-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathmain_adrc_position_linear_model.py
163 lines (129 loc) · 4.02 KB
/
main_adrc_position_linear_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# -*- coding: utf-8 -*-
"""
Created on Mon Jun 20 19:19:37 2022
@author: ZHAOHAOJIE
"""
''' 无人机轨迹跟踪控制 demo '''
from ctrl import utils
from ctrl import ADRC
from ctrl import PID, IncrementPID
from math import inf
import numpy as np
# 选择你的唱跳rap篮球
CTRL = 'ADRC'
#CTRL = 'PID'
#CTRL = 'IncrementPID'
WITH_NOISE = True # 飞行器是否受到扰动, 设置成False得重新调参
# ADRC调参
ADRCConfig = ADRC.getConfig()
adrc_cfg = ADRCConfig(
dt = 0.001,
dim = 3,
# 跟踪微分器
r = 60, # 快速跟踪因子
# 扩张状态观测器
b0 = 1, # 被控系统系数
delta = 0.015, # fal(e, alpha, delta)函数线性区间宽度
eso_beta01 = 150, # ESO反馈增益1
eso_beta02 = 250, # ESO反馈增益2
eso_beta03 = [350,400,500], # ESO反馈增益3
# 非线性状态反馈控制率
nlsef_beta1 = 20, # 跟踪输入信号增益1
nlsef_beta2 = [10,15,20], # 跟踪输入信号增益2
nlsef_alpha1 = 200/201, # 0 < alpha1 < 1
nlsef_alpha2 = [201/200,1.01,1.02], # alpha2 > 1
)
# PID调参
PIDConfig = PID.getConfig()
pid_cfg = PIDConfig(
dt = 0.001,
dim = 3,
# PID控制器增益
Kp = [30,20,30], # 比例增益
Ki = [0.01,0.01,100], # 积分增益
Kd = [3000,2800,5000], # 微分增益
# 抗积分饱和
u_max = 200, # 控制律上限
u_min = -200, # 控制律下限
Kaw = 0.2, # 抗饱和参数, 最好取: 0.1~0.3, 取0时不抗饱和
ins_max_err = [inf,inf,1], # 积分器分离阈值, 范围: (0, inf], 取inf时不分离积分器
)
if CTRL == 'ADRC':
dt = adrc_cfg.dt
ctrl = ADRC(adrc_cfg)
elif CTRL == 'PID':
dt = pid_cfg.dt
ctrl = PID(pid_cfg)
else:
dt = pid_cfg.dt
ctrl = IncrementPID(pid_cfg)
#----------------------------- ↓↓↓↓↓ 飞行动力学模型 ↓↓↓↓↓ ------------------------------#
ODE_TIMES = 2 # 一个dt区间积分几次
class LinearModel:
"""线性加速度控制模型\n
东北天坐标系, Oz指天\n
s = [x, y, z, Vx, Vy, Vz]\n
u = [ax, ay, az]\n
"""
def __init__(self):
self.with_noise = WITH_NOISE
self.dt = dt
self.t = 0
self.u = np.zeros(3, dtype=np.float32)
self.s = np.array([5,-2,-5,3,3,-2]) #! 初始化状态
def __call__(self, u):
# 更新状态
self.t += self.dt
self.u = u
self.s = self.ode_model(self.s, u)
return self.position
@property
def states(self):
"""无人机状态"""
return self.s
@property
def position(self):
"""无人机位置"""
return self.s[:3]
@property
def control(self):
"""无人机加速度控制"""
return self.u
def ode_model(self, s, u):
"""
>>> dx/dt = Vx
>>> dy/dt = Vy
>>> dz/dt = Vz
>>> dVx/dt = ax
>>> dVy/dt = ay
>>> dVz/dt = az
"""
s1 = np.zeros_like(s)
s1[0] = s[0] + self.dt * s[3]
s1[1] = s[1] + self.dt * s[4]
s1[2] = s[2] + self.dt * s[5]
s1[3] = s[3] + self.dt * u[0]
s1[4] = s[4] + self.dt * u[1]
s1[5] = s[5] + self.dt * u[2]
if self.with_noise:
return s1 + 0.01*np.random.randn(6)
return s1
#----------------------------- ↓↓↓↓↓ 参考轨迹设置 ↓↓↓↓↓ ------------------------------#
t_list = np.arange(0.0, 10.0, dt)
vx_list = 10*np.cos(t_list)
vy_list = 10*np.sin(t_list)
vz_list = np.linspace(-10, 10, len(t_list), endpoint=True)
v_list = np.vstack((vx_list,vy_list,vz_list))
#----------------------------- ↓↓↓↓↓ 轨迹跟踪控制仿真 ↓↓↓↓↓ ------------------------------#
plant = LinearModel()
print(ctrl)
utils.tic()
for i in range(len(t_list)):
t = t_list[i]
v = v_list[:, i]
# 更新控制
u = ctrl(v, plant.position)
# 更新状态
plant(u)
utils.toc()
ctrl.show()