-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnnotatedTransformer-2025.py
3092 lines (2482 loc) · 93.6 KB
/
AnnotatedTransformer-2025.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# %% [markdown]
# <center><h1>The Annotated Transformer (2025)</h1> </center>
#
#
# <center>
# <p><a href="https://arxiv.org/abs/1706.03762">Attention is All You Need
# </a></p>
# </center>
#
#
#
# %%
from IPython.display import Image
Image(filename='images/paper.png', width=800)
# %% [markdown]
# This an updated version of the [The Annotated Transformer](https://nlp.seas.harvard.edu/annotated-transformer/), extending the original implementation to support English-to-Chinese translation using a custom-trained modern tokenizer (e.g., RoBERTa).
#
# This version also replaces Altair with Plotly for visualization and enhances several components, including data loading, batching and data collation.
#
# Additionally, fixes and improvements are applied to the attention visualization.
#
# <br>
#
#
#
# References:
# * *[v2022: Austin Huang, Suraj Subramanian, Jonathan Sum, Khalid Almubarak,
# and Stella Biderman]((https://nlp.seas.harvard.edu/annotated-transformer/)).*
# * *[Original: Sasha Rush](https://nlp.seas.harvard.edu/2018/04/03/attention.html).*
#
# <br>
#
# %% [markdown]
# # Table of Contents
# <ul>
#
# <li><a href="#prelims">Preliminaries</a></li>
#
# <li><a href="#background">Background</a></li>
#
# <li><a href="#part-1-model-architecture">Part 1: Model Architecture</a></li><ul>
# <li><a href="#model-architecture">Model Architecture</a></li>
# <li><a href="#positional-encoding">Positional Encoding</a></li>
# <li><a href="#embeddings-and-softmax">Embeddings</a></li>
# <li><a href="#layernorm">LayerNorm</a></li>
# <li><a href="#position-wise-feed-forward-networks">Position-wise Feed-Forward
# Networks</a></li>
# <li><a href="#attention">Attention</a></li>
# <li><a href="#encoder-and-decoder-stacks">Encoder and Decoder Stacks</a></li>
# <li><a href="#transformer">Transformer Model</a></li>
# <li><a href="#full-model">Create Full Model</a></li>
# <li><a href="#inference">Inference Test</a></li>
# </ul></li>
#
# <li><a href="#part-2-model-training">Part 2: Preparation for Training</a></li><ul>
# <li><a href="#batches-and-masking">Batching and Masking</a></li>
# <li><a href="#optimizer">Optimizer and Scheduler</a></li>
# <li><a href="#training-loop">Training Loop</a></li>
# </ul></li>
#
# <li><a href="#part-3-toy-example">Part 3: Toy Training Example</a></li><ul>
# <li><a href="#synthetic-data">Synthetic Data</a></li>
# <li><a href="#loss-computation">Loss Computation</a></li>
# <li><a href="#greedy-decoding">Greedy Decoding</a></li>
# <li><a href="#train-loop">Training Loop</a></li>
# <li><a href="#train-model">Train the Simple Model</a></li>
# </ul></li>
#
# <li><a href="#part-4-a-real-world-example">Part 4: A Real World Example</a></li>
# <ul>
# <li><a href="#data-loading">Data Loading</a></li>
# <li><a href="#iterators">Train Tokenizer</a></li>
# <li><a href="#tokenize-data">Tokenize Data</a></li>
# <li><a href="#pad-sequence">Pad Sequence Examples</a></li>
# <li><a href="#datacollator">Data Collator and Dataloader</a></li>
# <li><a href="#training-the-system">Train the System</a></li>
# <li><a href="#greedy-decoding">Greedy Decoding and Check Results</a></li>
# </ul></li>
#
# <li><a href="#results">Part 5: Attention Visualization</a></li><ul>
# <li><a href="#one-example">One example from eval dataset</a></li>
# <li><a href="#encoder-self-attention">Encoder Visualization: Self Attention</a></li>
# <li><a href="#decoder-self-attention">Decoder Visualization [greedy decoding]: Self Attention</a></li>
# <li><a href="#decoder-cross-attention">Decoder Visualization [greedy decoding]: Cross Attention</a></li>
# <li><a href="#decoder-self-attention">Decoder Visualization [teacher force]: Self Attention</a></li>
# <li><a href="#decoder-cross-attention">Decoder Visualization [teacher force]: Cross Attention</a></li>
# </ul></li>
#
# <li><a href="#conclusion">Conclusion</a></li>
# </ul>
# %% [markdown]
# In this tutorial, I changed the order of the components compared to the previous one. The model architecture comes first, followed by positional encoding, embedding, the feed-forward network, attention, the encoder, and the decoder.
#
# Finally, the full model is created, and a toy example and a real world example are given.
# %% [markdown]
# <br>
# %% [markdown]
# # Preliminaries
#
# This tutorial is tested in:
# * python=3.12.7
# * CUDA=11.8
# %%
## Core python packages
# pandas==2.2.3
# datasets==3.0.1
# plotly==5.24.1
# torch==2.4.1
# transformers==4.45.2
# GPUtil==1.4.0
# %%
# !pip install GPUtil datasets==3.0.1
# %%
# Install torch 2.4.1 when necessary
# !pip install torch==2.4.1 transformers==4.45.2
# %%
import os
import math
import copy
import time
from tqdm import tqdm
from dataclasses import dataclass
from typing import Union, Optional, List, Dict, Any
import GPUtil
import plotly
import pandas as pd
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
from torch.optim.lr_scheduler import LambdaLR
from torch.nn.utils.rnn import pad_sequence
import torch.distributed as dist
import torch.multiprocessing as mp
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import datasets
from transformers import AutoTokenizer, PreTrainedTokenizerBase
# import warnings
# warnings.filterwarnings("ignore")
# %%
torch.cuda.is_available()
# %%
# If cuda is available
if torch.cuda.is_available():
GPUtil.showUtilization()
# %% [markdown]
# <br>
# %% [markdown]
# # Background
# %% [markdown]
# The dominant sequence transduction models are based on complex recurrent or
# convolutional neural networks that include an encoder and a decoder. The best
# performing models also connect the encoder and decoder through an attention
# mechanism. We propose a new simple network architecture, the Transformer,
# based solely on attention mechanisms, dispensing with recurrence and convolutions
# entirely. Experiments on two machine translation tasks show these models to
# be superior in quality while being more parallelizable and requiring significantly
# less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishto-
# German translation task, improving over the existing best results, including
# ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
# our model establishes a new single-model state-of-the-art BLEU score of 41.0 after
# training for 3.5 days on eight GPUs, a small fraction of the training costs of the
# best models from the literature.
# %% [markdown]
#
# The goal of reducing sequential computation also forms the
# foundation of the Extended Neural GPU, ByteNet and ConvS2S, all of
# which use convolutional neural networks as basic building block,
# computing hidden representations in parallel for all input and
# output positions. In these models, the number of operations required
# to relate signals from two arbitrary input or output positions grows
# in the distance between positions, linearly for ConvS2S and
# logarithmically for ByteNet. This makes it more difficult to learn
# dependencies between distant positions. In the Transformer this is
# reduced to a constant number of operations, albeit at the cost of
# reduced effective resolution due to averaging attention-weighted
# positions, an effect we counteract with Multi-Head Attention.
#
# Self-attention, sometimes called intra-attention is an attention
# mechanism relating different positions of a single sequence in order
# to compute a representation of the sequence. Self-attention has been
# used successfully in a variety of tasks including reading
# comprehension, abstractive summarization, textual entailment and
# learning task-independent sentence representations.
#
# End-to-end memory networks are based on a recurrent attention mechanism instead
# of sequencealigned recurrence and have been shown to perform well on
# simple-language question answering and language modeling tasks.
#
# To the best of our knowledge, however, the Transformer is the first
# transduction model relying entirely on self-attention to compute
# representations of its input and output without using sequence
# aligned RNNs or convolution.
# %% [markdown]
# <br>
# %% [markdown]
# # Part 1: Model Architecture
# %% [markdown]
# ## Model Architecture
# %% [markdown]
#
# Most competitive neural sequence transduction models have an
# encoder-decoder structure. Here, the encoder maps an
# input sequence of symbol representations $(x_1, ..., x_n)$ to a
# sequence of continuous representations $\mathbf{z} = (z_1, ...,
# z_n)$. Given $\mathbf{z}$, the decoder then generates an output
# sequence $(y_1,...,y_m)$ of symbols one element at a time. At each
# step the model is auto-regressive, consuming the previously
# generated symbols as additional input when generating the next.
# %% [markdown]
#
# The Transformer follows this overall architecture using stacked
# self-attention and point-wise, fully connected layers for both the
# encoder and decoder, shown in the left and right halves of Figure 1,
# respectively.
# %%
Image(filename='images/transformer.png', width=500)
# %% [markdown]
# <br>
# %% [markdown]
# ## Positional Encoding
#
# Since Transformer contains no recurrence and no convolution, in order
# for the model to make use of the order of the sequence, we must
# inject some information about the relative or absolute position of
# the tokens in the sequence. To this end, we add "positional
# encodings" to the input embeddings at the bottoms of the encoder and
# decoder stacks. The positional encodings have the same dimension
# $d_{\text{model}}$ as the embeddings, so that the two can be summed.
# There are many choices of positional encodings, learned and fixed.
#
# In this work, we use sine and cosine functions of different frequencies:
#
# $$PE_{(pos,2i)} = \sin(pos / 10000^{2i/d_{\text{model}}})$$
#
# $$PE_{(pos,2i+1)} = \cos(pos / 10000^{2i/d_{\text{model}}})$$
#
# where $pos$ is the position and $i$ is the dimension. That is, each
# dimension of the positional encoding corresponds to a sinusoid. The
# wavelengths form a geometric progression from $2\pi$ to $10000 \cdot
# 2\pi$. We chose this function because we hypothesized it would
# allow the model to easily learn to attend by relative positions,
# since for any fixed offset $k$, $PE_{pos+k}$ can be represented as a
# linear function of $PE_{pos}$.
#
# We also experimented with using learned positional embeddings instead, and found that the two
# versions produced nearly identical results.
# We chose the sinusoidal version because it may allow the model to extrapolate
# to sequence lengths longer than the ones encountered during training.
#
# In addition, we apply dropout to the sums of the embeddings and the
# positional encodings in both the encoder and decoder stacks. For
# the base model, we use a rate of $P_{drop}=0.1$.
#
#
#
# %%
def create_fixed_positional_encoding(dim, max_len=5000):
"Implement the PE function."
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, dim) # empty encodings vectors
position = torch.arange(0, max_len).unsqueeze(1) # position index
# $10000^{\frac{2i}{d_{model}}}$
div_term = torch.exp(
torch.arange(0, dim, 2) * -(math.log(10000.0) / dim)
)
# $PE_{p,2i} = sin\Bigg(\frac{p}{10000^{\frac{2i}{d_{model}}}}\Bigg)$
pe[:, 0::2] = torch.sin(position * div_term)
# $PE_{p,2i + 1} = cos\Bigg(\frac{p}{10000^{\frac{2i}{d_{model}}}}\Bigg)$
pe[:, 1::2] = torch.cos(position * div_term)
# add batch dimension
pe = pe.unsqueeze(0).requires_grad_(False)
return pe # simple PE (without embedding info)
# %% [markdown]
#
# > Below is an example of the positional encoding which will add in a
# > sine/cosine wave based on position.
# > The frequency and offset of the wave is different for each dimension.
# %%
import plotly.express as px
pe = create_fixed_positional_encoding(20, 5000) # pe: [1, max_seq_len, d_model]
frames = []
for dim in [4, 5, 6, 7]:
d = {
'Position': list(range(101)),
'Embedding': pe[0, :101, dim],
'Dimension': dim,
}
frames.append(pd.DataFrame(d))
df = pd.concat(frames)
fig = px.line(
df, x="Position", y="Embedding", color="Dimension", title='Positional Encoding', template='none',
)
fig.update_layout(
width=800, height=400,
xaxis=dict(
tickmode='linear',
tick0=0,
dtick=5,
range=[0, 100],
),
yaxis=dict(
tickmode='linear',
tick0=0,
dtick=0.25,
# range=[-1, 1],
),
)
fig.show()
# %%
Image(filename='./images/pe.png')
# %% [markdown]
# <br>
# %% [markdown]
# ## Embeddings
# Similarly to other sequence transduction models, we use learned
# embeddings to convert the input tokens and output tokens to vectors
# of dimension $d_{\text{model}}$. We also use the usual learned
# linear transformation and softmax function to convert the decoder
# output to predicted next-token probabilities. In our model, we
# share the same weight matrix between the two embedding layers and
# the pre-softmax linear transformation, similar to
# [(cite)](https://arxiv.org/abs/1608.05859). In the embedding layers,
# we multiply those weights by $\sqrt{d_{\text{model}}}$.
# %%
# version 2022
class Embeddings(nn.Module):
def __init__(self, d_model, vocab):
super().__init__()
self.lut = nn.Embedding(vocab, d_model) # lut: lookup table
self.d_model = d_model
def forward(self, x):
return self.lut(x) * math.sqrt(self.d_model)
# %% [markdown]
# > We can combine PositionalEncoding with Token Embedding:
# %%
class EmbeddingsWithPositionalEncoding(nn.Module):
def __init__(self, vocab_size, dim, dropout=0.1, pe_type='fixed', max_len=50000):
super().__init__()
self.embed = nn.Embedding(vocab_size, dim)
self.dim = dim
if pe_type == 'fixed': # fixed positional encoding
pe = create_fixed_positional_encoding(dim, max_len)
self.register_buffer('pe', pe) # requires_grad=False
else: # learned positional encoding
self.pe = nn.Parameter(torch.zeros(1, max_len, dim)) # requires_grad=True (defaults to True)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
"""
Args:
x: Tensor, shape (batch_size, seq_len)
"""
# word/token embedding
token_embedding = self.embed(x) * math.sqrt(self.dim) # return shape: (batch_size, seq_len, embed_dim)
# positional encoding
positional_encoding = self.pe[:, :x.size(1)] # return shape: (1, seq_len, embed_dim)
return self.dropout(token_embedding + positional_encoding)
# %% [markdown]
# <br>
# %% [markdown]
# ## LayerNorm
# %%
# version 2022
class LayerNorm(nn.Module):
"Construct a layernorm module (See citation for details)."
def __init__(self, features, eps=1e-6):
super().__init__()
self.a_2 = nn.Parameter(torch.ones(features))
self.b_2 = nn.Parameter(torch.zeros(features))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.a_2 * (x - mean) / (std + self.eps) + self.b_2
# %%
class LayerNorm(nn.Module):
def __init__(self, dim, eps=1e-5):
super().__init__()
self.weight = nn.Parameter(torch.ones(dim))
self.bias = nn.Parameter(torch.zeros(dim))
self.eps = eps
def forward(self, x):
mean = x.mean(-1, keepdim=True)
std = x.std(-1, keepdim=True)
return self.weight * (x - mean) / (std + self.eps) + self.bias
# Can be replaced by: `nn.LayerNorm`
# https://pytorch.org/docs/stable/generated/torch.nn.LayerNorm.html
# %% [markdown]
# <br>
# %% [markdown]
# ## Position-wise Feed-Forward Networks
#
# In addition to attention sub-layers, each of the layers in our
# encoder and decoder contains a fully connected feed-forward network,
# which is applied to each position separately and identically. This
# consists of two linear transformations with a ReLU activation in
# between.
#
# $$\mathrm{FFN}(x)=\max(0, xW_1 + b_1) W_2 + b_2$$
#
# While the linear transformations are the same across different
# positions, they use different parameters from layer to
# layer. Another way of describing this is as two convolutions with
# kernel size 1. The dimensionality of input and output is
# $d_{\text{model}}=512$, and the inner-layer has dimensionality
# $d_{ff}=2048$.
# %%
# version 2022
class FeedForward(nn.Module):
"Implements FFN equation."
def __init__(self, d_model, d_ff, dropout=0.1):
super().__init__()
self.w_1 = nn.Linear(d_model, d_ff)
self.w_2 = nn.Linear(d_ff, d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.w_2(self.dropout(self.w_1(x).relu()))
# %%
class FeedForward(nn.Module):
def __init__(self, embed_dim, dropout=0.0, bias=True):
super().__init__()
self.linear1 = nn.Linear(embed_dim, 4*embed_dim, bias=bias) # middle layer size is set as 4*embed_dim
self.linear2 = nn.Linear(4*embed_dim, embed_dim, bias=bias)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
x = self.linear1(x)
x = F.relu(x)
x = self.dropout(x)
x = self.linear2(x)
return x
# %% [markdown]
# <br>
# %% [markdown]
# ## Attention
#
# An attention function can be described as mapping a query and a set
# of key-value pairs to an output, where the query, keys, values, and
# output are all vectors. The output is computed as a weighted sum of
# the values, where the weight assigned to each value is computed by a
# compatibility function of the query with the corresponding key.
#
# %% [markdown]
# ### Scaled Dot-Product Attention
#
# We call our particular attention "Scaled Dot-Product Attention".
# The input consists of queries and keys of dimension $d_k$, and
# values of dimension $d_v$. We compute the dot products of the query
# with all keys, divide each by $\sqrt{d_k}$, and apply a softmax
# function to obtain the weights on the values.
#
# %% [markdown]
#
# In practice, we compute the attention function on a set of queries
# simultaneously, packed together into a matrix $Q$. The keys and
# values are also packed together into matrices $K$ and $V$. We
# compute the matrix of outputs as:
#
# $$
# \mathrm{Attention}(Q, K, V) = \mathrm{softmax}(\frac{QK^T}{\sqrt{d_k}})V
# $$
# %%
Image(filename='images/attention.png', width=900)
# %%
# version 2022
def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) / math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = scores.softmax(dim=-1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn
# %% [markdown]
#
# The two most commonly used attention functions are additive
# attention, and dot-product
# (multiplicative) attention. Dot-product attention is identical to
# our algorithm, except for the scaling factor of
# $\frac{1}{\sqrt{d_k}}$. Additive attention computes the
# compatibility function using a feed-forward network with a single
# hidden layer. While the two are similar in theoretical complexity,
# dot-product attention is much faster and more space-efficient in
# practice, since it can be implemented using highly optimized matrix
# multiplication code.
#
#
# While for small values of $d_k$ the two mechanisms perform
# similarly, additive attention outperforms dot product attention
# without scaling for larger values of $d_k$. We suspect that for
# large values of $d_k$, the dot products grow large in magnitude,
# pushing the softmax function into regions where it has extremely
# small gradients (To illustrate why the dot products get large,
# assume that the components of $q$ and $k$ are independent random
# variables with mean $0$ and variance $1$. Then their dot product,
# $q \cdot k = \sum_{i=1}^{d_k} q_ik_i$, has mean $0$ and variance
# $d_k$.). To counteract this effect, we scale the dot products by
# $\frac{1}{\sqrt{d_k}}$.
#
# <br>
# %% [markdown]
#
# ### Multi-Head Attention
#
# Multi-head attention allows the model to jointly attend to
# information from different representation subspaces at different
# positions. With a single attention head, averaging inhibits this.
#
# $$
# \mathrm{MultiHead}(Q, K, V) =
# \mathrm{Concat}(\mathrm{head_1}, ..., \mathrm{head_h})W^O \\
# \text{where}~\mathrm{head_i} = \mathrm{Attention}(QW^Q_i, KW^K_i, VW^V_i)
# $$
#
# Where the projections are parameter matrices $W^Q_i \in
# \mathbb{R}^{d_{\text{model}} \times d_k}$, $W^K_i \in
# \mathbb{R}^{d_{\text{model}} \times d_k}$, $W^V_i \in
# \mathbb{R}^{d_{\text{model}} \times d_v}$ and $W^O \in
# \mathbb{R}^{hd_v \times d_{\text{model}}}$.
#
# In this work we employ $h=8$ parallel attention layers, or
# heads. For each of these we use $d_k=d_v=d_{\text{model}}/h=64$. Due
# to the reduced dimension of each head, the total computational cost
# is similar to that of single-head attention with full
# dimensionality.
# %%
# version 2022
class MultiHeadAttention(nn.Module):
def __init__(self, h, d_model, dropout=0.1):
"Take in model size and number of heads."
super().__init__()
assert d_model % h == 0, "embeding dim (d_model) must be divisible by number of heads (h)"
# We assume d_v always equals d_k
self.d_k = d_model // h
self.h = h
self.attn = None # record attention score
self.dropout = nn.Dropout(p=dropout)
# query, key, value (QKV) projections for all heads
self.q_proj = nn.Linear(d_model, d_model)
self.k_proj = nn.Linear(d_model, d_model)
self.v_proj = nn.Linear(d_model, d_model)
# output projection
self.out_proj = nn.Linear(d_model, d_model)
def forward(self, query, key, value, mask=None):
"Implements Figure 2"
if mask is not None:
# Same mask applied to all h heads.
mask = mask.unsqueeze(1)
# nbatches, seq_len, d_model = query.size() # 【query】的维度为:batch size (nbatches)[batch first], sequence length (seq_len), embedding dimension (d_model)
nbatches = query.size(0)
# 1) Do all the linear projections in batch from d_model => h x d_k
query = self.q_proj(query).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) # d_model => h x d_k:实现了 multihead attention(多头注意力机制)
key = self.k_proj(key).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
value = self.k_proj(value).view(nbatches, -1, self.h, self.d_k).transpose(1, 2)
# 2) Apply attention on all the projected vectors in batch.
x, self.attn = attention(
query, key, value, mask=mask, dropout=self.dropout
)
# 3) "Concat" using a view and apply a final linear.
x = (
x.transpose(1, 2)
.contiguous()
.view(nbatches, -1, self.h * self.d_k) # 通过view/reshape,巧妙地实现了concat multihead的操作
)
del query
del key
del value
return self.out_proj(x) # 此时返回的变量其维度为:[nbatches, seq_len, d_model]
# %%
class MultiHeadAttention(nn.Module):
def __init__(
self,
embed_dim,
num_heads,
dropout: float = 0.1,
bias: bool = True,
):
super().__init__()
assert embed_dim % num_heads == 0, "embed_dim (d_model) must be divisible by num_heads"
self.head_dim = embed_dim // num_heads # d_k
self.embed_dim = embed_dim
self.num_heads = num_heads
self.attn_score = None # record attention score
# scaling factor
self.scaling = self.head_dim**-0.5
# query, key, value (QKV) projections for all heads
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
# output projection
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self.dropout = nn.Dropout(dropout)
# parameter initialization can be done later after the full model is created
# self.reset_parameters()
# def reset_parameters(self):
# nn.init.xavier_normal_(self.q_proj.weight)
# nn.init.xavier_normal_(self.k_proj.weight)
# nn.init.xavier_normal_(self.v_proj.weight)
# nn.init.xavier_uniform_(self.out_proj.weight)
# if self.out_proj.bias is not None:
# nn.init.constant_(self.out_proj.bias, 0.0)
def forward(
self,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
mask=None,
return_weights=False
):
bsz, seq_len, embed_dim = query.size() # batch size (bsz)[batch first], sequence length (query), embedding dimensionality (embed_dim)
assert embed_dim == self.embed_dim
assert key.size() == value.size() # key = value
# 1. Q/K/V projections in batch from d_model => h x d_k
# calculate query, key, value for all heads in batch
# and move head forward to be the batch dim
q = self.q_proj(query).view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2) # bsz, num_heads, seq_len, head_dim
k = self.k_proj(key).view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2) # bsz, num_heads, seq_len, head_dim
v = self.v_proj(value).view(bsz, -1, self.num_heads, self.head_dim).transpose(1, 2) # bsz, num_heads, seq_len, head_dim
# implementation of attention
# scores = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
scores = (q @ k.transpose(-2, -1)) * self.scaling # bsz, num_heads, seq_len (query), seq_len (key)
# masked attention
if mask is not None:
mask = mask.unsqueeze(1) # broadcast: same mask applied to all (num_heads) attention heads
scores = scores.masked_fill(mask == 0, float('-inf')) # elements with 0 are masked
# attention weight/probability
attn = F.softmax(scores, dim=-1) # dim in key sequence
if self.dropout is not None:
attn = self.dropout(attn)
self.attn_score = attn # record attention score
# attended/weighted sum
# (bsz, num_heads, seq_len, seq_len) x (bsz, num_heads, seq_len, head_dim) -> (bsz, num_heads, seq_len, head_dim)
values = attn @ v
# values = torch.matmul(attn, v)
# values = torch.bmm(attn, v)
# combine multihead attn (reshape)
# (bsz, num_heads, seq_len, head_dim) -> (bsz, seq_len, num_heads, head_dim) -> (bsz, seq_len, embed_dim)
values = values.transpose(1, 2).reshape(bsz, seq_len, embed_dim)
# values = values.permute(0, 2, 1, 3).contiguous().view(bsz, seq_len, embed_dim)
# output projection
out = self.out_proj(values) # bsz, seq_len, embed_dim
if return_weights: # return attention weights
return out, attn
return out
# %% [markdown]
# <br>
#
# ### Applications of Attention in our Model
#
# The Transformer uses multi-head attention in three different ways:
# 1) In "encoder-decoder attention" layers, the queries come from the
# previous decoder layer, and the memory keys and values come from the
# output of the encoder. This allows every position in the decoder to
# attend over all positions in the input sequence. This mimics the
# typical encoder-decoder attention mechanisms in sequence-to-sequence
# models.
#
#
# 2) The encoder contains self-attention layers. In a self-attention
# layer all of the keys, values and queries come from the same place,
# in this case, the output of the previous layer in the encoder. Each
# position in the encoder can attend to all positions in the previous
# layer of the encoder.
#
#
# 3) Similarly, self-attention layers in the decoder allow each
# position in the decoder to attend to all positions in the decoder up
# to and including that position. We need to prevent leftward
# information flow in the decoder to preserve the auto-regressive
# property. We implement this inside of scaled dot-product attention
# by masking out (setting to $-\infty$) all values in the input of the
# softmax which correspond to illegal connections.
# %% [markdown]
# <br>
# %% [markdown]
# ## Encoder and Decoder Stacks
# %% [markdown]
# ### Encoder
#
# The encoder is composed of a stack of $N=6$ identical layers.
# Each layer has two sub-layers. The first is a multi-head
# self-attention mechanism, and the second is a simple, position-wise
# fully connected feed-forward network.
# %% [markdown]
#
# We employ a residual connection around each of the two
# sub-layers, followed by layer normalization.
#
#
# That is, the output of each sub-layer is $\mathrm{LayerNorm}(x +
# \mathrm{Sublayer}(x))$, where $\mathrm{Sublayer}(x)$ is the function
# implemented by the sub-layer itself. We apply dropout to the
# output of each sub-layer, before it is added to the sub-layer input
# and normalized.
#
# To facilitate these residual connections, all sub-layers in the
# model, as well as the embedding layers, produce outputs of dimension
# $d_{\text{model}}=512$.
# %%
# version 2022
class EncoderLayer(nn.Module):
"Encoder is made up of self-attn and feed forward (defined below)"
def __init__(self, size, self_attn, feed_forward, dropout):
super().__init__()
self.self_attn = self_attn
self.feed_forward = feed_forward
self.size = size
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask):
"Follow Figure 1 (left) for connections."
# x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, mask))
# return self.sublayer[1](x, self.feed_forward)
# 1. self-attention sublayer
norm_x = self.norm(x) # pre-norm, instead of post-norm【这里和文章不一致,先对输入x进行了norm(也称为pre-norm),而文章中是最后才做了norm(也称为post-norm)】
attn_output = self.self_attn(norm_x, norm_x, norm_x, mask)
x = x + self.dropout(attn_output)
# 2. feedforward sublayer
norm_x = self.norm(x)
ff_output = self.feed_forward(norm_x)
return x + self.dropout(ff_output)
# %%
class EncoderLayer(nn.Module):
"""
EncoderLayer consists of self-attention and feed forward layers
"""
def __init__(self, embed_dim, num_heads, dropout=0.1, pre_norm=True):
super().__init__()
self.self_attn = MultiHeadAttention(embed_dim, num_heads, dropout)
self.ff = FeedForward(embed_dim, dropout)
self.norm_self_attn = LayerNorm(embed_dim)
self.norm_ff = LayerNorm(embed_dim)
self.dropout = nn.Dropout(dropout)
self.pre_norm = pre_norm
def forward(self, x, mask):
if self.pre_norm: # pre-norm
# 1. self-attention sublayer
norm_x = self.norm_self_attn(x)
x = x + self.dropout(self.self_attn(norm_x, norm_x, norm_x, mask))
# 2. feedforward sublayer
norm_x = self.norm_ff(x)
x = x + self.dropout(self.ff(norm_x))
else: # post-norm
# 1. self-attention sublayer
x = x + self.dropout(self.self_attn(x, x, x, mask))
x = self.norm_self_attn(x)
# 2. feedforward sublayer
x = x + self.dropout(self.ff(x))
x = self.norm_ff(x)
return x
# %% [markdown]
# > The encoder is composed of a stack of $N=6$ encoder layers.
# %%
# version 2022
def clones(module, N):
"Produce N identical layers."
return nn.ModuleList([copy.deepcopy(module) for _ in range(N)])
class Encoder(nn.Module):
"Core encoder is a stack of N layers"
def __init__(self, layer, N):
super(Encoder, self).__init__()
self.layers = clones(layer, N)
self.norm = LayerNorm(layer.size)
def forward(self, x, mask):
"Pass the input (and mask) through each layer in turn."
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
# %%
class Encoder(nn.Module):
"""
Encoder consists of multiple EncoderLayer sublayers
"""
def __init__(self, embed_dim, num_layers, num_heads, dropout=0.1, pre_norm=True):
super().__init__()
# 先实例化,再deepcopy
# instantiated once, and deepcopy N times
encoder_layer = EncoderLayer(embed_dim, num_heads, dropout, pre_norm)
self.layers = nn.ModuleList([copy.deepcopy(encoder_layer) for _ in range(num_layers)]) # deepcopy is required
# 或者,直接实例化N次
# or instantiated N times directly
# self.layers = nn.ModuleList([EncoderLayer(embed_dim, num_heads, dropout, pre_norm) for _ in range(num_layers)]) # no need to deepcopy
self.norm = LayerNorm(embed_dim)
def forward(self, x, mask):
for layer in self.layers:
x = layer(x, mask)
return self.norm(x)
# %% [markdown]
# <br>
# %% [markdown]
# ### Decoder
#
# The decoder is also composed of a stack of $N=6$ identical layers.
#
# %% [markdown]
#
# In addition to the two sub-layers in each encoder layer, the decoder
# inserts a third sub-layer, which performs multi-head attention over
# the output of the encoder stack. Similar to the encoder, we employ
# residual connections around each of the sub-layers, followed by
# layer normalization.
# %%
# version 2022
class DecoderLayer(nn.Module):
"Decoder is made of self-attn, src-attn, and feed forward (defined below)"
def __init__(self, size, self_attn, src_attn, feed_forward, dropout):
super().__init__()
self.size = size
self.self_attn = self_attn
self.src_attn = src_attn
self.feed_forward = feed_forward
self.norm = LayerNorm(size)
self.dropout = nn.Dropout(dropout)
def forward(self, x, memory, src_mask, tgt_mask):
"Follow Figure 1 (right) for connections."
# 1. masked self-attention sublayer【对decoder的input做self-attention (self_attn)】
norm_x = self.norm(x) # pre-norm, instead of post-norm【这里和文章不一致,先对输入x进行了norm(也称为pre-norm),而文章中是最后才做了norm(也称为post-norm)】
attn_output = self.self_attn(norm_x, norm_x, norm_x, tgt_mask) # 此处的 mask 为tagt_mask(target mask,即decoder输入端的mask)
x = x + self.dropout(attn_output)
# 2. cross-attention sublayer【decoder的input 与 encoder的输出 做 cross-attention (src_attn)】
# memory 即为 encoder 的输出
norm_x = self.norm(x) # pre-norm, instead of post-norm
attn_output = self.src_attn(norm_x, memory, memory, src_mask) # 此处的 mask 为src_mask(source mask,即 mask encoder端的padding)
# Q = norm_x, K/V = memory
x = x + self.dropout(attn_output)
# 3. feedforward sublayer
norm_x = self.norm(x)
ff_output = self.feed_forward(norm_x)
return x + self.dropout(ff_output)
# %%
class DecoderLayer(nn.Module):
"""
DecoderLayer consists of self attention, cross attention, and feed forward
"""
def __init__(self, embed_dim, num_heads, dropout=0.1, pre_norm=True):
super().__init__()