-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathresult_evaluate.py
148 lines (110 loc) · 4.67 KB
/
result_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import numpy as np
from tqdm import tqdm
from sklearn.metrics import recall_score, accuracy_score, f1_score, cohen_kappa_score
from sklearn.metrics import confusion_matrix
from sklearn.model_selection import StratifiedKFold
import torch
from torch.utils.data import TensorDataset, DataLoader
from torch.autograd import Variable
from model import Transformer
from data_loader import data_generator
from args import Config, Path
def specificity(y_true, y_pred, n=5):
spec = []
con_mat = confusion_matrix(y_true, y_pred) # Each row is the ground truth, and each column is the precision
for i in range(n):
number = np.sum(con_mat[:, :])
tp = con_mat[i][i]
fn = np.sum(con_mat[i, :]) - tp
fp = np.sum(con_mat[:, i]) - tp
tn = number - tp - fn - fp
spec1 = tn / (tn + fp)
spec.append(spec1)
average_specificity = np.mean(spec)
return average_specificity
def class_wise_evaluate(con_mat):
"""
Calculate the class_wise result through the confusion matrix
Rows: Wake, N1, N2, N3
Columns: precision, recall, F1_ score
"""
class_wise_mat = np.empty((5, 3))
for i in range(5):
precision = con_mat[i, i] / np.sum(con_mat[:, i])
recall = con_mat[i, i] / np.sum(con_mat[i, :])
F1_score = (2 * precision * recall) / (precision + recall)
class_wise_mat[i, 0] = precision
class_wise_mat[i, 1] = recall
class_wise_mat[i, 2] = F1_score
return class_wise_mat
def test(model, test_loader, config):
model.eval()
pred = []
label = []
with torch.no_grad():
loop = tqdm(enumerate(test_loader), total=len(test_loader))
for batch_idx, (data, target) in loop:
data = data.to(config.device)
target = target.to(config.device)
data, target = Variable(data), Variable(target)
output = model(data)
pred.extend(np.argmax(output.data.cpu().numpy(), axis=1))
label.extend(target.data.cpu().numpy())
accuracy = accuracy_score(label, pred, normalize=True, sample_weight=None)
cohens_kappa = cohen_kappa_score(label, pred)
macro_f1 = f1_score(label, pred, average='macro')
average_sensitivity = recall_score(label, pred, average="macro") # sensitivity and recall are the same concept
average_specificity = specificity(label, pred, n=5)
print('ACC: %.4f' % accuracy, 'k: %.4f' % cohens_kappa, 'MF1: %.4f' % macro_f1,
'Sens: %.4f' % average_sensitivity, 'Spec: %.4f' % average_specificity)
con_mat = confusion_matrix(label, pred)
return accuracy, cohens_kappa, macro_f1, average_sensitivity, average_specificity, con_mat
def evaluate(config, path):
dataset, labels, val_loader = data_generator(path_labels=path.path_labels, path_dataset=path.path_TF)
kf = StratifiedKFold(n_splits=config.num_fold, shuffle=True, random_state=0)
ACC = 0
Kappa = 0
MF1 = 0
Sens = 0
Spec = 0
Confusion_mat = np.zeros([5, 5])
for fold, (train_idx, test_idx) in enumerate(kf.split(dataset, labels)):
print('-' * 15, '>', f'Fold {fold}', '<', '-' * 15)
path_model = './Kfold_models/fold{}/model.pkl'.format(fold)
_, X_test = dataset[train_idx], dataset[test_idx]
_, y_test = labels[train_idx], labels[test_idx]
test_set = TensorDataset(X_test, y_test)
test_loader = DataLoader(dataset=test_set, batch_size=config.batch_size, shuffle=False)
print('train_set: ', len(train_idx))
print('test_set: ', len(test_idx))
model = Transformer(config)
model = model.to(config.device)
model.load_state_dict(torch.load(path_model), strict=True)
accuracy, cohens_kappa, macro_f1, average_sensitivity, average_specificity, con_mat = test(model, test_loader, config)
ACC += accuracy
Kappa += cohens_kappa
MF1 += macro_f1
Sens += average_sensitivity
Spec += average_specificity
Confusion_mat += con_mat
del model
ACC /= config.num_fold
Kappa /= config.num_fold
MF1 /= config.num_fold
Sens /= config.num_fold
Spec /= config.num_fold
class_wise_result = class_wise_evaluate(Confusion_mat)
return ACC, Kappa, MF1, Sens, Spec, Confusion_mat, class_wise_result
if __name__ == '__main__':
config = Config()
path = Path()
ACC, Kappa, MF1, Sens, Spec, Confusion_mat, class_wise_result = evaluate(config=config, path=path)
print('ACC: ', ACC)
print('Cohen\'s Kappa: ', Kappa)
print('MF1: ', MF1)
print('Sens: ', Sens)
print('Spec: ', Spec)
print('confusion_mat:')
print(Confusion_mat)
print('class_wise_result: ')
print(class_wise_result)