auto-sklearn é um kit de ferramentas de aprendizado de máquina automatizado e um substituto imediato para um estimador scikit-learn.
Encontre a documentação here
import sklearn.datasets
from sklearn.metrics import accuracy_score
from sklearn import svm
import sklearn.model_selection
import sklearn.datasets
import sklearn.metrics
import autosklearn.classification
# configure auto-sklearn
automl = autosklearn.classification.AutoSklearnClassifier(
time_left_for_this_task=3600, # execute o auto-sklearn por no máximo x segundos
per_run_time_limit=600, #, gastar no máximo Y segundos para cada modelo de treinamento
)
# train model(s)
automl.fit(x_train, y_train)
# evaluate
y_hat = automl.predict(x_test)
test_acc = sklearn.metrics.accuracy_score(y_test, y_hat)
test_report = sklearn.metrics.classification_report(y_test, y_hat)
test_matrix = sklearn.metrics.confusion_matrix(y_test, y_hat)
print("-------------------------------------------------------------------------")
print("Test Accuracy score {0}".format(test_acc))
print("-------------------------------------------------------------------------")
print("Test Report score {0}".format(test_report))
print("-------------------------------------------------------------------------")
print("Test Confusion Matrix {0}".format(test_matrix))
print("-------------------------------------------------------------------------")
print(automl.sprint_statistics())
print("-------------------------------------------------------------------------")
print(automl.show_models())
print("-------------------------------------------------------------------------")
print(automl.get_models_with_weights())
Efficient and Robust Automated Machine Learning
Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum and Frank Hutter
Advances in Neural Information Processing Systems 28 (2015)
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
Auto-Sklearn 2.0: The Next Generation
Authors: Matthias Feurer, Katharina Eggensperger, Stefan Falkner, Marius Lindauer and Frank Hutter
arXiv:2007.04074 [cs.LG], 2020
https://arxiv.org/abs/2007.04074