cat((la, labels[i]), 0)
vid_feat = torch.cat((vid_feat, i_features[i]), 0)
acc_split, acc_split_top5 = multi_split_test(vid_feat.cpu(), text_features.cpu(), la.cpu())
accuracy_split, accuracy_split_std = np.mean(acc_split), np.std(acc_split)
accuracy_split_top5, accuracy_split_top5_std = np.mean(acc_split_top5), np.std(acc_split_top5)
print('-----Half-classes Evaluation-----')
print('Top1: mean {:.03f}%, std {:.03f}%'.format(accuracy_split, accuracy_split_std))
print('Top5: mean {:.03f}%, std {:.03f}%'.format(accuracy_split_top5, accuracy_split_top5_std))
return top1.avg
# utils
@torch.no_grad()
def concat_all_gather(tensor):
"""
Performs all_gather operation on the provided tensors.
*** Warning ***: torch.distributed.all_gather has no gradient.
"""
tensors_gather = [torch.ones_like(tensor)
for _ in range(torch.distributed.get_world_size())]
torch.distributed.all_gather(tensors_gather, tensor, async_op=False)
output = torch.cat(tensors_gather, dim=0)
return output.cpu()
def compute_accuracy(vis_emb, text_emb, label):
n_class = len(text_emb)
n_samples = len(vis_emb)
similarity=(100.0 * vis_emb @ text_emb.T)
similarity=similarity.view(n_samples, -1, n_class).softmax(dim = -1)
similarity=similarity.mean(dim = 1, keepdim = False) # b 101
prec=accuracy(similarity, label, topk = (1, 5))
return prec[0], prec[1]
def multi_split_test(vis_embs, text_embs, true_label):
# vis_embs: [10000, 768]
# text_embs: [101, 768]
# true_label: [10000,]
full_acc1, full_acc5 = compute_accuracy(vis_embs, text_embs, true_label)
print('-----Full-classes Evaluation------')
print('Overall Top1 {:.03f}% Top5 {:.03f}%'.format(full_acc1.item(), full_acc5.item()))
# Calculate accuracy per split
# Only when the model has been trained on a different dataset
true_label = true_label.numpy()
accuracy_split, accuracy_split_top5 = np.zeros(10), np.zeros(10)
for split in range(len(accuracy_split)):
np.random.seed(split)
sel_classes = np.random.permutation(len(text_embs))[:len(text_embs) // 2] # [50, ]
sel = [l in sel_classes for l in true_label] # len = 10000
subclasses = np.unique(true_label[sel]) # [50, ]
# label_map = {}
# for i in range(len(subclasses)):
# label_map[subclasses[i]] = i
# new_label = np.array([label_map[l] for l in true_label[sel]])
# new_label = torch.from_numpy(new_label)
# label mapping: [4900, ], new label
tl = np.array([int(np.where(l == subclasses)[0]) for l in true_label[sel]])
tl = torch.from_numpy(tl)
acc, acc5 = compute_accuracy(vis_embs[sel], text_embs[subclasses], tl)
accuracy_split[split] = acc
accuracy_split_top5[split] = acc5
return accuracy_split, accuracy_split_top5
if __name__ == '__main__':
args = get_parser()
main(args)