-
Notifications
You must be signed in to change notification settings - Fork 18
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #57 from filipamc19/add-new-functions
Added functions plot_distibution_partialTAI and plot_distribution_expression
- Loading branch information
Showing
2 changed files
with
142 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,69 @@ | ||
#' @title Comparing expression levels distributions across the different developmental stages | ||
#' @description \emph{plot_distribution_partialTAI} generates 2 plots that help to compare the distribution | ||
#' of expression levels through various developmental stages, highlighting each stage with | ||
#' distinct colors. | ||
#' @param ExpressionSet a standard PhyloExpressionSet or DivergenceExpressionSet object. | ||
#' @param stages a numeric vector specifying the indices of the stages to compare. Each index | ||
#' corresponds to a stage in the ExpressionSet. Starts in one. | ||
#' @param xlab label of x-axis. | ||
#' @param ylab label of y-axis. | ||
#' @param main figure title. | ||
#' @param seed defines the colors for the different developmetal stages | ||
#' @section Recomendation - Apply a square root transformation to enhance the visualization of differences | ||
#' in the distributions: plot_distribution_partialTAI(tf(ExpressionSet, sqrt)) | ||
#' @author Filipa Martins Costa | ||
#' @export | ||
|
||
plot_distribution_expression <- function(ExpressionSet, | ||
stages = 1:(ncol(ExpressionSet)-2), | ||
xlab = "Expression", | ||
ylab = "Density", | ||
main = "Density Distribution of Expression by Developmental Stage", | ||
seed = 123){ | ||
|
||
is.ExpressionSet(ExpressionSet) | ||
|
||
if (any(stages > ncol(ExpressionSet))) { | ||
stop("Some indices in 'stages' exceed the number of columns in 'ExpressionSet'.") | ||
} | ||
|
||
expression_long <- tidyr::pivot_longer( | ||
ExpressionSet[,c(2,stages+2)], | ||
cols = -GeneID, | ||
names_to = "Stage", | ||
values_to = "Expression" | ||
) | ||
|
||
qual_col_pals <- RColorBrewer::brewer.pal.info[ RColorBrewer::brewer.pal.info$category == 'qual',] | ||
col_vector <- unlist(mapply( RColorBrewer::brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals))) | ||
set.seed(seed) | ||
colors <- sample(col_vector, ncol(ExpressionSet)-1) | ||
|
||
P1 <- ggplot2::ggplot(expression_long, ggplot2::aes(x = Expression, fill = Stage)) + | ||
ggplot2::geom_density(alpha = 0.7, color = "black") + | ||
ggplot2::labs( | ||
x = xlab, | ||
y = ylab | ||
) + | ||
ggplot2::theme_minimal() + | ||
ggplot2::theme( | ||
plot.title = ggplot2::element_text(hjust = 0.5, size = 14), | ||
axis.title = ggplot2::element_text(size = 12) | ||
) + | ||
ggplot2::scale_fill_manual(values = colors) | ||
|
||
P2 <- ggplot2::ggplot(expression_long, ggplot2::aes(x = Expression, y = Stage, fill = Stage)) + | ||
ggridges::geom_density_ridges(alpha = 0.7, color = "black", scale = 1) + | ||
ggplot2::labs( | ||
x = xlab, | ||
y = ylab | ||
) + | ||
ggplot2::theme_minimal() + | ||
ggplot2::theme( | ||
plot.title = ggplot2::element_text(hjust = 0.5, size = 14), | ||
axis.title = ggplot2::element_text(size = 12) | ||
) + | ||
ggplot2::scale_fill_manual(values = colors) | ||
|
||
cowplot::plot_grid(P1, P2, labels = main) | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,73 @@ | ||
#' @title Comparing partial TAI distributions across the different developmental stages | ||
#' @description \emph{plot_distribution_partialTAI} generates 2 plots that help to compare the distribution | ||
#' of partial TAI through various developmental stages, highlighting each stage with | ||
#' distinct colors. | ||
#' @param ExpressionSet a standard PhyloExpressionSet or DivergenceExpressionSet object. | ||
#' @param stages a numeric vector specifying the indices of the stages to compare. Each index | ||
#' corresponds to a stage in the ExpressionSet. Starts in one. | ||
#' @param xlab label of x-axis. | ||
#' @param ylab label of y-axis. | ||
#' @param main figure title. | ||
#' @param seed defines the colors for the different developmetal stages | ||
#' @section Recomendation - Apply a square root transformation to enhance the visualization of differences | ||
#' in the distributions: plot_distribution_partialTAI(tf(ExpressionSet, sqrt)) | ||
#' @author Filipa Martins Costa | ||
#' @export | ||
|
||
plot_distribution_partialTAI <- function(ExpressionSet, | ||
stages = 1:ncol(ExpressionSet)-2, | ||
xlab = "Partial TAI", | ||
ylab = "Density", | ||
main = "Density Distribution of Partial TAI by Developmental Stage", | ||
seed = 123){ | ||
|
||
if (any(stages > ncol(ExpressionSet))) { | ||
stop("Some indices in 'stages' exceed the number of columns in 'ExpressionSet'.") | ||
} | ||
|
||
partial_TAI_matrix <- pMatrix(ExpressionSet[,c(1,2,stages+3)]) | ||
|
||
partial_TAI_df <- tibble::rownames_to_column(as.data.frame(partial_TAI_matrix), var = "GeneID") | ||
partial_TAI_long <- tidyr::pivot_longer( | ||
partial_TAI_df, | ||
cols = -GeneID, | ||
names_to = "Stage", | ||
values_to = "PartialTAI" | ||
) | ||
|
||
qual_col_pals <- RColorBrewer::brewer.pal.info[ RColorBrewer::brewer.pal.info$category == 'qual',] | ||
col_vector <- unlist(mapply( RColorBrewer::brewer.pal, qual_col_pals$maxcolors, rownames(qual_col_pals))) | ||
set.seed(seed) | ||
colors <- sample(col_vector, ncol(partial_TAI_df)) | ||
|
||
partial_TAI_long$Stage <- factor(partial_TAI_long$Stage, levels = colnames(partial_TAI_matrix)) | ||
|
||
P1 <- ggplot2::ggplot(partial_TAI_long, ggplot2::aes(x = PartialTAI, fill = Stage)) + | ||
ggplot2::geom_density(alpha = 0.7, color = "black") + | ||
ggplot2::labs( | ||
x = xlab, | ||
y = ylab | ||
) + | ||
ggplot2::theme_minimal() + | ||
ggplot2::theme( | ||
plot.title = ggplot2::element_text(hjust = 0.5, size = 14), | ||
axis.title = ggplot2::element_text(size = 12) | ||
) + | ||
ggplot2::scale_fill_manual(values = colors) | ||
|
||
P2 <- ggplot2::ggplot(partial_TAI_long, ggplot2::aes(x = PartialTAI, y = Stage, fill = Stage)) + | ||
ggridges::geom_density_ridges(alpha = 0.7, color = "black", scale = 1) + | ||
ggplot2::labs( | ||
x = xlab, | ||
y = ylab | ||
) + | ||
ggplot2::theme_minimal() + | ||
ggplot2::theme( | ||
plot.title = ggplot2::element_text(hjust = 0.5, size = 14), | ||
axis.title =ggplot2:: element_text(size = 12) | ||
) + | ||
ggplot2::scale_fill_manual(values = colors) | ||
|
||
cowplot::plot_grid(P1, P2, labels = main) | ||
|
||
} |