Skip to content

📖Deep Learning framework that takes as input a document image file and locates the position of a set of objects

Notifications You must be signed in to change notification settings

THEFASHIONGEEK/Document-Layout-Detection

Repository files navigation

Document Layout Detection

Document Layout Detection

This dataset has been created primarily for the evaluation of layout analysis (physical and logical) methods. It contains realistic documents with a wide variety of layouts, reflecting the various challenges in layout analysis.

Dataset has four classes:

  • Text Region
  • Seperation Region
  • Noise Region
  • Image Region

Format of Dataset

Format of Dataset

Prerequisites

Pipeline

Run the requirements.txt

cat requirements.txt | xargs -n 1 -L 1 pip install

Convert to COCO format

COCO format

Load Dataset

gtf.Train_Dataset(root_dir="../sample_dataset", coco_dir="PRImA Layout Analysis Dataset", img_dir="Images", set_dir="Train", batch_size=8, image_size=512, use_gpu=True)

Load Model

gtf.Model()

Set Hyper Parameters

gtf.Set_Hyperparams(lr=0.0001, val_interval=1, es_min_delta=0.0, es_patience=0)

To View Loss Plots (Optional)

logs_base_dir = "tensorboard/signatrix_efficientdet_coco"
os.makedirs(logs_base_dir, exist_ok=True)
%load_ext tensorboard
%tensorboard --logdir {logs_base_dir}

PLOTS

Start the training

gtf.Train(num_epochs=5, model_output_dir="trained/")

DEMO

Run this colab

Acknowledgments

About

📖Deep Learning framework that takes as input a document image file and locates the position of a set of objects

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published