forked from gouthampradhan/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSplitArrayLargestSum.java
59 lines (50 loc) · 1.69 KB
/
SplitArrayLargestSum.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
package dynamic_programming;
/**
* Created by gouthamvidyapradhan on 24/12/2017.
* Given an array which consists of non-negative integers and an integer m, you can split the array into m non-empty
* continuous subarrays. Write an algorithm to minimize the largest sum among these m subarrays.
Note:
If n is the length of array, assume the following constraints are satisfied:
1 ≤ n ≤ 1000
1 ≤ m ≤ min(50, n)
Examples:
Input:
nums = [7,2,5,10,8]
m = 2
Output:
18
Explanation:
There are four ways to split nums into two subarrays.
The best way is to split it into [7,2,5] and [10,8],
where the largest sum among the two subarrays is only 18.
Solution O(n ^ 2 * k)
Build a bottom up min-max dp table for each sub-array ranging from n -> 0
*/
public class SplitArrayLargestSum {
/**
* Main method
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception{
int[] A = {7,2,5,10,8};
System.out.println(new SplitArrayLargestSum().splitArray(A, 2));
}
public int splitArray(int[] nums, int m) {
int[][] dp = new int[m][nums.length];
for(int i = nums.length - 1; i >= 0; i --){
int sum = 0;
for(int j = i; j < nums.length; j ++){
sum += nums[j];
if(j + 1 >= nums.length) break;
for(int k = 0; k < m - 1; k++){
dp[k + 1][i] = (dp[k + 1][i] == 0) ? Integer.MAX_VALUE : dp[k + 1][i];
int temp = Math.max(sum, dp[k][j + 1]);
dp[k + 1][i] = Math.min(dp[k + 1][i], temp);
}
}
dp[0][i] = sum;
}
return dp[m - 1][0];
}
}