Compressive Strength Predicting Model using Extra Tree Regressor , Decision Tree Regressor , LGBMR Regressor ,Random Forest Regressor etc.
-
Updated
May 7, 2023 - Jupyter Notebook
Compressive Strength Predicting Model using Extra Tree Regressor , Decision Tree Regressor , LGBMR Regressor ,Random Forest Regressor etc.
A fitness predicting web application called Fitness Genie which has been deployed on Google Cloud Platform(GCP)
Student 360 deals with analyzing the student performance based on the various external factors to determine the student dropout rate and predict the CGPA of the students.
This is my First Project and also participated in kaggle competition
machine learning using RandomForestRegressor and dataset with coffee data
Repository of my Supervised Machine Learning Regression projects
Predict home prices using regression, optimizing for R2 and RMSE metrics to create a robust model with minimal prediction deviation.
Este fue el proyecto final del Bootcamp de Data Science y Machine & Deep Learning, fue desarrollado junto con mi compañero Pablo Pita. Este proyecto trata de predecir el consumo y la produccion de clientes con placas solares, en el enlace podréis ver la presentación que realizamos
Image SuperResolution using Random Forest Regressor(RFSR), Support Vector Regressor(SVR) Machine learning Models.
Add a description, image, and links to the regressor-models topic page so that developers can more easily learn about it.
To associate your repository with the regressor-models topic, visit your repo's landing page and select "manage topics."