-
Notifications
You must be signed in to change notification settings - Fork 14
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
146 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,146 @@ | ||
[^1]: | ||
Szulczyński, Bartosz, and Jacek Gębicki. “Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic Compounds in Outdoor and Indoor Air.” Environments 4, no. 1 (March 6, 2017): 21. https://doi.org/10.3390/environments4010021. | ||
[^2]: | ||
Chojer, H., P.T.B.S. Branco, F.G. Martins, M.C.M. Alvim-Ferraz, and S.I.V. Sousa. “Development of Low-Cost Indoor Air Quality Monitoring Devices: Recent Advancements.” Science of The Total Environment 727 (July 2020): 138385. https://doi.org/10.1016/j.scitotenv.2020.138385. | ||
[^3]: | ||
Branco, P.T.B.S., M.C.M. Alvim-Ferraz, F.G. Martins, and S.I.V. Sousa. “Quantifying Indoor Air Quality Determinants in Urban and Rural Nursery and Primary Schools.” Environmental Research 176 (September 2019): 108534. https://doi.org/10.1016/j.envres.2019.108534. | ||
[^4]: | ||
Who Guidelines for Indoor Air Quality Selected Pollutants. WHO, 2010. https://apps.who.int/iris/handle/10665/260127. | ||
[^5]: | ||
Halima Hadziahmetovic, Rejhana Blazevic, Mirela Alispahic, Sanda Midzic Kurtagic, and Raza Sunulahpasic. “ANALYSIS OF PARAMETERS INFLUENCING THE INDOOR AIR QUALITY.” 33RD DAAAM INTERNATIONAL SYMPOSIUM ON INTELLIGENT MANUFACTURING AND AUTOMATION, n.d. https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2022/working_papers/dpn22391_a_1_Hadziahmetovic.pdf. | ||
[^6]: | ||
Kuula, Joel, Timo Mäkelä, Minna Aurela, Kimmo Teinilä, Samu Varjonen, Óscar González, and Hilkka Timonen. “Laboratory Evaluation of Particle-Size Selectivity of Optical Low-Cost Particulate Matter Sensors.” Atmospheric Measurement Techniques 13, no. 5 (May 15, 2020): 2413–23. https://doi.org/10.5194/amt-13-2413-2020. | ||
[^7]: | ||
Alfano, Brigida, Luigi Barretta, Antonio Del Giudice, Saverio De Vito, Girolamo Di Francia, Elena Esposito, Fabrizio Formisano, Ettore Massera, Maria Lucia Miglietta, and Tiziana Polichetti. “A Review of Low-Cost Particulate Matter Sensors from the Developers’ Perspectives.” Sensors 20, no. 23 (November 29, 2020): 6819. https://doi.org/10.3390/s20236819. | ||
[^8]: | ||
TDK Smart Environ Product Page (Accessed January 2023) https://invensense.tdk.com/smartenviro/ | ||
[^9]: | ||
Hall, E., S. Kaushik, R. Vanderpool, R. Duvall, M. Beaver, R. Long, AND P. Solomon. Integrating Sensor Monitoring Technology into the Current Air Pollution Regulatory Support Paradigm: Practical Considerations. American Journal of Environmental Engineering. Scientific & Academic Publishing, Rosemead, CA, 4(6):147-154, (2014). | ||
[^10]: | ||
South Coast AQMD AQ-SPEC (Accessed january 2023) http://www.aqmd.gov/aq-spec/evaluations | ||
[^11]: | ||
Airparif Site (Accessed January 2023) https://airparif.asso.fr/en/node/110 | ||
[^12]: | ||
Piera Systems Intelligent Particle Sensors (Accessed January 2023): https://pierasystems.com/intelligent-particle-sensors/ | ||
[^13]: | ||
Sensor specification statement Particulate Matter Sensors (Accessed January 2023) https://sensirion.com/media/documents/B7AAA101/61653FB8/Sensirion_Particulate_Matter_AppNotes_Specification_Statement.pdf | ||
[^14]: | ||
Clements, A., S. Lung, A. Arfire, AND A. Polidori. An Update on Low-Cost Sensors for the Measurement of Atmospheric Composition: Evaluation Activities. An Update on Low-Cost Sensors for the Measurement of Atmospheric Composition. World Meteorological Organization, Geneva, Switzerland, , NA, (2020). | ||
[^15]: | ||
Li, Zhisheng, Qingmei Wen, and Ruilin Zhang. “Sources, Health Effects and Control Strategies of Indoor Fine Particulate Matter (PM2.5): A Review.” Science of The Total Environment 586 (May 2017): 610–22. https://doi.org/10.1016/j.scitotenv.2017.02.029. | ||
[^16]: | ||
Park, Jihoon, Seunghon Ham, Miyeon Jang, Jinho Lee, Sunju Kim, Sungkyoon Kim, Kiyoung Lee, et al. “Spatial–Temporal Dispersion of Aerosolized Nanoparticles During the Use of Consumer Spray Products and Estimates of Inhalation Exposure.” Environmental Science & Technology 51, no. 13 (July 5, 2017): 7624–38. https://doi.org/10.1021/acs.est.7b00211. | ||
[^17]: | ||
Dacunto, Philip J., Kai-Chung Cheng, Viviana Acevedo-Bolton, Ruo-Ting Jiang, Neil E. Klepeis, James L. Repace, Wayne R. Ott, and Lynn M. Hildemann. “Real-Time Particle Monitor Calibration Factors and PM2.5 Emission Factors for Multiple Indoor Sources.” Environmental Science: Processes & Impacts 15, no. 8 (2013): 1511. https://doi.org/10.1039/c3em00209h. | ||
[^18]: | ||
Taner, Simge, Beyhan Pekey, and Hakan Pekey. “Fine Particulate Matter in the Indoor Air of Barbeque Restaurants: Elemental Compositions, Sources and Health Risks.” Science of The Total Environment 454–455 (June 2013): 79–87. https://doi.org/10.1016/j.scitotenv.2013.03.018. | ||
[^19]: | ||
Di Antonio, Andrea, Olalekan Popoola, Bin Ouyang, John Saffell, and Roderic Jones. “Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter.” Sensors 18, no. 9 (August 24, 2018): 2790. https://doi.org/10.3390/s18092790. | ||
[^20]: | ||
Wang, Yang, Jiayu Li, He Jing, Qiang Zhang, Jingkun Jiang, and Pratim Biswas. “Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement.” Aerosol Science and Technology 49, no. 11 (November 2, 2015): 1063–77. https://doi.org/10.1080/02786826.2015.1100710. | ||
[^21]: | ||
iSCAPE Project Deliverable 7.8 Sensor monitoring experiences and technological innovations (November 2019). (Accessed January 2023) https://www.iscapeproject.eu/wp-content/uploads/2020/06/iSCAPE_D7.8_Sensor-monitoring-experiences-and-technological-innovations.pdf | ||
[^22]: | ||
Dinh, Trieu-Vuong, In-Young Choi, Youn-Suk Son, and Jo-Chun Kim. “A Review on Non-Dispersive Infrared Gas Sensors: Improvement of Sensor Detection Limit and Interference Correction.” Sensors and Actuators B: Chemical 231 (August 2016): 529–38. https://doi.org/10.1016/j.snb.2016.03.040. | ||
[^23]: | ||
Müller, Michael, Peter Graf, Jonas Meyer, Anastasia Pentina, Dominik Brunner, Fernando Perez-Cruz, Christoph Hüglin, and Lukas Emmenegger. “Integration and Calibration of Non-Dispersive Infrared (NDIR) CO2 Low-Cost Sensors and Their Operation in a Sensor Network Covering Switzerland.” Atmospheric Measurement Techniques 13, no. 7 (July 15, 2020): 3815–34. https://doi.org/10.5194/amt-13-3815-2020. | ||
[^24]: | ||
Sensirion SCD30 Field Calibration Application Note (Accessed January 2023) https://sensirion.com/media/documents/33C09C07/620638B8/Sensirion_SCD30_Field_Calibration.pdf | ||
[^25]: | ||
Demanega, Ingrid, Igor Mujan, Brett C. Singer, Aleksandar S. Anđelković, Francesco Babich, and Dusan Licina. “Performance Assessment of Low-Cost Environmental Monitors and Single Sensors under Variable Indoor Air Quality and Thermal Conditions.” Building and Environment 187 (January 2021): 107415. https://doi.org/10.1016/j.buildenv.2020.107415. | ||
[^26]: | ||
Zheng, Hailin, Vinayak Krishnan, Shalika Walker, Marcel Loomans, and Wim Zeiler. “Laboratory Evaluation of Low-Cost Air Quality Monitors and Single Sensors for Monitoring Typical Indoor Emission Events in Dutch Daycare Centers.” Environment International 166 (August 2022): 107372. https://doi.org/10.1016/j.envint.2022.107372. | ||
[^27]: | ||
Tryner, Jessica, John Mehaffy, Daniel Miller-Lionberg, and John Volckens. “Effects of Aerosol Type and Simulated Aging on Performance of Low-Cost PM Sensors.” Journal of Aerosol Science 150 (December 2020): 105654. https://doi.org/10.1016/j.jaerosci.2020.105654. | ||
[^28]: | ||
Xu, Wei, Yunfei Cai, Song Gao, Shuang Hou, Yong Yang, Yusen Duan, Qingyan Fu, Fei Chen, and Jie Wu. “New Understanding of Miniaturized VOCs Monitoring Device: PID-Type Sensors Performance Evaluations in Ambient Air.” Sensors and Actuators B: Chemical 330 (March 2021): 129285. https://doi.org/10.1016/j.snb.2020.129285. | ||
[^29]: | ||
Vogt, Matthias, Philipp Schneider, Nuria Castell, and Paul Hamer. “Assessment of Low-Cost Particulate Matter Sensor Systems against Optical and Gravimetric Methods in a Field Co-Location in Norway.” Atmosphere 12, no. 8 (July 27, 2021): 961. https://doi.org/10.3390/atmos12080961. | ||
[^30]: | ||
Tera NextPM product page (Accessed January 2023) https://tera-sensor.com/markets-products-services/nextpm/. | ||
[^31]: | ||
Tera NextPM AQ-SPEC Sensor evaluation (Accessed January 2023) http://www.aqmd.gov/aq-spec/sensordetail/tera-sensor---nextpm. | ||
[^32]: | ||
Alphasense Ltd. Website (Accessed January 2023) https://alphasense.com/. | ||
[^33]: | ||
SPEC Sensor Website (Accessed January 2023) https://spec-sensors.com. | ||
[^34]: | ||
Sensirion SCD41 Product Page (Accessed January 2023) https://sensirion.com/products/catalog/SCD41/. | ||
[^35]: | ||
Peltier, Richard & Castell, Núria & Clements, Andrea & Dye, Tim & Hüglin, Christoph & Kroll, Jesse & Shih-Chun, & Lung, Candice & Ning, Zhi & Parsons, Matthew & Penza, Michele & Reisen, Fabienne & von Schneidemesser, Erika & Arfire, Adrian & Boso, Àlex & Fu, Qingyan & Hagan, David & Henshaw, Geoff & Jayaratne, Rohan & Zellweger, Christoph. “An Update on Low-Cost Sensors for the Measurement of Atmospheric Composition.” Technical, 2021. https://www.researchgate.net/publication/351130704_An_update_on_low-cost_sensors_for_the_measurement_of_atmospheric_composition. | ||
[^36]: | ||
Ouyang, Bin. “First-Principles Algorithm for Air Quality Electrochemical Gas Sensors.” ACS Sensors 5, no. 9 (September 25, 2020): 2742–46. https://doi.org/10.1021/acssensors.0c01129. | ||
[^37]: | ||
Popa, Daniel, and Florin Udrea. “Towards Integrated Mid-Infrared Gas Sensors.” Sensors 19, no. 9 (May 4, 2019): 2076. https://doi.org/10.3390/s19092076. | ||
[^38]: | ||
Marinov, Marin B., Nina Djermanova, Borislav Ganev, Georgi Nikolov, and Emilija Janchevska. “Performance Evaluation of Low-Cost Carbon Dioxide Sensors.” In 2018 IEEE XXVII International Scientific Conference Electronics - ET, 1–4. Sozopol: IEEE, 2018. https://doi.org/10.1109/ET.2018.8549621. | ||
[^39]: | ||
Carsen Banister, Justin Berquist, and Talal Toushan. “Evaluation of Low-Cost CO2 Sensors.” National Research Council Canada, March 14, 2019. https://publications.gc.ca/collections/collection_2021/cnrc-nrc/NR24-35-2019-eng.pdf. | ||
[^40]: | ||
Pang, Xiaobing, Haijun Nan, Jinping Zhong, Daiqi Ye, Marvin D. Shaw, and Alastair C. Lewis. “Low-Cost Photoionization Sensors as Detectors in GC × GC Systems Designed for Ambient VOC Measurements.” Science of The Total Environment 664 (May 2019): 771–79. https://doi.org/10.1016/j.scitotenv.2019.01.348. | ||
[^41]: | ||
Spinelle, Laurent, Michel Gerboles, Gertjan Kok, Stefan Persijn, and Tilman Sauerwald. “Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds.” Sensors 17, no. 7 (June 28, 2017): 1520. https://doi.org/10.3390/s17071520. | ||
[^42]: | ||
Directive 2008/50/EC of the European Parliament and the Council of 21 May 2008 on ambient air quality and cleaner air for Europe. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0050 (accessed on 7 August 2017) | ||
[^43]: | ||
Edwards, Samuel J., Alastair C. Lewis, Stephen J. Andrews, Richard T. Lidster, Jacqueline F. Hamilton, and Christopher N. Rhodes. “A Compact Comprehensive Two-Dimensional Gas Chromatography (GC×GC) Approach for the Analysis of Biogenic VOCs.” Anal. Methods 5, no. 1 (2013): 141–50. https://doi.org/10.1039/C2AY25710F. | ||
[^44]: | ||
Zhu, Hongbo, Jinyan She, Menglian Zhou, and Xudong Fan. “Rapid and Sensitive Detection of Formaldehyde Using Portable 2-Dimensional Gas Chromatography Equipped with Photoionization Detectors.” Sensors and Actuators B: Chemical 283 (March 2019): 182–87. https://doi.org/10.1016/j.snb.2018.11.156. | ||
[^45]: | ||
Skog, Kate M., Fulizi Xiong, Hitoshi Kawashima, Evan Doyle, Ricardo Soto, and Drew R. Gentner. “Compact, Automated, Inexpensive, and Field-Deployable Vacuum-Outlet Gas Chromatograph for Trace-Concentration Gas-Phase Organic Compounds.” Analytical Chemistry 91, no. 2 (January 15, 2019): 1318–27. https://doi.org/10.1021/acs.analchem.8b03095. | ||
[^46]: | ||
Lewis, Alastair C., James D. Lee, Peter M. Edwards, Marvin D. Shaw, Mat J. Evans, Sarah J. Moller, Katie R. Smith, et al. “Evaluating the Performance of Low Cost Chemical Sensors for Air Pollution Research.” Faraday Discussions 189 (2016): 85–103. https://doi.org/10.1039/C5FD00201J. | ||
[^47]: | ||
Williams, R. “Next Generation Air Monitoring (NGAM) VOC Sensor Evaluation Report,” 2015. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NERL&dirEntryId=308114. | ||
[^48]: | ||
Frausto-Vicencio, Isis, Alondra Moreno, Hugh Goldsmith, Ying-Kuang Hsu, and Francesca M. Hopkins. “Characterizing the Performance of a Compact BTEX GC-PID for Near-Real Time Analysis and Field Deployment.” Sensors 21, no. 6 (March 17, 2021): 2095. https://doi.org/10.3390/s21062095. | ||
[^49]: | ||
Bílek, Jiří, Petr Maršolek, Ondřej Bílek, and Pavel Buček. “Field Test of Mini Photoionization Detector-Based Sensors—Monitoring of Volatile Organic Pollutants in Ambient Air.” Environments 9, no. 4 (April 10, 2022): 49. https://doi.org/10.3390/environments9040049. | ||
[^50]: | ||
Schieweck, Alexandra, Erik Uhde, Tunga Salthammer, Lea C. Salthammer, Lidia Morawska, Mandana Mazaheri, and Prashant Kumar. “Smart Homes and the Control of Indoor Air Quality.” Renewable and Sustainable Energy Reviews 94 (October 2018): 705–18. https://doi.org/10.1016/j.rser.2018.05.057. | ||
[^51]: | ||
Bur, C., M. Bastuck, D. Puglisi, A. Schütze, A. Lloyd Spetz, and M. Andersson. “Discrimination and Quantification of Volatile Organic Compounds in the Ppb-Range with Gas Sensitive SiC-Field Effect Transistors.” Procedia Engineering 87 (2014): 604–7. https://doi.org/10.1016/j.proeng.2014.11.561. | ||
[^52]: | ||
Collier-Oxandale, Ashley M., Jacob Thorson, Hannah Halliday, Jana Milford, and Michael Hannigan. “Understanding the Ability of Low-Cost MOx Sensors to Quantify Ambient VOCs.” Atmospheric Measurement Techniques 12, no. 3 (March 5, 2019): 1441–60. https://doi.org/10.5194/amt-12-1441-2019. | ||
[^53]: | ||
Herberger, S., M. Herold, H. Ulmer, A. Burdack-Freitag, and F. Mayer. “Detection of Human Effluents by a MOS Gas Sensor in Correlation to VOC Quantification by GC/MS.” Building and Environment 45, no. 11 (November 2010): 2430–39. https://doi.org/10.1016/j.buildenv.2010.05.005. | ||
[^54]: | ||
Leidinger, M., T. Sauerwald, T. Conrad, W. Reimringer, G. Ventura, and A. Schütze. “Selective Detection of Hazardous Indoor VOCs Using Metal Oxide Gas Sensors.” Procedia Engineering 87 (2014): 1449–52. https://doi.org/10.1016/j.proeng.2014.11.722. | ||
[^55]: | ||
Andersson, M., M. Bastuck, J. Huotari, A. Lloyd Spetz, J. Lappalainen, A. Schütze, and D. Puglisi. “SiC-FET Sensors for Selective and Quantitative Detection of VOCs Down to Ppb Level.” Procedia Engineering 168 (2016): 216–20. https://doi.org/10.1016/j.proeng.2016.11.165. | ||
[^56]: | ||
Schütze, Andreas, Tobias Baur, Martin Leidinger, Wolfhard Reimringer, Ralf Jung, Thorsten Conrad, and Tilman Sauerwald. “Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How To?” Environments 4, no. 1 (March 1, 2017): 20. https://doi.org/10.3390/environments4010020. | ||
[^57]: | ||
Collier-Oxandale, Ashley, Brandon Feenstra, Vasileios Papapostolou, Hang Zhang, Michelle Kuang, Berj Der Boghossian, and Andrea Polidori. “Field and Laboratory Performance Evaluations of 28 Gas-Phase Air Quality Sensors by the AQ-SPEC Program.” Atmospheric Environment 220 (January 2020): 117092. https://doi.org/10.1016/j.atmosenv.2019.117092. | ||
[^58]: | ||
Kirešová, Simona, Milan Guzan, and Branislav Sobota. “Using Low-Cost Sensors for Measuring and Monitoring Particulate Matter with a Focus on Fine and Ultrafine Particles.” Atmosphere 14, no. 2 (February 6, 2023): 324. https://doi.org/10.3390/atmos14020324. | ||
[^59]: | ||
Blanco-Novoa, Oscar, Tiago Fernández-Caramés, Paula Fraga-Lamas, and Luis Castedo. “A Cost-Effective IoT System for Monitoring Indoor Radon Gas Concentration.” Sensors 18, no. 7 (July 8, 2018): 2198. https://doi.org/10.3390/s18072198. | ||
[^60]: | ||
Zeeb, Hajo, Ferid Shannoun, and World Health Organization. “WHO Handbook on Indoor Radon: A Public Health Perspective,” 2009. https://apps.who.int/iris/handle/10665/44149. | ||
[^61]: | ||
Camprodon, Guillem, Óscar González, Víctor Barberán, Máximo Pérez, Viktor Smári, Miguel Ángel de Heras, and Alejandro Bizzotto. “Smart Citizen Kit and Station: An Open Environmental Monitoring System for Citizen Participation and Scientific Experimentation.” HardwareX 6 (October 2019): e00070. https://doi.org/10.1016/j.ohx.2019.e00070. | ||
[^62]: | ||
Smart Citizen Documentation https://docs.smartcitizen.me (Accessed January 2023) | ||
[^63]: | ||
Barros, Paulo, António Curado, and Sérgio Ivan Lopes. “Internet of Things (IoT) Technologies for Managing Indoor Radon Risk Exposure: Applications, Opportunities, and Future Challenges.” Applied Sciences 11, no. 22 (November 22, 2021): 11064. https://doi.org/10.3390/app112211064. | ||
[^64]: | ||
Blanco-Novoa, Oscar, Tiago Fernández-Caramés, Paula Fraga-Lamas, and Luis Castedo. “A Cost-Effective IoT System for Monitoring Indoor Radon Gas Concentration.” Sensors 18, no. 7 (July 8, 2018): 2198. https://doi.org/10.3390/s18072198. | ||
[^65]: | ||
Tunyagi, Arthur, Tiberius Dicu, Alexandra Cucoș, Betty Denissa Burghele, Gabriel Dobrei, Alexandru Lupulescu, Mircea Moldovan, Dan Constantin Niţă, Botond Papp, Kinga Szacsvai, A Țenter, Mihail Simion Beldean-Galea, Manuel Antón, Ș. Grecu, L. Cioloca, Rene Milos, Marius Lucian Botoș, Cosmin Gruia Chiorean, Tiberiu Catalina, Marian-Andrei Istrate and Carlos Sainz. “AN INNOVATIVE SYSTEM FOR MONITORING RADON AND INDOOR AIR QUALITY.” (2020). | ||
[^66]: | ||
Sá, Juliana P., Pedro T. B. S. Branco, Maria C. M. Alvim-Ferraz, Fernando G. Martins, and Sofia I. V. Sousa. “Radon in Indoor Air: Towards Continuous Monitoring.” Sustainability 14, no. 3 (January 28, 2022): 1529. https://doi.org/10.3390/su14031529. | ||
[^67]: | ||
Airthings Website (Accessed January 2023) https://www.airthings.com/ | ||
[^68]: | ||
FTLab Radon Monitor Website (Accessed January 2023) http://radonftlab.com/radon-sensor-product/radon-sensor/rd200m/ | ||
[^69]: | ||
Tesla TSRS Product Page (Accessed January 2023): https://www.tesla.cz/en/radon-concentration-measurement/ | ||
[^70]: | ||
Tesla TSRS Datasheet (Accessed January 2023): https://www.tesla.cz/wp-content/uploads/2022/05/052-410-049-TSRS_probe_manual_en_v1.pdf | ||
[^71]: | ||
Studnička, Filip, Jan Štěpán, and Jan Šlégr. “Low-Cost Radon Detector with Low-Voltage Air-Ionization Chamber.” Sensors 19, no. 17 (August 28, 2019): 3721. https://doi.org/10.3390/s19173721. | ||
[^72]: | ||
Alvarellos, Alberto, Marcos Gestal, Julián Dorado, and Juan Ramón Rabuñal. “Developing a Secure Low-Cost Radon Monitoring System.” Sensors 20, no. 3 (January 29, 2020): 752. https://doi.org/10.3390/s20030752. | ||
[^73]: | ||
Alvarellos, Alberto, Andrea Lopez Chao, Juan Ramón Rabuñal, María D. García-Vidaurrázaga, and Alejandro Pazos. “Development of an Automatic Low-Cost Air Quality Control System: A Radon Application.” Applied Sciences 11, no. 5 (March 1, 2021): 2169. https://doi.org/10.3390/app11052169. |