Skip to content

AshishSara/Predicting_Heart_Rate_ML

Repository files navigation

PredictingHRData

MLModels is a textbook example of EDA, Feature Engineering, Feature Analysis, and thorough testing of theoretically appropriate machine learning models and their subsequent results.

Below is a visualization of our feature analysis and subsequent cumulative importance graph to determine and confirm the most important features for our target variable, heart rate prediction.

Screenshot 2023-11-28 at 7 16 18 PM Screenshot 2023-11-28 at 7 16 50 PM

Below are the results of the base models minus LSTMS and GRUs as I found these to be more complex and ultimately resulted in poor metrics so they were voided from the graph below.

image Screenshot 2023-11-28 at 7 14 46 PM

Below is a more clear and thorough representation of all model performances

Results for Linear Regression: MAE: 8.545521803893369 MSE: 133.38288402675323 RMSE: 11.549150792450206 R²: 0.11786161645326065

Results for Ridge Regression: MAE: 8.510334911862682 MSE: 133.10060612197665 RMSE: 11.536923598688546 R²: 0.119728483978637

Results for Lasso Regression: MAE: 8.83734968577659 MSE: 143.2286570338927 RMSE: 11.9678175551724 R²: 0.052745808314458964

Results for Support Vector Regression: MAE: 8.258296571139596 MSE: 134.60705507666881 RMSE: 11.602028058777863 R²: 0.10976546319464142

Results for Decision Tree: MAE: 8.892119618696187 MSE: 159.76751813268754 RMSE: 12.639917647385506 R²: -0.05663527383749578

Results for Gradient Boosting: MAE: 7.756464375218266 MSE: 112.18908372179023 RMSE: 10.591934843162047 R²: 0.2580285117685738

Results for Random Forest: MAE: 6.933641168511686 MSE: 92.06532002537315 RMSE: 9.595067484148986 R²: 0.39111863429488913

Results for Extra Trees: MAE: 7.243742675276752 MSE: 96.87575632509481 RMSE: 9.842548263793011 R²: 0.35930442865258294

Results for XGBoost: MAE: 7.309931323193389 MSE: 94.79489504641387 RMSE: 9.736266997490048 R²: 0.37306637133476717

Results for Neural Network: MAE: 8.6921139807303 MSE: 137.11080159938007 RMSE: 11.70943216383186 R²: 0.09320673509042476

Results for K-Nearest Neighbors: MAE: 8.461800369003688 MSE: 134.27476761317342 RMSE: 11.587698978363798 R²: 0.11196307294089547

Results for Support Vector Regression (RBF Kernel): MAE: 8.258296571139596 MSE: 134.60705507666881 RMSE: 11.602028058777863 R²: 0.10976546319464142

Results for AdaBoost Regressor: MAE: 10.815846875466317 MSE: 171.1284532797725 RMSE: 13.081607442503865 R²: -0.13177172810863524

Results for Bagging Regressor: MAE: 6.922520009225093 MSE: 91.90240257831637 RMSE: 9.58657407932137 R²: 0.3921961018758826

Results for PLS Regression: MAE: 8.72590512124079 MSE: 138.75811158664473 RMSE: 11.779563302034788 R²: 0.0823121185886958

Results for Elastic Net Regression: MAE: 8.820062829628574 MSE: 141.9012053326641 RMSE: 11.912229234390349 R²: 0.06152501643027153

Results for Stacking Regressor: MAE: 6.894038777682657 MSE: 89.77053826040829 RMSE: 9.474731566667643 R²: 0.4062953572418351

Results for CatBoost Regressor: MAE: 7.715465342226439 MSE: 112.429797822202 RMSE: 10.603291838962182 R²: 0.2564365297913992

Results for Bayesian Ridge Regression: MAE: 8.593828946369145 MSE: 136.8689317861013 RMSE: 11.699099614333631 R²: 0.09480636046718349

Results for LSTM: MAE: 8.45500888679007 MSE: 129.03631117019808 RMSE: 11.359415089263974 R²: 0.14660802407240214

Results for GRU: MAE: 8.259443475533235 MSE: 126.61759330766657 RMSE: 11.252448325038714 R²: 0.16260440832423162

Evaluation of Stacked Regressor with Best Parameters after GridSearchCV: MAE: 6.93404648163292 MSE: 90.22908851397294 RMSE: 9.498899331710644 R²: 0.4032626984235317

Best Model Stacking Regressor: MAE: 6.894038777682657 MSE: 89.77053826040829 RMSE: 9.474731566667643 R²: 0.4062953572418351

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published