About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Cauchy distribution logarithm of probability density function (logPDF).
The probability density function (PDF) for a Cauchy random variable is
where x0
is the location parameter and gamma > 0
is the scale parameter.
npm install @stdlib/stats-base-dists-cauchy-logpdf
Alternatively,
- To load the package in a website via a
script
tag without installation and bundlers, use the ES Module available on theesm
branch (see README). - If you are using Deno, visit the
deno
branch (see README for usage intructions). - For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the
umd
branch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var logpdf = require( '@stdlib/stats-base-dists-cauchy-logpdf' );
Evaluates the natural logarithm of the probability density function (PDF) for a Cauchy distribution with parameters x0
(location parameter) and gamma > 0
(scale parameter).
var y = logpdf( 2.0, 1.0, 1.0 );
// returns ~-1.838
y = logpdf( 4.0, 3.0, 0.1 );
// returns ~-3.457
y = logpdf( 4.0, 3.0, 3.0 );
// returns ~-2.349
If provided NaN
as any argument, the function returns NaN
.
var y = logpdf( NaN, 1.0, 1.0 );
// returns NaN
y = logpdf( 2.0, NaN, 1.0 );
// returns NaN
y = logpdf( 2.0, 1.0, NaN );
// returns NaN
If provided gamma <= 0
, the function returns NaN
.
var y = logpdf( 2.0, 0.0, -1.0 );
// returns NaN
Returns a function
for evaluating the natural logarithm of the PDF of a Cauchy distribution with location parameter x0
and scale parameter gamma
.
var mylogpdf = logpdf.factory( 10.0, 2.0 );
var y = mylogpdf( 10.0 );
// returns ~-1.838
y = mylogpdf( 5.0 );
// returns ~-3.819
- In virtually all cases, using the
logpdf
orlogcdf
functions is preferable to manually computing the logarithm of thepdf
orcdf
, respectively, since the latter is prone to overflow and underflow.
var randu = require( '@stdlib/random-base-randu' );
var EPS = require( '@stdlib/constants-float64-eps' );
var logpdf = require( '@stdlib/stats-base-dists-cauchy-logpdf' );
var gamma;
var x0;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
x = randu() * 10.0;
x0 = ( randu()*10.0 ) - 5.0;
gamma = ( randu()*20.0 ) + EPS;
y = logpdf( x, gamma, x0 );
console.log( 'x: %d, x0: %d, γ: %d, ln(f(x;x0,γ)): %d', x.toFixed(4), x0.toFixed(4), gamma.toFixed(4), y.toFixed(4) );
}
This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.