Tensorflow Implementation of Deep Learning Approach for Event Extraction(ACE 2005) via Dynamic Multi-Pooling Convolutional Neural Networks.
- Tensorflow
- Scikit-learn
- NLTK
pip install -r requirements.txt
may help.
-
"GoogleNews-vectors-negative300" is used as a pre-trained word2vec model.
-
"glove.6B" is used as a pre-trained GloVe model.
-
Performance (accuracy and f1-socre) outputs during training are UNOFFICIAL SCORES of ACE 2005.
$ python Script.py {taskID} {subtaskID}
-
taskID
: 1 for Trigger, 2 for Argument -
subtaskID
: 1 for Identification, 2 for Classification -
After model training, evaluation results will be shown.
$ python Script.py 1 2 # Script for `Trigger Classification`
- Apply Dymamic Multi-Pooling CNN
- Evaluation Script
precision recall f1-score support
TRIGGER 0.59 0.44 0.50 527
None 0.97 0.98 0.98 9151
micro avg 0.95 0.95 0.95 9678
macro avg 0.78 0.71 0.74 9678
weighted avg 0.95 0.95 0.95 9678
precision recall f1-score support
Life 0.75 0.70 0.72 114
Justice 0.78 0.85 0.81 114
Movement 0.69 0.70 0.69 53
Personnel 0.68 0.64 0.66 78
Business 0.75 0.46 0.57 13
Conflict 0.78 0.83 0.80 247
Contact 0.79 0.86 0.83 36
Transaction 1.00 0.48 0.65 27
micro avg 0.76 0.76 0.76 682
macro avg 0.78 0.69 0.72 682
weighted avg 0.76 0.76 0.76 682
precision recall f1-score support
Movement 0.47 0.21 0.29 68
Business 1.00 0.10 0.18 10
Contact 0.67 0.22 0.33 37
Justice 0.32 0.17 0.23 63
None 0.96 0.99 0.98 8348
Conflict 0.70 0.38 0.50 156
Life 0.64 0.38 0.48 65
Transaction 0.75 0.10 0.18 29
Personnel 0.73 0.24 0.36 46
micro avg 0.95 0.95 0.95 8822
macro avg 0.69 0.31 0.39 8822
weighted avg 0.94 0.95 0.94 8822
precision recall f1-score support
Seller 0.00 0.00 0.00 4
Money 0.00 0.00 0.00 13
Target 0.30 0.16 0.21 67
Destination 0.45 0.20 0.28 49
Victim 0.35 0.23 0.28 48
Instrument 0.25 0.10 0.14 31
Crime 0.67 0.14 0.23 43
Adjudicator 0.00 0.00 0.00 20
Origin 0.00 0.00 0.00 34
Time 0.46 0.22 0.30 193
Agent 0.00 0.00 0.00 40
Position 0.00 0.00 0.00 20
Giver 0.00 0.00 0.00 16
Beneficiary 0.00 0.00 0.00 5
Org 0.00 0.00 0.00 6
Artifact 0.00 0.00 0.00 14
Place 0.28 0.21 0.24 149
None 0.75 0.95 0.84 2593
Prosecutor 0.00 0.00 0.00 2
Person 0.25 0.18 0.21 113
Attacker 0.32 0.11 0.16 75
Defendant 0.47 0.14 0.21 51
Sentence 0.67 0.40 0.50 10
Plaintiff 0.00 0.00 0.00 17
Vehicle 0.00 0.00 0.00 10
Entity 0.17 0.02 0.03 110
Recipient 0.00 0.00 0.00 4
Price 0.00 0.00 0.00 1
Buyer 0.00 0.00 0.00 4
micro avg 0.70 0.70 0.70 3742
macro avg 0.19 0.11 0.13 3742
weighted avg 0.61 0.70 0.64 3742