Skip to content
/ DiPAut Public

DiPAut is a software tool built in Python that checks the differential privacy of online randomized algorithms. It computes a bound "d" for the weight of the automaton, ensuring differential privacy for all privacy budgets "ε".

License

Notifications You must be signed in to change notification settings

bhusalb/DiPAut

Repository files navigation

DiPAut

DOI

DiPAut is a software tool built in Python that checks the differential privacy of online randomized algorithms. It computes a bound "d" for the weight of the automaton, ensuring differential privacy for all privacy budgets "ε".

Installation

Install Via Docker

To install DiPAut via Docker, navigate to the project root directory and run the following commands:

docker build . -t dipaut
docker run --rm -it dipaut

Install without Docker

If you prefer to install without Docker, make sure you have Python3 installed and run the following command in your terminal:

  
 pip install -r requirements.txt

These commands will install all the necessary dependencies for DiPAut to run properly. You can then run the tool by executing the main script.

Usage

usage: main.py [-h] [-i FILE] [-g]

-i FILE, -input FILE

Provide input file path

-g, --show-graph 

This parameter determines whether or not to display the graph, 
and its default value is set to False.

If you're using the tool via Docker, graph visualization won't be available (-g or --show-graph won't work).

To start analyzing a file, run python main.py -i [FILE].

Here is an example output of using DiPAut. The program is analyzing the file "examples/leaking_cycle/example_4.dipa"

root@6f6dd6e61a7e:/usr/src/dipAut# python main.py -i examples/leaking_cycle/example_4.dipa 
----------------------------------------------------------------------------
                    Result of examples/leaking_cycle/example_4.dipa                   
┌────────────────────────────────────────────────┬──────────────────────────────────┐
│ Test                                           │ Detected?                        │
├────────────────────────────────────────────────┼──────────────────────────────────┤
│ Leaking Cycle                                  │ Yes                              │
└────────────────────────────────────────────────┴──────────────────────────────────┘
                       Automata is not differentially private.

The output will display whether the test was detected or not. In the provided example, "Leaking Cycle" was detected and the automata was not differentially private.

Writing Your Own Algorithm

Introducing Dipa, a simple new language with two parts: State and Statement.

State has 5 parameters:

  • State Name (required): Begins with 'q' followed by a number (regex: q\d+), e.g., q1, q2, q3, q4. Generally starts from q1. By default, it is an input state. To mark it as non-input, add ':non-input', e.g., q1:non-input, q10:non-input.
  • Scaling Factor (d) (required): Scaling factor d for the Laplacian distribution. Can be fractions (¼, ⅛) or integers.
  • Mean (μ) (required): Mean for the Laplacian distribution. Can be fractions (¼, ⅛) or integers.
  • Scaling Factor (d') (optional): Scaling factor d' for the Laplacian distribution for insample'. Can be fractions (¼, ⅛) or integers. Not required if the statement doesn't use insample'.
  • Mean (μ') (optional): Mean prime for the Laplacian distribution for insample'. Can be fractions (¼, ⅛) or integers. Not required if the statement doesn't use insample'.

Dipa supports various types of statements, each with an assignment or control block, output, and a next step.

Assignment Statements include variable assignment to insample or insample', output, and a goto directive. Outputs can be insample/insample' or anything following 'o' (regex: o[a-z]+, e.g., obot, otop, oread).

Examples:

r4:= insample; output obot; goto q9
l3:= insample; output obot; goto q6

Control Statements support if and elseif blocks. Expressions follow a pattern with variables, comparison operators, and insample or insample'. Expressions can use an AND gate (&&) for chaining.

Examples:

insample >= l1
insample >= l1 && insample < r1
insample <= l2 && insample > r1

Overall Program Examples:

SVT:

(q1:non-input,1/4,0): x:= insample; output oinput; goto q2
(q2,1/2,0): if (insample<= x) then output obot; goto q2 elseif (insample >= x) then output otop; goto q3

Numeric Range:

(q1:non-input,1/4,0): x:= insample; output oinput; goto q2
(q2,1/2,0, 1/2, 0): if (insample<= x) then output obot; goto q2 elseif (insample >= x) then output insampleprime; goto q3

Leaking Cycle:

(q1:non-input,1/2,0): x1:= insample; output obot; goto q2
(q2:non-input,1/2,10): x2:= insample; output obot; goto q3
(q3,1/6,0): if (insample < x2 && insample >= x1) then output obot; goto q4
(q4,1/6,0): if (insample < x2) then x2:= insample; output obot; goto q3

Leaking Pair:

(q1:non-input,1/4,0): u:= insample; output obot; goto q2
(q2:non-input,1/4,1): v:= insample; output obot; goto q3
(q3:non-input,1/4,2): w:= insample; output obot; goto q4
(q4,1/4,0): if (insample >= u && insample < v) then output ocontinue; goto q4 elseif (insample < u) then output obot; goto q6 elseif (insample > v && insample < w) then output otop; goto q5 elseif (insample >v && insample > w) then output otop; goto q6
(q5,1/4,0): if (insample >= v && insample < w) then output ocontinue; goto q5 elseif (insample < v) then output obot; goto q6  elseif (insample > w) then output otop; goto q6

More examples can be found in the examples directory of the repository.

Running the Benchmark and Plot Generation Scripts

In this repository, we provide examples used in our paper, organized into three folders:

  • m_range_examples/
  • k_min_max_examples/
  • simple_examples/

Benchmark Script

To run the DipAut benchmark on all examples within a specific folder, use the provided benchmark.py script as follows:

python3 scripts/benchmark.py --folder <folder_name>

Replace <folder_name> with the desired folder (e.g., m_range_examples, k_min_max_examples, or simple_examples). The results will be saved as a CSV file in the results/ folder, named <folder_name>_result.csv.

Plot Generation Script

To generate plots from the benchmark results, use the plot_generator.py script:

python3 scripts/plot_generator.py

This script will process the CSV files in the results/ folder and generate corresponding plots, which will be stored in the plots/ folder.

About

DiPAut is a software tool built in Python that checks the differential privacy of online randomized algorithms. It computes a bound "d" for the weight of the automaton, ensuring differential privacy for all privacy budgets "ε".

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published