Python3 Neural Network module. It supports all networks size, each layer can have it's specific activation function, size, and configuration. The module supports all sizes for networks.
The only requirement is numpy module in python.
The optimizer algorithm it's SGD and currently it's the only available.
git clone https://github.com/ramonus/pyneuro.git
pip3 install numpy
or
pip install numpy
3.1. To run the example just run the main file nn.py
from pyneuro import *
import numpy as np
X = [
[0,0],
[0,1],
[1,0],
[1,1]
]
Y = [
[0],
[1],
[1],
[0]
]
nn = input_data(2)
nn = fully_connected(nn,2,activation="sigmoid")
nn = fully_connected(nn,1,activation="sigmoid")
Yh = nn.predict(X)
nn.fit(X,Y,n_epochs=10000,learning_rate=0.5,verbose=100)
Yh2 = nn.predict(X)
print("Y:",Y)
print("Y before fit:",[np.round(i[0]).tolist() for i in np.divide(Yh,max(Yh))])
print("Y after fit :",[np.round(i[0]).tolist() for i in np.divide(Yh2,max(Yh2))])
print(" ",[i[0].tolist() for i in Yh2])
print("Done!")