Skip to content

AlessandraFaria/autosklearn

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 

Repository files navigation

Trabalho de classificação utilizando autosklearn AutoML

Publicação deste trabalho

ARTIGO

VIDEO

auto-sklearn

auto-sklearn é um kit de ferramentas de aprendizado de máquina automatizado e um substituto imediato para um estimador scikit-learn.

Encontre a documentação here

Automated Machine Learning em poucas linhas

Instalação

import sklearn.datasets
from sklearn.metrics import accuracy_score
from sklearn import svm
import sklearn.model_selection
import sklearn.datasets
import sklearn.metrics
import autosklearn.classification

Execução

# configure auto-sklearn
automl = autosklearn.classification.AutoSklearnClassifier(
          time_left_for_this_task=3600, # execute o auto-sklearn por no máximo x segundos
          per_run_time_limit=600, #, gastar no máximo Y segundos para cada modelo de treinamento
          )
# train model(s)
automl.fit(x_train, y_train)

# evaluate
y_hat = automl.predict(x_test)

Métricas

test_acc = sklearn.metrics.accuracy_score(y_test, y_hat)
test_report = sklearn.metrics.classification_report(y_test, y_hat)
test_matrix = sklearn.metrics.confusion_matrix(y_test, y_hat)
print("-------------------------------------------------------------------------")
print("Test Accuracy score {0}".format(test_acc))
print("-------------------------------------------------------------------------")
print("Test Report score {0}".format(test_report))
print("-------------------------------------------------------------------------")
print("Test Confusion Matrix {0}".format(test_matrix))
print("-------------------------------------------------------------------------")
print(automl.sprint_statistics())
print("-------------------------------------------------------------------------")
print(automl.show_models())
print("-------------------------------------------------------------------------")
print(automl.get_models_with_weights())

Publicações relevantes

Efficient and Robust Automated Machine Learning
Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum and Frank Hutter
Advances in Neural Information Processing Systems 28 (2015)
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf

Auto-Sklearn 2.0: The Next Generation
Authors: Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer and Frank Hutter
arXiv:2007.04074 [cs.LG], 2020 https://arxiv.org/abs/2007.04074

About

CLASSIFICATION work using autosklearn AutoML

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published