Skip to content

Contains material for Deep Into CNN project

Notifications You must be signed in to change notification settings

salonidabgar/Deep-Into-CNN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

32 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Deep Into CNN

Contains material relevant to "Deep Into CNN" Project.

Resources

Week 1 : Regression( Skip if you are confident )

Readings

  1. Local Setup (Use Conda : recommended)
    https://jupyter.readthedocs.io/en/latest/install/notebook-classic.html
    https://docs.conda.io/projects/conda/en/latest/user-guide/install/index.html#installation
  2. (Optional: Basic Python and libraries)
    https://duchesnay.github.io/pystatsml/index.html#scientific-python
  3. ( Optional : For those with very basic ml knowledge: Only 2.1-2.7)
    https://www.youtube.com/watch?v=PPLop4L2eGk&list=PLLssT5z_DsK-h9vYZkQkYNWcItqhlRJLN
  4. Linear Regression:
    https://medium.com/analytics-vidhya/simple-linear-regression-with-example-using-numpy-e7b984f0d15e
  5. Logistic Regression:
    https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc

Practice Material

Find in NeuralNetIntro : W2-3.

Week 1-2: Neural Networks

Readings

  1. This one is highly recommended:
    https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi
    Some more material (bit extensive, so be careful):
    https://youtube.com/playlist?list=PLtBw6njQRU-rwp5__7C0oIVt26ZgjG9NI
  2. Basic Backprop:
    https://ml-cheatsheet.readthedocs.io/en/latest/backpropagation.html
  3. Backprop (Mathematical Version):
    https://mattmazur.com/2015/03/17/a-step-by-step-backpropagation-example/
  4. Softmax:
    https://ljvmiranda921.github.io/notebook/2017/08/13/softmax-and-the-negative-log-likelihood/
  5. Pytorch(Skip the CNN part if you want for now):
    https://pytorch.org/tutorials/beginner/basics/intro.html
  6. Optional guide:
    http://neuralnetworksanddeeplearning.com/chap1.html
  7. Pytorch Autograd:
    https://www.youtube.com/watch?v=MswxJw-8PvE&list=PL-bzqKhHrboYIKgBwoqzl6-eyCHP3aBYs&index=4

Practice Material

Find in PyTorch : W2-3.

Hackathon 1

June 1 - June 30 :
https://www.kaggle.com/c/tabular-playground-series-jun-2021

Find Sample Submission Here

Week 2-3: Convolutional Neural Networks

Readings

  1. These will give you a good Intuition:
    https://www.youtube.com/watch?v=py5byOOHZM8
    and
    https://www.youtube.com/watch?v=BFdMrDOx_CM
    Also, do check this blog out:
    https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
  2. Highly Recommended:
    https://cs231n.github.io/convolutional-networks/
  3. (L2-L11 : Enough for Understanding Implementation Details):
    https://www.youtube.com/playlist?list=PLkDaE6sCZn6Gl29AoE31iwdVwSG-KnDzF
  4. Pytorch official guide (Try after doing W3 exercises):
    https://pytorch.org/tutorials/beginner/basics/intro.html

Practice Material

Find in W3 Folder

Paper 1 Implementation

Choose Any 1 of following:

  1. AlexNet:
    https://papers.nips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
  2. VGG:
    https://arxiv.org/pdf/1409.1556v6.pdf
  3. Inception(GoogLeNet)*:
    https://arxiv.org/pdf/1409.4842v1.pdf
  4. Xception*:
    https://openaccess.thecvf.com/content_cvpr_2017/papers/Chollet_Xception_Deep_Learning_CVPR_2017_paper.pdf
  5. ResNet*:
    https://arxiv.org/pdf/1512.03385v1.pdf

(* Recommended)

Supplement Material

  1. Inception Module:
    https://towardsdatascience.com/deep-learning-understand-the-inception-module-56146866e652
  2. Separable Convolutions:
    https://towardsdatascience.com/a-basic-introduction-to-separable-convolutions-b99ec3102728
  3. Implementation of Xception : Use groups argument of conv2d for separating channels (i.e. for Depthwise Separable Convolution ):
    https://pytorch.org/docs/stable/generated/torch.nn.Conv2d.html

Hackathon 2

Based on following Dataset:
https://www.kaggle.com/gpiosenka/100-bird-species

Week 4-5: Optimization

Readings

  1. Visualizing MNIST (Casual Reading, Enjoy Animations):
    http://colah.github.io/posts/2014-10-Visualizing-MNIST/

  2. Optimizers: Only Gradient Descent Variations, Adam and RMSProp:
    https://ruder.io/optimizing-gradient-descent/

  3. SGD with Momentum(Mathematical,For future reference)
    https://distill.pub/2017/momentum/

  4. Weight Initialization:
    https://towardsdatascience.com/weight-initialization-techniques-in-neural-networks-26c649eb3b78

  5. Batch Norm :
    https://towardsdatascience.com/batch-normalization-in-3-levels-of-understanding-14c2da90a338

  6. Overfitting, Regularization, Hyper-parameter tuning :
    http://neuralnetworksanddeeplearning.com/chap3.html#how_to_choose_a_neural_network%27s_hyper-parameters

  7. Complete Reference(Videos):
    https://www.youtube.com/playlist?list=PLkDaE6sCZn6Hn0vK8co82zjQtt3T2Nkqc

About

Contains material for Deep Into CNN project

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 98.7%
  • Python 1.3%