Skip to content

Tensorflow Implementation of Dynamic Multi-Pooling Convolutional Neural Networks for Event Extraction

License

Notifications You must be signed in to change notification settings

nlpcl-lab/event-extraction

Repository files navigation

Event Extraction

Tensorflow Implementation of Deep Learning Approach for Event Extraction(ACE 2005) via Dynamic Multi-Pooling Convolutional Neural Networks.

Requirements

  • Tensorflow
  • Scikit-learn
  • NLTK

pip install -r requirements.txt may help.

Usage

Train

  • "GoogleNews-vectors-negative300" is used as a pre-trained word2vec model.

  • "glove.6B" is used as a pre-trained GloVe model.

  • Performance (accuracy and f1-socre) outputs during training are UNOFFICIAL SCORES of ACE 2005.

Train Example:
$ python Script.py {taskID} {subtaskID}
  • taskID: 1 for Trigger, 2 for Argument

  • subtaskID: 1 for Identification, 2 for Classification

  • After model training, evaluation results will be shown.

$ python Script.py 1 2  # Script for `Trigger Classification`

Todo

  • Apply Dymamic Multi-Pooling CNN
  • Evaluation Script

Results

Trigger identification performance

              precision    recall  f1-score   support

     TRIGGER       0.59      0.44      0.50       527
        None       0.97      0.98      0.98      9151

   micro avg       0.95      0.95      0.95      9678
   macro avg       0.78      0.71      0.74      9678
weighted avg       0.95      0.95      0.95      9678

Trigger classification performance

             precision    recall  f1-score   support

        Life       0.75      0.70      0.72       114
     Justice       0.78      0.85      0.81       114
    Movement       0.69      0.70      0.69        53
   Personnel       0.68      0.64      0.66        78
    Business       0.75      0.46      0.57        13
    Conflict       0.78      0.83      0.80       247
     Contact       0.79      0.86      0.83        36
 Transaction       1.00      0.48      0.65        27

   micro avg       0.76      0.76      0.76       682
   macro avg       0.78      0.69      0.72       682
weighted avg       0.76      0.76      0.76       682
with None label
              precision    recall  f1-score   support

    Movement       0.47      0.21      0.29        68
    Business       1.00      0.10      0.18        10
     Contact       0.67      0.22      0.33        37
     Justice       0.32      0.17      0.23        63
        None       0.96      0.99      0.98      8348
    Conflict       0.70      0.38      0.50       156
        Life       0.64      0.38      0.48        65
 Transaction       0.75      0.10      0.18        29
   Personnel       0.73      0.24      0.36        46

   micro avg       0.95      0.95      0.95      8822
   macro avg       0.69      0.31      0.39      8822
weighted avg       0.94      0.95      0.94      8822

Argument classification performance

              precision    recall  f1-score   support

      Seller       0.00      0.00      0.00         4
       Money       0.00      0.00      0.00        13
      Target       0.30      0.16      0.21        67
 Destination       0.45      0.20      0.28        49
      Victim       0.35      0.23      0.28        48
  Instrument       0.25      0.10      0.14        31
       Crime       0.67      0.14      0.23        43
 Adjudicator       0.00      0.00      0.00        20
      Origin       0.00      0.00      0.00        34
        Time       0.46      0.22      0.30       193
       Agent       0.00      0.00      0.00        40
    Position       0.00      0.00      0.00        20
       Giver       0.00      0.00      0.00        16
 Beneficiary       0.00      0.00      0.00         5
         Org       0.00      0.00      0.00         6
    Artifact       0.00      0.00      0.00        14
       Place       0.28      0.21      0.24       149
        None       0.75      0.95      0.84      2593
  Prosecutor       0.00      0.00      0.00         2
      Person       0.25      0.18      0.21       113
    Attacker       0.32      0.11      0.16        75
   Defendant       0.47      0.14      0.21        51
    Sentence       0.67      0.40      0.50        10
   Plaintiff       0.00      0.00      0.00        17
     Vehicle       0.00      0.00      0.00        10
      Entity       0.17      0.02      0.03       110
   Recipient       0.00      0.00      0.00         4
       Price       0.00      0.00      0.00         1
       Buyer       0.00      0.00      0.00         4

   micro avg       0.70      0.70      0.70      3742
   macro avg       0.19      0.11      0.13      3742
weighted avg       0.61      0.70      0.64      3742

References

  • Event Extraction via Dynamic Multi-Pooling Convolutional Neural Networks (IJCNLP 2015), Chen, Yubo, et al. [paper]
  • zhangluoyang's cnn-for-auto-event-extract repository [github]

About

Tensorflow Implementation of Dynamic Multi-Pooling Convolutional Neural Networks for Event Extraction

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages